Spherical/Projective Geometry

Spherical Lines

- A line is the shortest path between two points.
- Plane separation: the complement of a line is a disconnected topogical space.
- There is a unique line passing through two distinct, non-antipodal points.
- Two distinct lines intersect in two points.
- Given a point \mathbf{x} and a line L not containing \mathbf{x}, there is a line passing through \mathbf{x} and perpendicular to L.

Projective Lines

- A line is the shortest path between two points.
- The complement of a line is connected
- There is a unique line passing through two distinct, points.
- Two distinct lines intersect in exactly one point.
- Given a point \mathbf{x} and a line L not containing \mathbf{x}, there is a line passing through \mathbf{x} and perpendicular to L.

Circles

- A line and a circle which is distinct from it intersect in at most two points.
- Two distinct circles intersect in at most two points.
- The perimeter of a circle of radius R is $2 \pi \sin R$.

Isometries

- If F_{1} and F_{2} are orthogonal frames, there is a unique isometry taking F_{1} to F_{2}.
- An isometry which fixes three non-colinear points is the identity.
- Any isometry can be written as the composition of ≤ 3 reflections.

Triangles

- The sum of the interior angles in $\triangle A B C$ is $\pi+\operatorname{Area}(A B C)$.
- If A_{1}, A_{2}, A_{3} and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are two sets of non-colinear points with $d\left(A_{i}, A_{j}\right)=$ $d\left(A_{i}^{\prime}, A_{j}^{\prime}\right)$, then there is a unique $\phi \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ with $\phi\left(A_{i}\right)=A_{i}^{\prime}$.
- If A_{1}, A_{2}, A_{3} and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are two sets of non-colinear points with $d\left(A_{1}, A_{j}\right)=$ $d\left(A_{1}^{\prime}, A_{j}^{\prime}\right)$ and $\angle A_{2} A_{1} A_{3}=\angle A_{2}^{\prime} A_{1}^{\prime} A_{3}^{\prime}$ then there is a unique $\phi \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ with $\phi\left(A_{i}\right)=A_{i}^{\prime}$.

Trigonometry

If $\triangle A B C$ has sides a, b, c and opposite angles α, β, γ, then

$$
\frac{\sin \alpha}{\sin a}=\frac{\sin \beta}{\sin b}=\frac{\sin \gamma}{\sin c}
$$

$$
\begin{aligned}
& \cos a=\cos b \cos c+\sin \alpha \sin b \sin c \\
& \cos \alpha=-\cos \beta \cos \gamma+\sin a \sin \beta \sin \gamma
\end{aligned}
$$

