
FOUR-MANIFOLDS LENT 2009

SOLUTIONS FOR
EXAMPLE SHEET 1

1. Show that any orientable two-manifold has an orientation reversing diffeomorphism.

S2 = {(x, y, z) | x2 + y2 + z2 = 1} has an orientation reversing diffeomorphism given
by (x, y, z) 7→ (−x, y, z). T 2 = R2/Z2 has an orientation reversing diffeomorphism
(x, y) 7→ (−x, y). This diffeomorphism preserves small disks centered on the y axis.
Taking connected sum along such disks gives an orientation reversing diffeomorphism
for higher genus surfaces.

2. (a) Let V ⊂ R4 be the lattice D4 ∪ (D4 + v), where v = (1/2, 1/2, 1/2, 1/2). Let Q be
the quadratic form on V defined by Q(x, x) = x · x. Show that Q ' 4 (1).
The vectors (1/2, 1/2, 1/2, 1/2), (1/2,−1/2, 1/2, 1/2), (1/2, 1/2,−1/2, 1/2), and
(1/2, 1/2, 1/2,−1/2) form an orthonormal basis of V with respect to Q.

(b) Show there is a positive definite unimodular form on Z12 which is not isomorphic
to 12 (1).
Consider the lattice D12 ∪ (D12 + v) where v is the vector with all coordinates 1/2.
D12 is unimodular (same argument as for E8 in class), but contains no vector of
length 1. Elements of D12 have length at least 2, and elements of D12 + v have
length at least 12 · (1/4) = 3.

3. Show that (S2×S2)#CP2 is diffeomorphic to CP2#2CP2. (It might help to understand
the isomorphism of intersection forms first.)

Let E be the obvious sphere of self-intersection −1 in X = (S2 × S2)#CP2, and let
π : X → S2 × S2 be the blow-down map. Suppose π(E) = p = (p1, p2). If Σ is a curve
in S2 × S2, we define its proper transform Σ′ to be the closure of π−1(Σ − p) in the
blow-up. We let S1, S2 ⊂ S2 × S2 be the spheres p1 × S2 and S2 = S2 × p1. Then
S′i ·E = 1, so S′i = Si −E, where we have identified H2(X) = H2(S2 × S2)⊕H2(CP2).
In particular S′i · S′i = −1. We can now blow down S′1 and S′2 to obtain CP2.

4. Let D be the unit disk in C, and let X = D × 0 ∪ 0 × D ⊂ D × D. Show that X is
homologous to a smoothly embedded annulus A with A ∩ ∂(D ×D) = X ∩ ∂(D ×D).

∂(D2 × D2) = S3, and X ∩ ∂(D2 × D2) is the Hopf link,which bounds an obvious
embedded annulus in S3. Push this into D2 ×D2.
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5. Let En be the complex line bundle over S2 with Euler number n, and let Dn be its unit
disk bundle. Find all the groups and maps in the long exact sequence on homology for
the pair (Dn, ∂Dn). Show that the universal cover of ∂Dn is S3. Describe the action of
the group of deck transformations.

Dn is homotopy equivalent to S2, so H∗(Dn) = Z for ∗ = 0, 2 and is 0 otherwise. By
Poincare duality and the universal coefficient theorem, H∗(Dn, ∂Dn) = Z for ∗ = 4, 2
and is 0 otherwise. The interesting part of the exact sequence is

0 → H2(∂Dn) → H2(Dn) → H2(Dn, ∂Dn) → H1(∂Dn) → 0.

The map H2(Dn) → H2(Dn, ∂Dn) is given by multiplication by n. To see this, consider
intersection numbers in Dn. H2(Dn, ∂Dn) is generated by the class of a fibre, which
has intersection number 1 with the 0-section. On the other hand, the 0-section has
intersection number n with itself. So it must be homologous to n times the generator.

Note that D−1 is the Hopf bundle, which has total space S3. We can define an n to 1
covering map ∂D−1 → ∂D−n as follows. Let Ei be the total space of the vector bundle
with c1(Ei) = i, and consider the map pn : E−1 → E⊗n

−1
∼= E−n which takes a vector

v to v ⊗ v . . . ⊗ v. Observe that C⊗n ∼= C via the map which takes λ1 ⊗ · · · ⊗ λn to
λ1λ2 . . . λn. Thus in local coordinates we have pn(λ) = λn. This map clearly preserves
the unit circle in C. It follows that the map pn takes ∂D−1 to ∂D−n. It is an n to
1 cover on each fibre of the projection to S2. If we identify the total space of ∂D−1

with S3, the projection takes (z, w) to [z : w]. The group of deck transformations is
generated by the map (z, w) 7→ (e2πi/nz, e2πi/nw).

For n > 0, note that Dn is orientation reversing diffeomorphic to D−n via the map that
acts as conjugation on each fibre.

6. Compute the genus of a smooth algebraic curve of bidegree (m,n) (i.e. representing
the homology class (m,n) with respect to the standard basis {[CP1] × a, a × [CP1]} in
CP1 × CP1.

Let X be such a curve, and let i : X → CP1 × CP1 be the injection. We have

χ(X) = c1(TX) = i∗(c1(X))− c1(NCP1×CP1X)

= i∗(2PD([CP1]× a) + 2PD(a× [CP1]))−X ·X
= 2m+ 2n− 2mn

Thus the genus is 1− χ/2 = mn− n−m+ 1.

7. Show that there are two isomorphism classes of three-dimensional real vector bundles
over S2. Show that the unit sphere bundle of the nontrivial bundle is diffeomorphic to
CP2#CP2.
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According to the next problem, such bundles are classified by π1(SO(3)) ∼= Z/2, so
there is only one nontrivial bundle. To construct such a bundle, consider the rational
map f : CP2 → CP1 defined in homogenous coordinates by [x : y : z] 7→ [x : y]. This
map fails to be defined at p = [0 : 0 : 1]. If we blow up at p, we get a well-defined map,
as follows. Pick local coordinates s = x/z, t = y/z near p. Local coordinates on the
blowup are ([S : T ], λ), where s = λS, t = λT . For λ 6= 0

f([S : T ], λ) = [s : t] = [λS : λT ] = [S : T ].

Thus f has a unique continuous extension to the blowup, namely f([S : T ], λ) = [S : T ].

If q = [a : b] is a point in CP1, then f−1(q) consists of the complex line

{[x : y : z] ∈ CP2 | bx− ay = 0}

with the point [0 : 0 : 1] removed and replaced by the point [a : b] in the exceptional
divisor. In other words, each fibre is a copy of S2. This shows that CP2#CP2 is an S2

bundle over S2. Its intersection form is odd, so it must be the nontrivial bundle.

8. Show that n dimensional real vector bundles over Sm are classified by πm−1(O(n)).
Show that π3(SO(4)) ∼= Z⊕Z. Explain why this makes sense in terms of characteristic
classes. Find two four-dimensional vector bundles over S4 whose images in Z ⊕ Z are
linearly independent. Conclude that there are infinitely many vector bundles over S4

with Euler number 1. This is how Milnor constructed the first exotic 7-spheres. (NB:
There are only finitely many diffeomorphism classes of manifolds homeomorphic to S7.
Different vector bundles can have diffeomorphic unit sphere bundles.)

Given φ : Sm−1 → O(n), construct a vector bundle with total space

Eφ =
(
Dm

1 × Rn
∐

Dm
2 × Rn

)
/ ∼,

where (x, y) ∈ ∂Dm
1 × Rn is identified with (x, φ(x) · y) ∈ ∂Dm

2 × Rn. Suppose Eφ is
isomorphic to Eψ. After composition with a further isomorphism, we can assume that
the isomorphism is identity on the northern hemisphere. In this case, it is not difficult
to see that the isomorphism extends to the southern hemisphere if and only if the map
φ ◦ ψ−1 extends to the southern hemisphere. This occurs if and only [φ] − [ψ] = 0in
πm−1(O(n)). (Proof: after a homotopy, we can assume that φ and ψ are equal to I
outside of small disjoint disks in Sm−1. In this case it is easy to see that multiplication
in O(n) and addition in the homotopy group coincide.)

To compute π3(SO(4)) = Z⊕Z, we can either use the isomorphism SO(4) ∼= (SU(2)×
SU(2))/{±(I, I)} or the long exact sequence of the fibration SO(3) → SO(4) → S3 and
the isomorphism SO(3) ∼= SU(2)/{±I}. The fact that the set of SO(4) bundles over
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S4 is isomorphic to Z⊕ Z relates to the fact that there are two different characteristic
classes for such a bundle E. Namely, p1(E) and e(E), both of which are potentially
nontrivial elements of H4(S4) = Z.

9. Show that a smooth degree 2 hypersurface in CP3 is diffeomorphic to S2×S2, and that
a smooth cubic hypersurface is diffeomorphic to CP2#6CP2.

Let Q be the quadric hypersurface determined by the equation xy = zw in CP3. There
is a map f : Q→ CP1 defined by [x : y : z : w] 7→ [x : z].

f−1([a : b]) = {[x : y : z : w] | az − bx = 0, ay − bw = 0}

is a complex line in CP2, so it is homeomorphic to S2. Thus Q is an S2 bundle over S2.
To see that it is the trivial S2 bundle, not that c1(Q) is even, so the intersection form
on Q is even.

For the cubic hypersurface, we proceed as follows. Choose 6 points in p1, . . . , p6 in CP2

with the property that there is a 4-dimensional vector space V of cubic polynomials
which vanish at all 6. To see that 4 is the right number to expect here, notice that the
space of all homogenous cubic polynomials is 10 dimensional, and that vanishing at each
point imposes a single linear condition. (Note, however, that this does not prove that
such a collection of 6 points exists. The lazy way to do this is just to pick 6 random
points, and check, using Mathematica or the like, that the resulting system of 6 linear
equations in 10 variables has a 4 dimensional space of solutions. For a better argument,
look in a book on algebraic surfaces.) Pick a basis P1, P2, P3, P4 for V , and consider the
rational map f : CP2 → CP3 defined by

x = [x1 : x2 : x3] 7→ [P1(x) : P2(x) : P3(x) : P4(x)].

After blowing up at p1, . . . , p6, we get a well-defined map f : CP2#6CP2 → CP3.

Any huypersurface in CPn is the zero locus of a single equation, so we need only deter-
mine the degree of S = imf . To do this, consider the intersection of S with the line
L = [z1 : z2 : 0 : 0] in CP3; that is, the set of points in S with P3(x) = P4(x). P3 and P4

each define a cubic hypersurface in CP2, so they intersect at nine points. Six of these
are the blow-up points p1, . . . , p6, and do not appear in L ∩ S. The other three points
do, so S has degree 3 in CP3.

10. What is the intersection form of a smooth hypersurface of degree 5 in CP3? Same
question for degree 6.

Suppose S be a smooth hypersurface of degree n in CP3, and let i : S → CP3 be the
inclusion. Let H = PDCP3([CP2]) be a generator of H2(CP3), and let h = i∗(H). Then
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we have

i∗(TCP3) = TS ⊕NCP3S

i∗(c(TCP3)) = c(S) ∪ c(NCP3S)
1 + 4h+ 6nPDS(1) = (1 + c1(S) + c2(S)) ∪ (1 + nh)

Solving, we find that c1(S) = (4− n)h and that

c2(S) = 6nPDS(1) + (n− 4)nh2 = n(n2 − 4n+ 6)PDS(1)

The intersection form is even if and only if w2(S) ≡ 0(2), which occurs if and only if n is
even. S is simply connected by the Lefshetz hyperplane theorem, so b2(S) = χ(S)−2 =
c2(S)−2. When n = 5, we have b2 = 55−2 = 53. To compute σ(S) we use the signature
formula

σ(S) =
p1(S)

3
=
c21(S)− 2c2(S)

3
For n = 5, this works out to (5−110)/3 = −35, so the intersection form is 9(1)⊕44(−1).

When n = 6, we have b2 = 6(42 − 24) − 2 = 106 and σ = (24 − 216)/3 = −64, so the
intersection form is 21H ⊕ 8E8.

11. (a) Let Q be a unimodular quadratic form on a real vector space V . Suppose that V
has a subspace L whose dimension is half that of V and that Q(x, y) = 0 for all
x, y ∈ L. Show that σ(Q) = 0.
Let V have dimension 2n, and let V+ and V− be maximal positive and negative defi-
nite subspaces, so that dimV++dimV− = 2n. We claim that dimV+ = dimV− = n.
Indeed, if this were not the case, either V+ ∩L or V− ∩L would contain a nonzero
element, which is impossible.

(b) Suppose that M is a 4k-manifold which bounds a (4k + 1)-manifold W . Use the
long exact sequence of the pair (W,M) to show that σ(M) = 0.
Let i : M →W be the inclusion. Then

〈i∗(x) ∪ i∗(y), [M ]〉 = 〈x ∪ y, i∗([M ])〉
= 〈x ∪ y, 0〉
= 0

so it suffices to show that i∗(H2k(W )) has half the dimension of H2k(M). Consider
the commutative diagram

H2k(W,M) −−−−→ H2k(W )
f1−−−−→ H2k(M)

f2−−−−→ H2k+1(W,M) −−−−→y y y y
H2k+1(W ) −−−−→ H2k+1(W,M)

g1−−−−→ H2k(M)
g2−−−−→ H2k(W ) −−−−→
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where the vertical maps are Poincare duality. Then clearly fi and gi have the same
rank. On the other hand, if we use rational coefficients, f1 is the dual map to g2
and g2 is the dual map to g1. Thus all four maps have the same rank.

12. Let K ⊂ S3 be a smoothly embedded knot with tubular neighborhood U , and let
Y = S3 − U be its complement. Compute all groups and maps in the long exact
sequence for the homology of the pair (Y, ∂Y ). Show that up to isotopy there is a
unique embedded curve ` on ∂Y which bounds in Y . This curve is called the longitude
of K.

First consider the Mayer-Vietoris sequence for the decomposition S3 = Y ∪T 2 S1 ×D2.
From

0 → H3(S3) → H2(T 2) → H2(S1 ×D2)⊕H2(Y ) → H2(S3) = 0

we see that H2(Y ) = 0, and from

0 → H1(T 2) → H1(S1 ×D2)⊕H1(Y ) → H1(S3) = 0

we see that H1(Y ) = Z. By Poincare duality and the universal coefficient theorem, we
have H1(Y, ∂) = H2(Y ) = 0 and H2(Y, ∂) = H1(Y ) = Z. Thus the long exact sequence
of the pair

0 → H3(Y, T 2) → H2(T 2) → H2(Y ) → H2(Y, T 2) → H1(T 2) → H1(Y ) → H1(Y, T 2) = 0.

becomes
0 → Z → Z → 0 → Z → Z2 → Z → 0

In particular, the kernel of the map H1(T 2) → H1(Y ) is isomorphic to Z. Up to sign,
there is a unique primitive element of the kernel. This gives the unique embedded
connected curve which is nontrivial in H∗(T 2) and which bounds on Y .

13. Let X = S1 ×D2, and let a = S1 × 1 and b = 1 × ∂D2 be curves on ∂X = T 2. Show
that a diffeomorphism f : ∂X → ∂X extends to X if and only if f∗([b]) = [b]. (If you
like, you may assume f is given by a linear map on R2.)

This is false as stated; the condition should be f∗([b]) = ±[b]. To see that this condition
is necessary, suppose f extends to X and let i : ∂X → X be the inclusion. Then

i∗(f∗([b])) = f∗(i∗([b])) = f∗(0) = 0

so f∗([b]) is a primitive homology class in ∂X which bounds in X. It follows from the
previous exercise that ±[b] are the only elements of H2(∂X) with this property.

Conversely, suppose we are given a diffeomorphism f : ∂X → ∂X which is induced by
a linear map A : R2 → R2, and for which f∗([b]) = ±[b]. Since f is a diffeomorphism,
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it preserves the cup product. Thus it preserves intersection numbers up to sign. In
particular,f∗([a]) · f∗([b]) = ±1. This implies that f∗([a] = ±[a] + n[b] for some n ∈ Z.
It follows that

A =
[
±1 0
n ±1

]
Suppose that the ±1’s in this expression are both +1. (The other cases can be easily
dealt with by composing with the conjugation map in either the S1 or the D2 factor, or
both.) Then f(z, w) = (z, znw). The same formula defines the desired extension of f
to all of S1 ×D2.

14. In the notation of problems 12 and 13, let M = Y ∪f X, where f : ∂X → ∂Y is an
orientation reversing diffeomorphism with f∗([b]) = p[m] + q[`]. Show that if f ′ is any
other such f , the resulting manifold M ′ is diffeomorphic to M . (M is called p/q surgery
on K.) Compute H∗(M).

By the previous problem, g = f ′ ◦f−1 has g∗([b]) = [b], so g extends to a diffeomorphism
G : X → X. We can use G to define a diffeomorphism h : M → M ′. h is the
identity on Y and acts by G on X. To compute H∗(M), note that by the Seifert Van-
Kampen theorem, adding X to Y has the effect of killing the loop p[m] + q[`] on the
boundary torus. ` bounds in Y , so the effect on H1 is to kill p[m], where [m] generates
H1(Y ) = Z. Thus H1(M) = Z/p. By Poincare duality and the universal coefficient
theorem, H2(M) = 0.
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