ALGEBRAIC TOPOLOGY (PART II)

Proof of Seifert-Van Kampen

Setup: $X=U_{1} \cup U_{2}, U_{i} \subset X$ open, $U_{1} \cap U_{2}$ path connected.
Basepoint $x \in U_{1} \cap U_{2}$.
Let $j_{i}: U_{1} \cap U_{2} \rightarrow U_{i}$ be the inclusion.
Let $G_{i}=\pi_{1}\left(U_{i}, x\right)$.
Theorem: $\pi_{1}(X, x) \cong G_{1} * G_{2} / N$ where N is the smallest normal subgroup of $G_{1} * G_{2}$ containing all elements of the form $j_{1 *}(a) j_{2 *}(a)^{-1}$ for all $a \in \pi_{1}\left(U_{1} \cap U_{2}, x\right)$.
Proof:
We have already established (easy SVK) that there is a surjection $\phi: G_{1} * G_{2} \rightarrow \pi_{1}(X, x)$, and that $N \subset \operatorname{ker} \phi$. It remains to show that there are no other elements of the kernel.

Suppose $\gamma=\gamma_{1} \gamma_{2} \ldots \gamma_{n}$ is represented by a composition of loops γ_{i} based at x, where each γ_{i} is contained in U_{1} or U_{2}. If γ can be written as a composition of paths $f_{1} \ldots f_{n}$, where each f_{i} is contained in U_{1} or U_{2}, then we can represent γ by the composition $\left(f_{1} g_{1}^{-1}\right)\left(g_{1} f_{2} g_{2}^{-1}\right) \ldots\left(g_{n-1} f_{n}\right) \in$ $G_{1} * G_{2}$, where g_{i} is a path from x to $f_{i-1}(1)=f_{i}(0)$.
Claim 1: $\gamma_{1} \gamma_{2} \ldots \gamma_{n}=\left(f_{1} g_{1}^{-1}\right)\left(g_{1} f_{2} g_{2}^{-1}\right) \ldots\left(g_{n-1} f_{n}\right)$ in $G_{1} * G_{2} / N$.
Proof: It suffices to consider the case where we insert a single $g_{i}^{-1} g_{i}$ into some word γ_{j}, which we assume is contained in U_{1}. In this case, we have replaced γ_{j} with $\left(\gamma_{j, 1} g_{i}^{-1}\right)\left(g_{i} \gamma_{j, 2}\right)$. If both words in this expression are considered as elements of G_{1}, then the desired relation already holds in $G_{1} \cap G_{2}$. If one or both are considered as elements of G_{2}, then they must be contained in $U_{1} \cap U_{2}$, and the desired relation is a consequence of the relations in N.

Now suppose that γ and γ^{\prime} are loops in X which are related by a homotopy $H:[0,1] \times$ $[0,1] \rightarrow X$. In light of claim $1, \gamma$ and γ represent well-defined elements of $G_{1} * G_{2} / N$.
Claim 2: Suppose $[0,1]$ can be divided into intervals $\left[a_{0}, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots\left[a_{n-1}, a_{n}\right]$, where $a_{0}=0, a_{n}=1$, and that $H\left(\left[a_{i}, a_{i+1}\right],[0,1]\right)$ is contained in U_{1} or U_{2} for each i. Then $\gamma=\gamma^{\prime}$ in $G_{1} * G_{2} / N$.
Proof: Let f_{i} be the restriction of γ to the interval $\left[a_{i}-1, a_{i}\right]$, and similarly for f_{i}^{\prime} and γ^{\prime}. Then we can write

$$
\gamma=\left(\left(f_{1} g_{1}^{-1}\right)\left(g_{1} f_{2} g_{2}^{-1}\right) \ldots\left(g_{n-1} f_{n}\right) \in G_{1} * G_{2} / N\right.
$$

, where g_{i} is a path from x to $f_{i-1}(1)=f_{i}(0)$. Similarly,

$$
\gamma^{\prime}=\left(\left(f_{1}^{\prime} h_{1}^{-1} g_{1}^{-1}\right)\left(g_{1} h_{1} f_{2}^{\prime} h_{2}^{-1} g_{2}^{-1}\right) \ldots\left(h_{n-1} g_{n-1} f_{n}^{\prime}\right) \in G_{1} * G_{2} / N\right.
$$

where h_{i} is the path obtained by restriction H to the interval $a_{i} \times[0,1]$. Since the homotopy $H)\left(\left[a_{i}, a_{i+1}\right] \times[0,1]\right.$ is entirely contained in either U_{1} or U_{2}, the relation

$$
g_{i-1} f_{i} g_{i}^{-1}=g_{i-1} h_{i-1} f_{i}^{\prime} h_{i}^{-1} g_{i}^{-1}
$$

holds in G_{1} or G_{2}. Combining these relations for all i gives the claim.
We can now complete the proof of the theorem. Suppose that γ and γ^{\prime} are loops in X which are related by a homotopy $H:[0,1] \times[0,1] \rightarrow X$. By the uniform continuity lemma, we can choose an integer N so that each square of side $1 / N$ in $[0,1] \times[0,1]$ maps to U_{1} or U_{2} under H. Divide the square into smaller squares of side $1 / N$, and let γ_{i} be the restriction of H to $[0,1] \times i / N$. Then claim 2 ensures that γ_{i} and γ_{i+1} represent the same element of $G_{1} * G_{2} / N$. Repeating, we see that $\gamma=\gamma^{\prime}$ in $G_{1} * G_{2} / N$.

Corollary: Suppose we have presentations

$$
\begin{aligned}
& \pi_{1}\left(U_{1}, x\right)=\left\langle a_{1}, \ldots a_{n} \mid w_{1}, \ldots w_{m}\right\rangle \\
& \pi_{1}\left(U_{2}, x\right)=\left\langle b_{1}, \ldots b_{n^{\prime}} \mid u_{1}, \ldots u_{m^{\prime}}\right\rangle
\end{aligned}
$$

and that $\pi_{1}\left(U_{1} \cap U_{2}, x\right)$ is generated by elements $c_{1}, \ldots c_{k}$. Then

$$
\pi_{1}(X) \cong\left\langle a_{1}, \ldots a_{n}, b_{1}, \ldots b_{n^{\prime}} \mid w_{1}, \ldots w_{m}, u_{1}, \ldots u_{m^{\prime}}, j_{1 *}\left(c_{1}\right) j_{2 *}\left(c_{1}\right)^{-1} \ldots j_{1 *}\left(c_{k}\right) j_{2 *}\left(c_{k}\right)^{-1}\right\rangle
$$

Proof: This follows easily from the fact that

$$
G_{1} * G_{2} \cong\left\langle a_{1}, \ldots a_{n}, b_{1}, \ldots b_{n^{\prime}} \mid w_{1}, \ldots w_{m}, u_{1}, \ldots u_{m^{\prime}}\right\rangle .
$$

Example 1: $T^{2}=U_{1} \cup U_{2}$, where U_{1} deformation retracts to $S^{1} \vee S^{1}, U_{2} \simeq\left(B^{2}\right)^{\circ}$, and $U_{1} \cap U_{2} \simeq S^{1} \times(0,1)$. pi $i_{1}\left(U_{1}\right)=\langle a, b \mid\rangle, \pi_{1}\left(U_{2}\right)$ is trivial, and $\pi_{1}\left(U_{1} \cap U_{2}\right)$ is generated by a simple loop γ which deformation retracts to the loop $a b a^{-1} b-1=[a, b]$ in $S^{1} \vee S^{1}$. It follows that

$$
\pi_{1}\left(T^{2}, x\right) \cong\langle a, b \mid a b=b a\rangle=\mathbb{Z}^{2}
$$

Example 2: $\mathbb{R P}^{2}=U_{1} \cup U_{2}$, where U_{1} is the Mobius band, $U_{2}=\left(B^{2}\right)^{\circ}$, and $U_{1} \cap U_{2}=$ $S^{1} \times(0,1) . \pi_{1}\left(U_{1}\right)=\langle a \mid\rangle$, and $\pi_{1}\left(U_{1} \cap U_{2}\right)$ is generated by a loop γ which represents a^{2} in $\pi_{1}\left(U_{1}\right)$. It follows that

$$
\pi_{1}\left(T^{2}, x\right) \cong\left\langle a \mid a^{2}=1\right\rangle=\mathbb{Z} / 2
$$

Both of these examples are special cases of the construction of attaching a disk: if $f: S^{1} \rightarrow X$, then $X \cup_{f} B^{2}=X \amalg B^{2} / \sim$, where $x \sim f(x)$.
Example 3: Σ_{2} is a surface of genus 2 obtained by identifying two copies of $T^{2}-B^{2}$ along their common boundary circle. Taking U_{1} and U_{2} to be slightly enlarged copies of the punctured tori, we see that $U_{1} \cap U_{2} \simeq S^{1} \times(-1,1)$. We have $\pi_{1}\left(U_{i}\right)=\left\langle a_{i}, b_{i} \mid\right\rangle$. If γ is a generator of $\pi_{1}\left(U_{1} \cap U_{2}\right)$, we see that $j_{1 *}(\gamma)=\left[a_{1}, b_{1}\right]$ and $j_{2 *}(\gamma)=\left[a_{2}, b_{2}\right]^{-1}$. Thus

$$
\pi_{1}\left(\Sigma_{2}, x\right) \cong\left\langle a_{1}, b_{1}, a_{2}, b_{2} \mid\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right]=1\right\rangle
$$

J.Rasmussen@dpmms.cam.ac.uk

