Products

Set Theory Background: If X and Y are sets,

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\} .
$$

If $A \subset X, B \subset Y, A \times B \subset X \times Y$. There are projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$.
Topology: If X and Y are topological spaces, the product topology on $X \times Y$ is defined as follows: $U \subset X \times Y$ is open if for every $x \times y \in U$ there exist open subsets $V_{x} \subset X$, $V_{y} \subset Y$, with $x \in V_{x}, y \in V_{y}$, and $V_{x} \times V_{y} \subset U$.

If U is open in $X \times Y$, then

$$
U=\bigcup_{x \times y \in U} V_{x} \times V_{y}
$$

where V_{x} and V_{y} are as in the definition. Thus U is open if and only if it is union of sets of the form $V_{x} \times V_{y}$, where V_{x} is open in X and V_{y} is open in Y.

Set Theory Fact:

$$
\bigcap_{i=1}^{n}\left(A_{i} \times B_{i}\right)=\left(\bigcap_{i=1}^{n} A_{i}\right) \times\left(\bigcap_{i=1}^{n} B_{i}\right)
$$

Proof it's a topology:

(1) \emptyset is open in X and Y, so $\emptyset=\emptyset \times \emptyset$ is open in $X \times Y, X$ is open in X and Y is open in Y, so $X \times Y$ is open in $X \times Y$.
(2) Suppose $x \times y \in W=\bigcup_{\alpha \in A} U_{\alpha}$, where each U_{α} is open in $X \times Y$. Then $x \times y \in U_{\alpha}$ for some α, so there are open subsets $V_{x} \subset X, V_{y} \subset Y, x \in V_{x}, y \in V_{y}$ with $V_{x} \times V_{y} \subset U_{\alpha} \subset W$. It follows that W is open in $X \times Y$.
(3) Suppose $x \times y \in W=\bigcap_{i=1}^{n} U_{i}$, where each U_{i} is open in $X \times Y$. Then $x \times y \in U_{i}$ so there are open subsets $V_{x, i} \subset X, V_{y, i} \subset Y, x \in V_{x, i}, y \in V_{y, i}$ with $V_{x, i} \times V_{y_{i}} \subset U_{i}$. So

$$
x \times y \in \bigcap_{i=1}^{n}\left(V_{x, i} \times V_{y, i}\right) \subset \bigcap_{i=1}^{n} U_{i}
$$

and

$$
\bigcap_{i=1}^{n}\left(V_{x, i} \times V_{y, i}\right)=\left(\bigcap_{i=1}^{n} V_{x, i}\right) \times\left(\bigcap_{i=1}^{n} V_{y, i}\right)
$$

is of the form $W_{x} \times W_{y}$, where W_{x} is open in X and W_{y} is open in Y. Thus W is open in $X \times Y$.

Universal Property: $f: Z \rightarrow X \times Y$ is continuous if and only if $\pi_{1} \circ f$ and $\pi_{2} \circ f$ are continuous.
Set Theory Fact: $f^{-1}(A \times B)=\left(\left(\pi_{1} \circ f\right)^{-1}(A)\right) \cap\left(\left(\pi_{2} \circ f\right)^{-1}(B)\right)$
Proof. π_{1} is continuous, since if $V \subset X$ is open, $\pi_{1}^{-1}(V)=V \times Y$ is open in $X \times Y$. Similarly for π_{2}. Thus if f is continuous, $\pi_{i} \circ f$ is continuous.

Conversely, if $\pi_{1} \circ f$ and $\pi_{2} \circ f$ are continuous, and V_{x} is open in X and V_{y} is open in Y, then

$$
f^{-1}\left(V_{x} \times V_{y}\right)=\left(\left(\pi_{1} \circ f\right)^{-1}\left(V_{x}\right)\right) \cap\left(\left(\pi_{2} \circ f\right)^{-1}\left(V_{y}\right)\right)
$$

is the intersection of two open sets, hence open in Z. If U is any open set in $X \times Y$, then

$$
U=\bigcup_{x \times y \in U} V_{x} \times V_{y} \quad \text { so } \quad f^{-1}(U)=\bigcup_{x \times y \in U} f^{-1}\left(V_{x} \times V_{y}\right)
$$

is a union of open sets in Z, hence open. It follows that f is continuous.

Quotients

Set Theory Background: If \sim is an equivalence relation on X, the quotient X / \sim is the set of equivalence classes for \sim. There is a natural projection $\pi: X \rightarrow X / \sim$ which sends an element of X to its equivalence class.
Topology: If X is a topological space, the quotient topology on X / \sim is defined as follows: $U \subset X / \sim$ is open if and only if $\pi^{-1}(U)$ is open.

Set Theory Fact:

$$
f^{-1}\left(\bigcup_{\alpha \in A} U_{\alpha}\right)=\bigcup_{\alpha \in A} f^{-1}\left(U_{\alpha}\right) \quad \text { and } \quad f^{-1}\left(\bigcap_{\alpha \in A} U_{\alpha}\right)=\bigcap_{\alpha \in A} f^{-1}\left(U_{\alpha}\right)
$$

Proof it's a topology:

(1) $\pi^{-1}(\emptyset)=\emptyset$ is open in X, so \emptyset is open in $X / \sim . \pi^{-1}(X / \sim)=X$ is open in X, so X / \sim is open in X / \sim.
(2) If U_{α} is open in X / \sim, then

$$
f^{-1}\left(\bigcup_{\alpha \in A} U_{\alpha}\right)=\bigcup_{\alpha \in A} f^{-1}\left(U_{\alpha}\right)
$$

is a union of open sets in X, so it is open in X. Thus $\cup_{\alpha \in A} U_{\alpha}$ is open in X / \sim.
(3) If U_{i} is open in X / \sim, then

$$
f^{-1}\left(\bigcap_{i=1}^{n} U_{i}\right)=\bigcap_{i=1}^{n} f^{-1}\left(U_{i}\right)
$$

is a finite intersection of open sets in X, so it is open in X. Thus $\bigcap_{i=1}^{n} U_{i}$ is open in X / \sim.
Universal Property: $f: X / \sim \rightarrow Y$ is continuous if and only if $f \circ \pi$ is continuous.
Proof. If U is open in X / \sim, then by definition $\pi^{-1}(U)$ is open in X. So π is continuous. Hence if f is continuous, $f \circ \pi$ is too.

Conversely, if $f \circ \pi$ is continuous and U is open in Y, then $(f \circ \pi)^{-1}(U)=\pi^{-1}\left(f^{-1}(U)\right)$ is open in X. It follows that $f^{-1}(U)$ is open in X / \sim, so f is continuous.
J.Rasmussen@dpmms.cam.ac.uk

