Example Sheet 4

1. A map $p: E \rightarrow B$ is called a Serre fibration if for any continuous maps $f: D^{n} \times$ $[0,1] \rightarrow B$ and $g: D^{n} \rightarrow E$ with $p \circ g=\left.f\right|_{D^{n} \times 0}$, there is a continuous map $F: D^{n} \times[0,1] \rightarrow E$ with $p \circ F=f$ and $\left.F\right|_{D^{n} \times 0}=g$. Show that the map $\mathcal{P}(X, *) \rightarrow X$ which sends γ to $\gamma(1)$ is a Serre fibration.
2. If $p: E \rightarrow B$ is a Serre fibration and $* \in E$, let $*_{B}=p(*)$ and $F=p^{-1}\left(*_{B}\right)$. Let $X=S^{n-1} \times[0,1], A=S^{n-1} \times\{0,1\} \cup * \times[0,1] \subset X$, and let $\pi: X \rightarrow X / A \simeq S^{n}$ be the projection map. If $\phi:\left(S^{n}, *\right) \rightarrow\left(B, *_{B}\right)$, show that we can find a map $\Phi: X \rightarrow E$ such that $p \circ \Phi=\phi \circ \pi$ and $\Phi\left(S^{n-1} \times 0\right)=*$. If we define $\partial \phi=$ $\left.\Phi\right|_{S^{n-1} \times 1}: S^{n-1} \rightarrow F$, check that the map $[\phi] \mapsto[\partial \phi]$ descends to a well-defined homomorphism $\partial: \pi_{n}\left(B, *_{B}\right) \rightarrow \pi_{n-1}(F, *)$.
3. Show that the sequence $\rightarrow \pi_{n}(F) \xrightarrow{i_{*}} \pi_{n}(E) \xrightarrow{p_{*}} \pi_{n}(B) \xrightarrow{\partial} \pi_{n-1}(F) \rightarrow$ is exact.
4. Let V be a $2 n$-dimensional vector space equipped with a symplectic form ω. Show that there is a basis $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ of V such that $\omega=\sum_{i=1}^{n} x_{i}^{*} \wedge y_{i}^{*}$, where $\left\langle x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}^{*}, \ldots y_{n}^{*}\right\rangle$ is the dual basis. Deduce that V admits a compatible almost complex structure.
5. Let $M^{2 n}$ be a manifold, and let g and ω be a Riemannian metric and symplectic form on M, respectively. Show that there are maps $A_{p}: T_{p} M \rightarrow T_{p} M$ such that if $\mathbf{v}, \mathbf{w} \in T_{p} M, \omega(\mathbf{v}, \mathbf{w})=\left\langle A_{p} \mathbf{v}, \mathbf{w}\right\rangle$. If $\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n}\right\rangle$ is an orthonormal basis of $T_{p} M$ and A is the matrix of A_{p} with respect to this basis, then A is skew symmetric. Show that there is a symmetric matrix Q with $Q^{2}=-A^{2}$, and that $J=Q^{-1} A$ satisfies $J^{2}=-I$. Deduce that there is a bundle map $Q: T M \rightarrow T M$ such that $J=Q^{-1} A$ defines an almost complex structure on $T M$ compatible with ω.
6. If M is symplectic and $L \subset M$ is Lagrangian, show that $\nu_{L} \simeq T^{*} L$. Deduce that if $\psi_{t}: M \rightarrow M$ is the flow of a vector field on M and L is transverse to $\psi_{t}(L)$, then $L \cap \psi_{t}(L)$ contains at least $|\chi(L)|$ points.
7. If S is a closed surface and ω is an area form on S, then ω is a symplectic form, and any simple closed curve $C \subset S$ is a Lagrangian. Show directly that if $\psi_{t}:(S, \omega) \rightarrow$ (S, ω) is a Hamiltonian isotopy, then $\psi_{t}(C) \cap C$ contains at least 2 points. Give an example of an isotopy $\psi_{t}: S \rightarrow S$ such that $\psi_{t}^{*}(\omega)=\omega$ for all t, but $\psi_{t}(C) \cap C=\emptyset$ for some simple closed curve $C \subset S$ and some $t>0$. Check directly that your isotopy is not Hamiltonian.
8. Suppose $\phi \in \pi_{2}(x, y)$ and $\psi \in \pi_{2}(y, z)$. Show that $\mu(\phi+\psi)=\mu(\phi)+\mu(\psi)$.
9. Suppose $\pi_{2}(x, y)$ contains a unique element ϕ, and that $\Gamma \in \mathcal{M}(\phi)$. Show that

$$
A(x)-A(y)=\frac{1}{2} \int_{S}\left|\frac{\partial \Gamma}{\partial u}\right|^{2}+\left|\frac{\partial \Gamma}{\partial t}\right|^{2} .
$$

10. Suppose that $M=\mathbb{C}$, and that L_{1} and L_{2} are as shown in Figure 1. If the image of $\phi \in \pi_{2}(x, y)$ is the shaded region, check carefully that $\mathcal{M}(\phi) \simeq \mathbb{R}$. (You may use the fact that if $U \subset \mathbb{C}$ is simply connected and has piecewise smooth boundary, then the holomorphic map int $D^{2} \rightarrow U$ whose existence is guaranteed by the Riemann mapping theorem extend to a continuous map $D^{2} \rightarrow \bar{U}$ which send $\partial D^{2} \rightarrow \partial U$.)
11. Now suppose that L_{1} and L_{2} are as shown in Figure 2. Show directly $\mu(x, y)=2$. Can you describe the elements of $\widehat{\mathcal{M}}(\phi)$ geometrically? What are the ends of $\widehat{\mathcal{M}}(\phi)$? How is your answer related to the fact that $d^{2}=0$ in $C L\left(L_{1}, L_{2}\right)$?
J.Rasmussen@dpmms.cam.ac.uk
