Example Sheet 3

- 1. Suppose $\gamma:[0,1]\to M$ is a smooth path, and that $X\in\Gamma(\gamma^*TM)$ is a piecewise smooth vector field on γ . Let $\{t_1,\ldots,t_k\}$ be the set of points at which X fails to be smooth. Show that there is a continuous variation Γ of γ which is smooth on $[t_i,t_{i+1}]\times(-\epsilon,\epsilon)$ for all i, and which realizes X.
- 2. If M is connected, show that $\Omega^{ps}(p,q) \sim \Omega^{ps}(p,q')$ for any $q,q' \in M$.
- 3. If $\gamma:[0,1]\to M$ is a geodesic, show that $t\gamma'(t)\in J_{\gamma}$.
- 4. Suppose $p \in S^n$ with the round metric. Show that the only points in S^n which are conjugate to p are -p and p itself. If γ is a geodesic joining p to -p or p, show that dim $J_{\gamma} = n 1$.
- 5. Suppose γ is a geodesic, and that V_1 is the space of broken Jacobi fields on γ , as defined in class. Show that if $X \in V_1$ and $H_{\gamma}(X,Y) = 0$ for all $Y \in V_1$, then $X \in J_{\gamma}$.
- 6. The injectivity radius of M at a point $p \in M$ is the smallest value of r for which $\exp_p : B_r(T_pM) \to M$ fails to be injective. If M is simply connected, show that its injectivity radius at p is equal to the distance between p and the closest point conjugate to p.
- 7. M has nonpositive sectional curvature if for all $p, \in M$ and all $\mathbf{v}, \mathbf{w} \in T_p M$, we have $\langle R(\mathbf{v}, \mathbf{w})\mathbf{v}, \mathbf{w} \rangle \leq 0$. Suppose that M has nonpositive sectional curvature, that $\gamma : [0, 1] \to M$ is a geodesic, and that $X \in J_{\gamma}$. Show that $\frac{d}{dt} \langle \nabla_{\partial/\partial t} X, X \rangle \geq 0$. Deduce that p has no conjugate points. If M is simply connected, show that M is diffeomorphic to \mathbb{R}^n .
- 8. Show that $\Omega(S^{n+1})$ is homotopy equivalent to a cell complex obtained by starting with S^n and adding cells of dimension $\geq 2n$. Deduce that $\pi_{i+1}(S^{n+1}) \simeq \pi_i(S^n)$ for $i \leq 2n-2$, and hence that $\lim_{n\to\infty} \pi_{i+n}(S^n)$ exists.
- 9. Suppose X and Y are left-invariant vector fields on $GL_m(\mathbb{R})$. Show that $[X,Y]|_I = [X_I, Y_I]$, where on the left $[\cdot, \cdot]$ denotes the Lie bracket of vector fields, and on the right it denotes the commutator of matrices.
- 10. Suppose G = SU(3), and that $g = \exp x \in G$. By considering the Cartan subalgebra of G, describe the set of geodesics from I to g. There are several possible cases to consider, depending on the position of x relative to the walls of the Weyl chamber. In each case, determine the index of the relevant geodesics and thus compute $H_*(\Omega G)$. (You should get the same answer in each case, of course, but the computation will look somewhat different from case to case.)

- 11. As in the previous question, but for G = SU(n) and now assuming that g is in generic position with respect to the walls of the Weyl chamber.
- 12. For those who know a bit more about Lie groups and Lie algebras, try doing the analog of question 10 for G = Spin(4) and $G = G_2$.
- 13. (Optional, and definitely non-examinable, but still interesting.) Let G be a Lie group, and let BG be the classifying space for G bundles. (So if G = U(n), BG is the Grassmannian of n-planes in C^{∞} .) If T is a maximal torus for G, show that there is a map from $H^*(BG) \to H^*(BT)$, and that the image of this map is invariant under the Weyl group. (In fact, $H^*(BG; \mathbb{Q})$ is isomorphic to the ring of invariants.) What is the ring of invariants when G = SU(n)? When G = SO(4)? when $G = G_2$?. How are these related to your answers to the previous three questions?

J.Rasmussen@dpmms.cam.ac.uk