Morse Theory

EXAMPLE SHEET 1

- 1. Check carefully that $\phi_{b-a}(M_b) = M_a$, where ϕ_t is the flow of $\mathbf{V} = -\alpha \nabla f$ considered in the proof of the theorem from the first lecture.
- 2. Show that the set of Morse functions on a closed manifold M is open with respect to the topology on $C^{\infty}(M)$ induced by the C^2 metric.
- 3. Let $f: M \to \mathbb{R}$ be a Morse function, and view $s_1 = df$ as a section of T^*M . Let $s_0 \in \Gamma(T^*M)$ denote the zero section, and let $x \in M$ be a critical point of f. Show that the local intersection number $s_0 \cdot s_1|_{\tilde{x}}$ is given by $(-1)^{\operatorname{ind}_x f}$. If M is orientable, deduce that the Euler class of T^*M is $\chi(M)[M]^*$, where $[M]^* \in H^n(M)$ is the dual fundamental class of M.
- 4. Suppose M, N are submanifolds of \mathbb{R}^n . For $\mathbf{v} \in \mathbb{R}^n$, let $M + \mathbf{v}$ be the image of M under translation by \mathbf{v} . Show that for almost every $\mathbf{v} \in \mathbb{R}^n$, $M + \mathbf{v}$ is transverse to N.
- 5. Let N^n be a compact manifold with boundary, and suppose $\iota : \partial_a \mathcal{H}_n(k) \to \partial N$ be an embedding, where $\mathcal{H}_n(k) = D^k \times D^{n-k}$. Let $C = D^k \times 0$ be the core of $\mathcal{H}_n(k)$ and let *i* be the restriction of ι to ∂C . Show that $N \cup_{\iota} \mathcal{H}_n(k)$ deformation retracts to $N \cup_i C$. Deduce that a closed manifold is homotopy equivalent to a finite cell complex.
- 6. Suppose that the set of critical points of $f: M^n \to \mathbb{R}$ is a submanifold $N^k \subset M$, and let $\nu \subset TM$ be the normal bundle to N. We say that f is Morse-Bott if for all $x \in N$, T_xN is the null space of the Hessian $H_x(f)$. If f is Morse-Bott and $g: N \to \mathbb{R}$ is Morse, show there is a Morse function $h: M \to \mathbb{R}$ whose critical point set is equal to the critical point set of g.
- 7. Find a map $f: T^2 \to \mathbb{R}$ with only 3 critical points.
- 8. Suppose M is a complex manifold, and that $F : M \to \mathbb{C}$ is a holomorphic map. We say that $p \in M$ is a complex critical point of F if $\frac{\partial F}{\partial z_i}|_p = 0$ for $1 \leq i \leq n$, where (z_1, \ldots, z_n) are local coordinates on M near p. We say pis nondegenerate if $\det(\frac{\partial^2 F}{\partial z_i \partial z_j}|_p) \neq 0$. By considering power series expansions, show that if p is a nondegenerate complex critical point of F, then there are local coordinates on M near p with respect to which $F(z_1, \ldots, z_n) = f(0) + \sum_{i=1}^n z_i^2$.
- 9. Let F be as in the previous problem, and define $f : M \to \mathbb{R}$ defined by $f(z) = |F(z)|^2$. If p is a critical point of f, show that either F(p) = 0 or p is a

complex critical point of F. In the latter case, show that if p is a nondegenerate critical point of F, then $\operatorname{ind}_p f = n$.

10. If $V \subset \mathbb{C}^m$ is a smooth affine variety of complex dimension n (*i.e* V is the set of solutions to a finite set of polynomial equations and is also a embedded complex submanifold of \mathbb{C}^m), show that V is homotopy equivalent to a finite cell complex of dimension n.

J.Rasmussen@dpmms.cam.ac.uk