Example Sheet 2

- 1. Which of the following subsets of \mathbb{R}^2 are a) connected b) path connected?
 - (a) $B_1((1,0)) \cup B_1((-1,0))$
 - (b) $\overline{B}_1((1,0)) \cup B_1((-1,0))$
 - (c) $\{(x,y) | y = 0 \text{ or } x/y \in \mathbb{Q} \}$
 - (d) $\{(x,y) | y = 0 \text{ or } x/y \in \mathbb{Q}\} \{(0,0)\}$
- 2. Suppose that X is connected, and that $f: X \to Y$ is a locally constant map; *i.e.* for every $x \in X$, there is an open neighborhood U of x such that f(y) = f(x) for all $y \in U$. Show that f is constant.
- 3. Show that the product of two connected spaces is connected.
- 4. Show there is no continuous injective map $f: \mathbb{R}^2 \to \mathbb{R}$.
- 5. Show that \mathbb{R}^2 with the topology induced by the British rail metric is not homeomorphic to \mathbb{R}^2 with the topology induced by the Euclidean metric.
- 6. Let X be a topological space. If A is a connected subspace of X, show that \overline{A} is also connected. Deduce that any component of X is a closed subset of X.
- 7. (a) If $f:[0,1] \to [0,1]$ is continuous, show there is some $x \in [0,1]$ with f(x) = x.
 - (b) Suppose $f:[0,1]\to\mathbb{R}$ is continuous and has f(0)=f(1). For each integer n>1, show that there is some $x\in[0,1]$ with $f(x)=f(x+\frac{1}{n})$.
- 8. Is there an infinite compact subset of \mathbb{Q} ?
- 9. If $A \subset \mathbb{R}^n$ is not compact, show there is a continuous function $f: A \to \mathbb{R}$ which is not bounded.
- 10. If X is a topological space, its one point compactification X^+ is defined as follows. As a set, X^+ is the union of X with an additional point ∞ . A subset $U \subset X^+$ is open if either
 - (a) $\infty \notin U$ and U is an open subset of X
 - (b) $\infty \in U$ and $X^+ U$ is a compact, closed subset of X.

Show that X^+ is a compact topological space. If $X = \mathbb{R}^n$, show that $X^+ \simeq S^n$.

- 11. Suppose that X is a compact Hausdorff space, and that C_1 and C_2 are disjoint closed subsets of X. Show that there exist open subsets $U_1, U_2 \subset X$ such that $C_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$.
- 12. Let (X, d) be a metric space. A complete metric space (X', d') is said to be a completion of (X, d) if a) $X \subset X'$ and $d'|_{X \times X} = d$ and b) X is dense in X'.
 - (a) Suppose that (Y, d_Y) is a complete metric space and that $f: X \to Y$ is an *isometric embedding*, *i.e.* $d_Y(f(x_1), f(x_2)) = d(x_1, x_2)$. Show that f extends to an isometric embedding $f': X' \to Y$.
 - (b) Deduce that any two completions of X are *isometric*, *i.e.* related by an bijective isometric embedding.
- 13. If p is a prime number, let \mathbb{Z}_p be the space of sequences $(x_n)_{n\geq 0}$ in $\mathbb{Z}/p\mathbb{Z}$, equipped with the metric $d((x_n),(y_n))=p^{-k}$, where k is the smallest value of n such that $x_n\neq y_n$.
 - (a) Find an isometric embedding of $f: (\mathbb{Z}, d_p) \to \mathbb{Z}_p$, where d_p is the p-adic metric. Show that \mathbb{Z}_p is a completion of the image of f. The set \mathbb{Z}_p is called the p-adic numbers.
 - (b) Show that \mathbb{Z}_p is compact and totally disconnected.
 - (c) Show that the maps $f, g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by f(x, y) = x + y, g(x, y) = xy extend to continuous maps $f', g': \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$.
 - (d) Let a be an integer which is relatively prime to p and assume p > 2. Show that the equation $x^2 = a$ has a solution in \mathbb{Z}_p if and only if it has a solution in $\mathbb{Z}/p\mathbb{Z}$.
- 14. Show that C[0,1] equipped with the uniform metric is complete.
- 15. Define a norm $\|\cdot\|_{\infty,\infty}$ on $C^1[0,1]$ by $\|f\|_{\infty,\infty} = \max\{\|f\|_{\infty}, \|f'\|_{\infty}\}$. Let $B = \overline{B}_1(0)$ be the closed unit ball in this norm. Show that any sequence (f_n) in B has a subsequence which converges with respect to the sup norm. (Hint: first find a subsequence (f_{n_i}) such that $f_{n_i}(x)$ converges for all $x \in \mathbb{Q} \cap [0,1]$.) Deduce that the closure of B in $(C[0,1], d_{\infty})$ is compact.

J.Rasmussen@dpmms.cam.ac.uk