Metric and Topological Spaces

EXAMPLE SHEET 1

- 1. Show that the sequence 2015, 20015, 200015, 2000015... converges in the 2-adic metric on \mathbb{Z} .
- 2. Determine whether the following subsets $A \subset \mathbb{R}^2$ are open, closed, or neither:

(a)
$$A = \{(x, y) \mid x < 0\} \cup \{(x, y) \mid x > 0, y > 1/x\}$$

- (b) $A = \{(x, \sin(1/x) | x > 0\} \cup \{(0, y) | y \in [-1, 1]\}$
- (c) $A = \{(x, y) | x \in \mathbb{Q}, x = y^n \text{ for some positive integer } n\}.$
- 3. Show that the maps $f, g : \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = x + y and f(x, y) = xy are continuous with respect to the usual topology on \mathbb{R} . Let X be \mathbb{R} equipped with the topology whose open sets are intervals of the form (a, ∞) . Are the maps $f, g : X \times X \to X$ continuous?
- 4. Let $\mathbf{C}^1[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is differentiable and } f' \text{ is continuous}\}$. For $f \in \mathbf{C}^1[0,1]$, define

$$||f||_{1,1} = \int_0^1 (|f(x)| + |f'(x)|) \, dx.$$

Show that $\|\cdot\|_{1,1}$ defines a norm on $\mathbb{C}^1[0,1]$. If a sequence (f_n) converges with respect to this norm, show that it also converges with respect to the uniform norm. Give an example to show that the converse statement does not hold.

- 5. Let $d: X \times X \to \mathbb{R}$ be a function which satisfies all the axioms for a metric space except for the requirement that $d(x, y) = 0 \Leftrightarrow x = y$. For $x, y \in X$, define $x \sim y$ if d(x, y) = 0. Show that \sim is an equivalence relation on X, and that d induces a metric on the quotient X/\sim .
- 6. Find a closed $A_1 \subset \mathbb{R}$ (with the usual topology) so that $\operatorname{Int}(A_1) \neq A_1$ and an open $A_2 \subset \mathbb{R}$ so that $\operatorname{Int}(\overline{A_2}) \neq A_2$.
- 7. Let $f: X \to Y$ be a map of topological spaces. Show that f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$. Deduce that if f is surjective and continuous, the image of a dense set in X is dense in Y.
- 8. Suppose X is a topological space and $Z \subset Y \subset X$. If Y is dense in X and Z is dense in Y (with the subspace topology), must Z be dense in X?

- 9. Define a topology on \mathbb{R} by declaring the closed subsets to be those which are i) closed in the usual topology and ii) either bounded or all of \mathbb{R} . Show that this is a topology, that all points of \mathbb{R} are closed with respect to it, but that the topology is not Hausdorff.
- 10. The diagonal in $X \times X$ is the set $\Delta_X = \{(x, x) \mid x \in X\}$. If X is a Hausdorff topological space, show that Δ_X is a closed subset of $X \times X$.
- 11. Exhibit a countable basis for the usual topology on \mathbb{R} .
- 12. Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the 2-dimensional torus. Let $L \subset \mathbb{R}^2$ be a line of the form $y = \alpha x$, where α is irrational, and let $\pi(L)$ be its image in T^2 . What are the closure and interior of $\pi(L)$?
- 13. Let $A = \{(0, 0, 1), (0, 0, -1)\} \subset S^2$. Let $B \subset T^2$ be the image of $\mathbb{R} \times 0 \subset \mathbb{R}^2$, where we view $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. Show that the quotient spaces S^2/A and T^2/B are homeomorphic.
- 14. Let $\|\cdot\| : \mathbb{R}^2 \to \mathbb{R}$ be a function which satisfies all the axioms for a norm except possibly the triangle inequality. Let $B = \{\mathbf{v} \in \mathbb{R}^2 \mid \|\mathbf{v}\| \le 1\}$. Show that $\|\cdot\|$ is a norm if and only if B is a convex subset of \mathbb{R}^2 . (That is, if $\mathbf{v}_1, \mathbf{v}_2 \in B$, then $t\mathbf{v}_1 + (1-t)\mathbf{v}_2 \in B$ for $t \in [0, 1]$.) For $r \in (0, \infty)$, let $\|\mathbf{v}\|_r = (|v_1|^r + |v_2|^r)^{1/r}$. Use calculus to sketch B for different values of r. Deduce that $\|\cdot\|_r$ is a norm for $1 \le r < \infty$, but not for 0 < r < 1.
- 15. Let D^2 be the closed unit disk in \mathbb{R}^2 , and let X be the complement of two disjoint open disks in D^2 . Let Y be the complement of a small open disk in T^2 (viewed as $\mathbb{R}^2/\mathbb{Z}^2$). Is X homeomorphic to Y? Is $X \times [0,1]$ homeomorphic to $Y \times [0,1]$? (No formal proof is required, but try to give some geometric justification.)
- 16. Show that the set of piecewise linear functions is dense in $\mathbb{C}[0,1]$ with the uniform metric. By considering piecewise linear functions where each linear piece is given by an expression with rational coefficients, deduce that $\mathbb{C}[0,1]$ has a countable dense subset.

J.Rasmussen@dpmms.cam.ac.uk