
Path and Homotopy Lifting

We fix the disastrous gap between the statement of Lemma 2 on Monday and it’s state-
ment on Wednesday. As a bonus, we give an alternate proofs of path and homotopy lifting

that illustrate how similar they are. Throughout, suppose p : X̂ → X is a covering map.

Definition 1. f : Z → X has the unique lifting property (ULP) at z in Z if for any x̂ ∈ X̂

with p(x̂) = f(z) there is a unique f̂ : (Z, z) → (X̂, x̂) with p ◦ f̂ = f .

Lemma 2. Suppose U ⊂ X is open and evenly covered by p, and that Z is connected. If

f : Z → X̂ has im f ⊂ U , then f has the unique lifting property at any z ∈ Z.

Proof. Suppose p(x̂) = f(z). U is evenly covered, so p−1(U) ∼=
∐

α∈A Uα, and pα = p|Uα
:

Uα → U is a homeomorphism. So there is some α0 ∈ A for which x̂ ∈ Uα0 .

We define f̂ = iα0 ◦ p−1
α0

◦ f , where ια0 : Uα0 → X is the inclusion. This is a composition

of continuous functions, hence continuous, and it satisfies f̂(z) = p−1
α0

(f(z)) = x̂. Since

im f̂ ⊂ Uα0
, we have p ◦ f̂(z) = p|Uα0

◦ p−1
α0

◦ f = f . Thus f̂ is the desired lift.

For uniqueness, observe that A = Uα0 and B =
⋃

α̸=α0
Uα are disjoint open subsets of

p−1(U). A ∪B = p−1(U), so A and B disconnect p−1(U). Suppose f̃ : (Z, z) → (X̂, x̂) is a

lift of f . Since Z is connected and f̃(z) = x̂, we must have f̃(Z) ⊂ A = Uα0
. Since f̃ is a

lift, we have f = p ◦ f̃ = pα0
◦ f̂ . It follows that f̃(z′) = p−1

α0
(f(z′)) = f̂(z′), for all z′ ∈ Z,

i.e. f̃ = f̂ .
□

Lemma 3. Suppose Z = Z1 ∪ Z2, where Z1 and Z2 are closed in Z, that z1 ∈ Z1 and that
z2 ∈ Z1 ∩ Z2. Given f : Z → X, let fi = f |Zi , and g = f |Z1∩Z2 . If fi has ULP for zi
(i = 1, 2) and g has ULP for z2, then f has ULP for z1.

Proof. Suppose p(x̂) = f(z). By ULP for f1, there is a unique lift f̂1 of f1 with f̂1(z1) = x̂.

Then p(f̂1(z2)) = f(z2). By ULP for f2, there is unique lift f̂2 of f2 with f̂2(z2) = f̂1(z2).

Let ĝi = f̂i|Z1∩Z2 . Then p ◦ ĝi = g and ĝ1(z2) = ĝ2(z2). Since g has ULP for z2, ĝ1 = ĝ2.

Hence we can define f̂ : Z → X̂ by f̂(z) = f̂1(z) if z ∈ Z1 and f̂(z) = f̂2(z) if z ∈ Z2. f̂ is
continuous by the gluing lemma and is clearly a lift of f . This proves existence.

For uniqueness, suppose f̃ is a lift of f with f̃(z1) = x̂. Let f̃i = f̃ |Zi
. Then f̃i is a lift

of fi and f̃1(z1) = x̂. By ULP for f1, f̃1 = f̂1. Hence f̃2(z2) = f̃1(z2) = f̂1(z2). By ULP for

f2, f̃2 = f̂2. Hence f̃ = f̂ . □

Lemma 4. Suppose Z is a compact metric space and f : Z → X. Then there exists δ > 0
such that for every z ∈ Z there is an open Uz ⊂ X which is evenly covered by p and for
which f(Bδ(z)) ⊂ Uz.

Proof. Since p is a covering map, each x ∈ X has an open neighborhood Uz which is
evenly covered by p. Then {Ux |x ∈ X} is an open cover of X. Since f is continuous,
{f−1(Ux) |x ∈ X} is an open cover of X. By the Lebesgue covering lemma, we can find
δ > 0 such that for each z ∈ Z there is some x(z) ∈ X with Bδ(z) ⊂ f−1(Ux(z)). Setting
Uz = Ux(z) gives the statement. □

Theorem. (Path Lifting) If f : I → X, then f has ULP for 0.
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Proof. I is compact, so choose δ as in Lemma 4 and n ∈ Z such that 0 < 1
n < δ. Let

ai = i
n and let Ai = [ai, ai+1]. Then f(Ai) ⊂ f(Bδ(ai)) ⊂ Uai , where Uai is open and

evenly covered. Ai is connected, so by Lemma 2, f |Ai
has ULP for ai.(∗)

For 0 ≤ k < n, let Bk =
⋃k

i=0 Ai. Then Ak+1 ∩Bk = {ak+1} is connected and contained
in Ak+1, so by Lemma 2 f |Ak+1∩Bk

has the ULP for ai. (∗∗).
We prove by induction on k that f |Bk

has the ULP for 0. When k = 0, B0 = A0, and
f |A0

has ULP for 0 by (∗). Now suppose the statement holds for k. Now Bk+1 = Z1 ∪ Z2,
where Z1 = Bk and Z2 = Ak+1. With notation as in Lemma 2, f1 has ULP for 0 by the
induction hypothesis, f2 has ULP for ak+1 by (∗), and g has ULP for ak+1 by (∗∗). By
Lemma 3, f |Bk+1

has ULP for 0. By induction the statement holds for all k < n. Taking
k = n− 1 gives the statement of the theorem. □

Theorem. (Homotopy Lifting) If f : I × I → X, then f has ULP for (0, 0).

Proof. I × I is compact, so choose δ as in Lemma 4 and n ∈ Z such that 0 <
√
2

n < δ. For

0 ≤ i, j < n, let ai+nj = ( i
n ,

j
n ) and let Ak be the square of side 1

n whose lower left corner
is at Ai. Then f(Ai) ⊂ f(Bδ(ai)) ⊂ Uai

, where Uai
is open and evenly covered. The rest

of the argument now proceeds exactly as in the proof of path lifting, except the check that
Ak+1 ∩Bk is connected is a little less trivial. □


