1. $\operatorname{Isom}(D)$

Let $\left(D, g^{D}\right)$ be the unit disk model of the hyperbolic plane. Recall that

$$
G^{D}=\left\{\phi \in \operatorname{Mob}\left|\phi(z)=e^{i \theta} \frac{z-a}{\bar{a} z-1}, \theta \in \mathbb{R},|a|<1\right\}\right.
$$

is contained in $\operatorname{Isom}(D)$. Let $c: D \rightarrow D, c(z)=\bar{z}$ be reflection across the real axis. It is easy to check that $c \in \operatorname{Isom}(D)$ as well, but $c \notin \mathrm{Mob}$, since it is orientation reversing.

Theorem 1. If $\phi \in \operatorname{Isom}(D)$, then either $\phi \in G^{D}$ or $\phi=\tilde{\phi} \circ c$ for some $\tilde{\phi} \in G^{D}$.
Lemma 2. Suppose $\phi \in \operatorname{Isom}(D), \phi(0)=0$ and $\left.d \phi\right|_{0}=I$. Then $\phi=1_{D}$.
Proof. ϕ preserves lengths of paths, so if γ is the shortest path from \mathbf{p} to $\mathbf{q}, \phi \circ \gamma$ is the shortest path from $\phi(\mathbf{p})$ to $\phi(\mathbf{q})$. Since the unique shortest path between two points is the hyperbolic line segment joining them, it follows that ϕ must send hyperbolic rays to hyperbolic rays. Since there is a unique hyperbolic ray passing through a given point in a given direction, ϕ takes the ray starting at \mathbf{p} with direction vector a to the ray starting at $\phi(\mathbf{p})$ with direction $\left.d \phi\right|_{\mathbf{p}}(\mathbf{a})$.

Setting $\mathbf{p}=0$, we see that ϕ takes each Euclidean ray starting at the origin to itself. Moreover, ϕ preserves the hyperbolic distance. Since the hyperbolic distance from the origin increases monotonically with the Euclidean distance, it follows that ϕ is the identity on each ray, and thus on all of D.

Lemma 3. If $\phi \in \operatorname{Isom}(D)$ and $\phi(0)=0$, then either $\phi(z)=e^{i \theta} z$ or $\phi(z)=e^{i \theta} \bar{z}(\theta \in \mathbb{R})$.
Proof. Since ϕ is an isometry $g_{0}^{D}(\mathbf{a}, \mathbf{b})=g_{0}^{D}\left(\left.d \phi\right|_{0}(\mathbf{a}),\left.d \phi\right|_{0}(\mathbf{b})\right)$. Noting that g_{0}^{D} is the ordinary Euclidean inner product, we conclude that $\left.d \phi\right|_{0} \in O(2)$. Thus either $\left.d \phi\right|_{0}=r_{\theta}$ or $\left.d \phi\right|_{0}=r_{\theta} \circ c$, where $r_{\theta}(z)=e^{i \theta} z$. In the first case, note that $r_{\theta} \in \operatorname{Isom}(D)$, so $\psi=\phi \circ r_{-\theta} \in \operatorname{Isom}(D)$ has $\psi(0)=0$ and

$$
\left.d \psi\right|_{0}=\left.\left.d \phi\right|_{0} \circ d r_{-\theta}\right|_{0}=r_{\theta} \circ r_{-\theta}=I .
$$

(Here we have the fact that the derivative of a linear map L is L.) It follows that $\psi=1_{D}$, so $\phi=r_{\theta}$. The second case is similar.

Proof. (Of Theorem 1) Let $\mathbf{p}=\phi(0)$. Choose $\psi \in G^{D}$ with $\psi(\mathbf{p})=0$. Then $\psi \circ \phi \in$ $\operatorname{Isom}(D), \psi \circ \phi(0)=0$, so either $\psi \circ \phi=r_{\theta}$ or $\psi \circ \phi=r_{\theta} \circ c$. Thus either $\phi=\psi^{-1} \circ r_{\theta}$ or $\phi=\psi^{-1} \circ r_{\theta} \circ c$. Since $r_{\theta}, \psi^{-1} \in G^{D}$ the result follows.

If $\left(H, g^{H}\right)$ is the upper half-plane model of hyperbolic space, recall that $G^{H}=P S L_{2}(\mathbb{R}) \subset$ $\operatorname{Isom}(H)$.

Corollary 4. If $\phi \in \operatorname{Isom}(H)$, then either $\phi \in G^{H}$ or $\phi=\tilde{\phi} \circ r$, where $r(z)=-\bar{z}$ is reflection across the imaginary axis, and $\tilde{\phi} \in G^{H}$.

Proof. Let $\phi_{0}: H \rightarrow D$ be given by $\phi_{0}(z)=\frac{z-i}{z+i}$. Then $\phi_{0} \circ \phi \circ \phi_{0}^{-1} \in \operatorname{Isom}(D)$, so either $\phi=\phi_{0}^{-1} \circ \psi \circ \phi_{0}$ or $\phi=\phi_{0}^{-1} \circ \psi \circ c \circ \phi_{0}$ where $\phi \in G^{D}$. In the first case, the result is immediate from the fact that $G^{H}=\phi_{0}^{-1} G^{D} \phi_{0}$, while in the second it follows from this and the fact that $c \circ \phi_{0}=\phi_{0} \circ r$, which is easily checked by direct calculation.

2. Isometries and the extended Möbius group

Extend complex conjugation to a map $c: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ by setting $c(\infty)=\infty$. If ϕ_{A} is the Mobius transformation defined by the matrix $A \in G L_{2}(\mathbb{C})$, it is easy to see that

$$
\phi_{A} \circ c=c \circ \phi_{\bar{A}} .
$$

Definition 5. The extended Möbius group is

$$
\overline{\mathrm{Mob}}=\left\{\phi: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty} \mid \phi \in \operatorname{Mob} \text { or } \phi \circ c \in \operatorname{Mob}\right\}
$$

Since $c^{2}=1$, the second condition in the definition is equivalent to saying that $\phi=\psi \circ c$, where $\psi \in$ Mob. It follows from the equation above that $\overline{\mathrm{Mob}}$ is closed under composition, and thus forms a group. It contains the usual group of Möbius transformations as an index 2 subgroup. Elements of Mob are orientation preserving, while elements of $\overline{\mathrm{Mob}}$ which are not contained in Mob are orientation reversing.
Definition 6. If $C \subset \mathbb{C}_{\infty}$ is a Euclidean line/circle, reflection in C is the extended Mobius transformation defined by $R_{C}=\psi^{-1} \circ c \circ \psi$, where $\psi \in \operatorname{Mob}$ has $\psi(C)=\mathbb{R} \cup\{\infty\}$.

We should check that the definition does not depend on the choice of ψ. If $\psi^{\prime}(C)=$ $\mathbb{R} \cup\{\infty\}$, then $\psi^{\prime} \circ \psi^{-1}(\mathbb{R})=\mathbb{R}$, so $\psi^{\prime} \circ \psi^{-1}=\phi_{A}$, where $A \in G L_{2}(\mathbb{R})$. Then

$$
\psi^{\prime-1} \circ c \circ \psi^{\prime}=\psi^{-1} \circ \phi_{A}^{-1} \circ c \circ \phi_{A} \circ \psi=\psi^{-1} \circ c \circ \psi
$$

so R_{C} is well defined.
Example: If C is the unit circle, then $R_{C}=\phi_{0} \circ c \circ \phi_{0}^{-1}$, so

$$
\begin{aligned}
R_{C}(z) & =\phi_{0}\left(-i \frac{\bar{z}+1}{\bar{z}-1}\right) \\
& =\frac{-i \frac{\bar{z}+1}{\bar{z}-1}-i}{-i \frac{\bar{z}+1}{\bar{z}-1}+i}=\frac{1}{\bar{z}}
\end{aligned}
$$

More generally, if C_{r} is a circle of radius r centered at 0 , then $R_{C_{r}}=\psi_{r} \circ R_{C_{1}} \circ \psi_{1 / r}$, where $\psi_{a}(z)=a z$. Thus $R_{C_{r}}(z)=r^{2} / \bar{z}$.
Proposition 7. $\overline{\mathrm{Mob}}$ is generated by reflections
Proof. It suffices to check that the maps 1) $z \rightarrow z+b, 2) z \rightarrow a z$, and 3$) z \rightarrow 1 / z$ are compositions of reflections, since these maps generate Mob. Map 1 is $R_{L_{1}} \circ R_{L_{2}}$ where L_{1} and L_{2} are two Euclidean lines perpendicular to b and separated by a distance $|b / 2|$. For Map 2), multiplication by $a \in \mathbb{R}$ is $R_{C_{1}} \circ R_{C_{2}}$, where C_{2} is the unit circle and C_{1} is a circle of radius \sqrt{a} centered at 0 , while multiplication by $e^{i \theta}$ is $R_{L_{1}} \circ R_{L_{2}}$, where L_{1} and L_{2} are two line which intersect in an angle $\theta / 2$ at 0 . Finally, map 3) is the composition of reflection in the unit circle with reflection in \mathbb{R}.

The groups $\operatorname{Isom}\left(S^{2}\right), \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ and $\operatorname{Isom}(D)$ may all be viewed as subgroups of the extended Möbius group, corresponding to the extension of the following subgroups of Mob by c.

$$
\begin{aligned}
& \operatorname{Isom}^{+}\left(S^{2}\right)=\left\{\phi_{A} \left\lvert\, A=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)\right., \operatorname{det} A=1\right\} \\
& \operatorname{Isom}^{+}\left(\mathbb{R}^{2}\right)=\left\{\phi_{A} \left\lvert\, A=\left(\begin{array}{cc}
\alpha & \beta \\
0 & \bar{\alpha}
\end{array}\right)\right., \operatorname{det} A=1\right\} \\
& \text { Isom }^{+}(D)=\left\{\phi_{A} \left\lvert\, A=\left(\begin{array}{ll}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right)\right., \operatorname{det} A=1\right\}
\end{aligned}
$$

