Hyperbolic Geometry

Models

- Hyperboloid model: $S=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=-1, z<0\right\}$, metric induced by the Minkowski metric $d x^{2}+d y^{2}-d z^{2}$ on \mathbb{R}^{3}. Lines are intersections of S with planes through the origin.
- Unit disk model: $D=\{z \in \mathbb{C}| | z \mid<1\}$ with metric

$$
g^{D}=\frac{4\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}} .
$$

Lines are Euclidean lines/circles perpendicular to ∂D.

- Upper half plane model: $H=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$ with metric

$$
g^{H}=\frac{d x^{2}+d y^{2}}{y^{2}} .
$$

Lines are Euclidean lines/circles perpendicular to ∂H.

Lines

- A line is the shortest path between two points.
- Plane separation: the complement of a line is a disconnected topogical space.
- There is a unique line passing through two distinct points.
- Two distinct lines intersect in at most one point.
- Given a point \mathbf{x} and a line L not containing \mathbf{x}, there is a unique line passing through \mathbf{x} and perpendicular to L.
- Given a point \mathbf{x} and a line L not containing \mathbf{x}, there are infinitely many lines passing through \mathbf{x} which do not intersect L.

Circles

- In either the upper half-plane or the unit disk models, circles are Euclidean circles (but their centers are not the Euclidean centers.)
- A line and a circle intersect in at most two points.
- Two distinct circles intersect in at most two points.
- The perimeter of a circle of radius R is $2 \pi \sinh R$.

Isometries

- If F_{1} and F_{2} are orthogonal frames, there is a unique isometry taking F_{1} to F_{2}.
- An isometry which fixes three non-colinear points is the identity.
- Any isometry can be written as the composition of ≤ 3 reflections.

Triangles

- The sum of the interior angles in $\triangle A B C$ is $\pi-\operatorname{Area}(A B C)$.
- If A_{1}, A_{2}, A_{3} and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are two sets of non-colinear points with $d\left(A_{i}, A_{j}\right)=$ $d\left(A_{i}^{\prime}, A_{j}^{\prime}\right)$, then there is a unique $\phi \in \operatorname{Isom}(\mathbb{H})$ with $\phi\left(A_{i}\right)=A_{i}^{\prime}$.
- If A_{1}, A_{2}, A_{3} and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are two sets of non-colinear points with $d\left(A_{1}, A_{j}\right)=$ $d\left(A_{1}^{\prime}, A_{j}^{\prime}\right)$ and $\angle A_{2} A_{1} A_{3}=\angle A_{2}^{\prime} A_{1}^{\prime} A_{3}^{\prime}$ then there is a unique $\phi \in \operatorname{Isom}\left(\mathbb{H}^{2}\right)$ with $\phi\left(A_{i}\right)=A_{i}^{\prime}$.

Trigonometry

If $\triangle A B C$ has sides a, b, c and opposite angles α, β, γ, then

$$
\frac{\sin \alpha}{\sinh a}=\frac{\sin \beta}{\sinh b}=\frac{\sin \gamma}{\sinh c}
$$

$$
\begin{aligned}
& \cosh a=\cosh b \cosh c-\cos \alpha \sinh b \sinh c \\
& \cos \alpha=-\cos \beta \cos \gamma+\cosh a \sinh \beta \sinh \gamma
\end{aligned}
$$

J.Rasmussen@dpmms.cam.ac.uk

