IB GEOMETRY

Hyperbolic Geometry

Models

- Hyperboloid model: $S = \{(x, y, z) | x^2 + y^2 z^2 = -1, z < 0\}$, metric induced by the Minkowski metric $dx^2 + dy^2 dz^2$ on \mathbb{R}^3 . Lines are intersections of S with planes through the origin.
- Unit disk model: $D = \{z \in \mathbb{C} \mid |z| < 1\}$ with metric

$$g^{D} = \frac{4(dx^{2} + dy^{2})}{(1 - x^{2} - y^{2})^{2}}.$$

Lines are Euclidean lines/circles perpendicular to ∂D .

• Upper half plane model: $H = \{z \in \mathbb{C} \mid \text{Re}z > 0\}$ with metric

$$g^H = \frac{dx^2 + dy^2}{y^2}$$

Lines are Euclidean lines/circles perpendicular to ∂H .

Lines

- A line is the shortest path between two points.
- Plane separation: the complement of a line is a disconnected topogical space.
- There is a unique line passing through two distinct points.
- Two distinct lines intersect in at most one point.
- Given a point \mathbf{x} and a line L not containing \mathbf{x} , there is a unique line passing through \mathbf{x} and perpendicular to L.
- Given a point \mathbf{x} and a line L not containing \mathbf{x} , there are infinitely many lines passing through \mathbf{x} which do not intersect L.

Circles

- In either the upper half-plane or the unit disk models, circles are Euclidean circles (but their centers are not the Euclidean centers.)
- A line and a circle intersect in at most two points.
- Two distinct circles intersect in at most two points.
- The perimeter of a circle of radius R is $2\pi \sinh R$.

Isometries

- If F_1 and F_2 are orthogonal frames, there is a unique isometry taking F_1 to F_2 .
- An isometry which fixes three non-colinear points is the identity.
- Any isometry can be written as the composition of ≤ 3 reflections.

Triangles

- The sum of the interior angles in ΔABC is $\pi-\operatorname{Area}(ABC)$.
- If A_1, A_2, A_3 and A'_1, A'_2, A'_3 are two sets of non-collinear points with $d(A_i, A_j) = d(A'_i, A'_j)$, then there is a unique $\phi \in \text{Isom}(\mathbb{H})$ with $\phi(A_i) = A'_i$.

• If A_1, A_2, A_3 and A'_1, A'_2, A'_3 are two sets of non-colinear points with $d(A_1, A_j) = d(A'_1, A'_j)$ and $\angle A_2 A_1 A_3 = \angle A'_2 A'_1 A'_3$ then there is a unique $\phi \in \text{Isom}(\mathbb{H}^2)$ with $\phi(A_i) = A'_i$.

Trigonometry

If $\triangle ABC$ has sides a, b, c and opposite angles α, β, γ , then

 $\frac{\sin \alpha}{\sinh a} = \frac{\sin \beta}{\sinh b} = \frac{\sin \gamma}{\sinh c} \qquad \qquad \cosh a = \cosh b \cosh c - \cos \alpha \sinh b \sinh c \\ \cos \alpha = -\cos \beta \cos \gamma + \cosh a \sinh \beta \sinh \gamma$

J.Rasmussen@dpmms.cam.ac.uk