Review of Mobius Transformations

The Mo6bius Group

Let Coo = CU {0} be the Riemann sphere. Given A = (Z Z) € GLy(C), we
az+b . .y
define a map w4 : Cox = Co by 9(2) = wh The map @4 is called a Mébius
cz

transformation.

Lemma. o p = p40¢p.

This is easily proved by direct computation. More conceptually, we can argue
as follows.

Proof. Consider the map 7 : C? — {0} — C, given by 7(w,ws) = wy/wy. We
define an equivalence relation ~ on C2 — {0} by setting w ~ v if and only if
m(w) = m(v). This occurs if and only if w = Av for some A\ € C*.

Now consider the action of GLo(C) on C?—{0} defined by matrix multiplication:
A-w = Av. Clearly A- (Av) = A(Av) = MA - V), so if 7(w) = 7(v), then
m(A-w)=m(A-v). Thus the action of GLy(C) on C — {0} descends to an action
on Cy. Since z = m(z, 1), we see that

A-z=7(A-(2,1)) =7n(az+b,cz +d) = pa(z).
Thus
pap(z) =AB-z2=A-(B-2) =palprp(2))
(|

Since ¢y is the identity map on C., it follows that the set of Mobius transfor-
mations forms a group under composition.

Definition. The Mdbius group Mob := {pa | A € GLy(C)}.

The map GL2(C) — Mob given by A — ¢4 is a surjective homomorphism.
Its kernel K is the set of all 2 x 2 matrices of the form AI, where A € C*, and
Mob ~ GL2(C)/K. The quotient on the right-hand side is the projective linear
group PGLy(C). Now any A € GL2(C) can be written as A = (A)A’, where
A2 =det A and det A’ =1, i.e. A’ € SLy(C). Thus

PGLy(C) = GLy(C)/K ~ SL2(C) /(K N SLy(C)) = SLy(C)/{£I} =: PSLy(C)
To sum up, we have proved

Proposition. Mob ~ PSL,(C).

Properties of Mo6bius Transformations

Proposition. Any ¢ € Mob is conformal, i.e. it preserves angles.

Proof. Mobius transformations are holomorphic, so this follows from the general
fact that holomorphic maps are conformal (c.f. Example Sheet 1, Problem 13). O

Proposition. If z1, 25,23 and wy,ws, w3 are two sets of three distinct points in
Coo, there is a unique ¢ € Mob with ¢(z;) = w;, (i=1,2,3).

Proof. Since Mob is a group acting on C., it suffices to prove the statement in the
case where (21, 29, 23) = (0,1,00). In order for p4(z;) = w;, we must have
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In light of the first two equations, the last equation reduces to wec+c = (w1d+d)ws,

or equivalently,
c  wz(wy+1)

E o wy + 1
If follows that the equations have a unique solution up to scaling (i.e. replacing
A with M\A). Since x4 = pa, there is a unique Mobius transformation with the
desired properties. O

Let C := {S C C« | S is a Euclidean circle or a Euclidean line U {co}}.

Lemma. S € C if and only if it is the set of solutions to an equation of the form
azz+ (bz+ B2) +v=0
where a,v € R, g € C, and the equation has more than solution.

Proof. A Euclidean circle with center a and radius r satisfies the equation |z—a|? =
2

r<, or equivalently,

2Z—az—az+ (la* —r?) =0
which is of the desired form. Similarly, if z = z 4 iy, the line Iz + my = n
(I,m,n € R) satisfies the equation

(Il —im)z+ (I +im)zZ — 2c¢ = 0.
Conversely, given an equation of the form
azz+ (bz+ Bz) +v =0,

either o # 0, in which case we may divide and assume o = 1, or @ = 0. In the first
case, we have

|2+ B =18 -~
which is the equation of either a circle, a point, or the empty set. In the second,
we have

(Re ) + (Im B)y = v/2
which is the equation of a line. O

Proposition. If C € C and ¢ € Mob, then ¢(C) € C.
Proof. Suppose that C satisfies an equation of the form
a2z + (bz + Bz) + v = 0.
If z=pa(w), then w satisfies
o' ww + (B,w + B'w) ++' =0,
where
o = ala® + (Bac + fac) + v|c|?
B' = aba + Bad + Bac + yde
v = a|b]? + (Bbd + Bbd) + ~|d|?.

Moreover, ¢ 4 is a bijection, so if C' contains 0 or 1 points, so does ¢ 4(C). O



