
Review of Möbius Transformations

The Möbius Group

Let C∞ = C ∪ {∞} be the Riemann sphere. Given A =

(
a b
c d

)
∈ GL2(C), we

define a map ϕA : C∞ → C∞ by ϕ(z) =
az + b

cz + d
. The map ϕA is called a Möbius

transformation.

Lemma. ϕAB = ϕA ◦ ϕB .

This is easily proved by direct computation. More conceptually, we can argue
as follows.

Proof. Consider the map π : C2 − {0} → C∞ given by π(w1, w2) = w1/w2. We
define an equivalence relation ∼ on C2 − {0} by setting w ∼ v if and only if
π(w) = π(v). This occurs if and only if w = λv for some λ ∈ C∗.

Now consider the action of GL2(C) on C2−{0} defined by matrix multiplication:
A · w = Av. Clearly A · (λv) = A(λv) = λ(A · v), so if π(w) = π(v), then
π(A ·w) = π(A · v). Thus the action of GL2(C) on C− {0} descends to an action
on C∞. Since z = π(z, 1), we see that

A · z = π(A · (z, 1)) = π(az + b, cz + d) = ϕA(z).

Thus
ϕAB(z) = AB · z = A · (B · z) = ϕA(ϕB(z)).

�

Since ϕI is the identity map on C∞, it follows that the set of Mobius transfor-
mations forms a group under composition.

Definition. The Möbius group Mob := {ϕA |A ∈ GL2(C)}.

The map GL2(C) → Mob given by A 7→ ϕA is a surjective homomorphism.
Its kernel K is the set of all 2 × 2 matrices of the form λI, where λ ∈ C∗, and
Mob ' GL2(C)/K. The quotient on the right-hand side is the projective linear
group PGL2(C). Now any A ∈ GL2(C) can be written as A = (λI)A′, where
λ2 = detA and detA′ = 1, i.e. A′ ∈ SL2(C). Thus

PGL2(C) = GL2(C)/K ' SL2(C)/(K ∩ SL2(C)) = SL2(C)/{±I} =: PSL2(C)

To sum up, we have proved

Proposition. Mob ' PSL2(C).

Properties of Möbius Transformations

Proposition. Any ϕ ∈ Mob is conformal, i.e. it preserves angles.

Proof. Mobius transformations are holomorphic, so this follows from the general
fact that holomorphic maps are conformal (c.f. Example Sheet 1, Problem 13). �

Proposition. If z1, z2, z3 and w1, w2, w3 are two sets of three distinct points in
C∞, there is a unique ϕ ∈ Mob with ϕ(zi) = wi, (i = 1, 2, 3).

Proof. Since Mob is a group acting on C∞, it suffices to prove the statement in the
case where (z1, z2, z3) = (0, 1,∞). In order for ϕA(zi) = wi, we must have

b

d
= w1

a

c
= w2

a+ c

b+ d
= w3.
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In light of the first two equations, the last equation reduces to w2c+c = (w1d+d)w3,
or equivalently,

c

d
=
w3(w1 + 1)

w2 + 1
.

If follows that the equations have a unique solution up to scaling (i.e. replacing
A with λA). Since ϕλA = ϕA, there is a unique Möbius transformation with the
desired properties. �

Let C := {S ⊂ C∞ |S is a Euclidean circle or a Euclidean line ∪ {∞}}.

Lemma. S ∈ C if and only if it is the set of solutions to an equation of the form

αzz + (bz + βz) + γ = 0

where α, γ ∈ R, β ∈ C, and the equation has more than solution.

Proof. A Euclidean circle with center a and radius r satisfies the equation |z−a|2 =
r2, or equivalently,

zz − az − az + (|a|2 − r2) = 0

which is of the desired form. Similarly, if z = x + iy, the line lx + my = n
(l,m, n ∈ R) satisfies the equation

(l − im)z + (l + im)z − 2c = 0.

Conversely, given an equation of the form

αzz + (bz + βz) + γ = 0,

either α 6= 0, in which case we may divide and assume α = 1, or α = 0. In the first
case, we have

|z + β|2 = |β|2 − γ
which is the equation of either a circle, a point, or the empty set. In the second,
we have

(Reβ) + (Imβ)y = γ/2

which is the equation of a line. �

Proposition. If C ∈ C and ϕ ∈ Mob, then ϕ(C) ∈ C.

Proof. Suppose that C satisfies an equation of the form

αzz + (bz + βz) + γ = 0.

If z = ϕA(w), then w satisfies

α′ww + (b
′
w + β′w) + γ′ = 0,

where

α′ = α|a|2 + (βac+ βac) + γ|c|2

β′ = αba+ βad+ βac+ γdc

γ′ = α|b|2 + (βbd+ βbd) + γ|d|2.
Moreover, ϕA is a bijection, so if C contains 0 or 1 points, so does ϕA(C). �


