Review of Möbius Transformations

The Möbius Group

Let $\mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}$ be the Riemann sphere. Given $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{C})$, we define a map $\varphi_{A}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ by $\varphi(z)=\frac{a z+b}{c z+d}$. The $\operatorname{map} \varphi_{A}$ is called a Möbius transformation.

Lemma. $\varphi_{A B}=\varphi_{A} \circ \varphi_{B}$.
This is easily proved by direct computation. More conceptually, we can argue as follows.

Proof. Consider the map $\pi: \mathbb{C}^{2}-\{\mathbf{0}\} \rightarrow \mathbb{C}_{\infty}$ given by $\pi\left(w_{1}, w_{2}\right)=w_{1} / w_{2}$. We define an equivalence relation \sim on $\mathbb{C}^{2}-\{\mathbf{0}\}$ by setting $\mathbf{w} \sim \mathbf{v}$ if and only if $\pi(\mathbf{w})=\pi(\mathbf{v})$. This occurs if and only if $\mathbf{w}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}^{*}$.

Now consider the action of $G L_{2}(\mathbb{C})$ on $\mathbb{C}^{2}-\{\mathbf{0}\}$ defined by matrix multiplication: $A \cdot \mathbf{w}=A \mathbf{v}$. Clearly $A \cdot(\lambda \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \cdot \mathbf{v})$, so if $\pi(\mathbf{w})=\pi(\mathbf{v})$, then $\pi(A \cdot \mathbf{w})=\pi(A \cdot \mathbf{v})$. Thus the action of $G L_{2}(\mathbb{C})$ on $\mathbb{C}-\{\mathbf{0}\}$ descends to an action on \mathbb{C}_{∞}. Since $z=\pi(z, 1)$, we see that

$$
A \cdot z=\pi(A \cdot(z, 1))=\pi(a z+b, c z+d)=\varphi_{A}(z)
$$

Thus

$$
\varphi_{A B}(z)=A B \cdot z=A \cdot(B \cdot z)=\varphi_{A}\left(\varphi_{B}(z)\right)
$$

Since φ_{I} is the identity map on \mathbb{C}_{∞}, it follows that the set of Mobius transformations forms a group under composition.
Definition. The Möbius group $\operatorname{Mob}:=\left\{\varphi_{A} \mid A \in G L_{2}(\mathbb{C})\right\}$.
The map $G L_{2}(\mathbb{C}) \rightarrow$ Mob given by $A \mapsto \varphi_{A}$ is a surjective homomorphism. Its kernel K is the set of all 2×2 matrices of the form λI, where $\lambda \in \mathbb{C}^{*}$, and $\operatorname{Mob} \simeq G L_{2}(\mathbb{C}) / K$. The quotient on the right-hand side is the projective linear group $P G L_{2}(\mathbb{C})$. Now any $A \in G L_{2}(\mathbb{C})$ can be written as $A=(\lambda I) A^{\prime}$, where $\lambda^{2}=\operatorname{det} A$ and $\operatorname{det} A^{\prime}=1$, i.e. $A^{\prime} \in S L_{2}(\mathbb{C})$. Thus

$$
P G L_{2}(\mathbb{C})=G L_{2}(\mathbb{C}) / K \simeq S L_{2}(\mathbb{C}) /\left(K \cap S L_{2}(\mathbb{C})\right)=S L_{2}(\mathbb{C}) /\{ \pm I\}=: P S L_{2}(\mathbb{C})
$$

To sum up, we have proved
Proposition. $\mathrm{Mob} \simeq P S L_{2}(\mathbb{C})$.

Properties of Möbius Transformations

Proposition. Any $\varphi \in \operatorname{Mob}$ is conformal, i.e. it preserves angles.
Proof. Mobius transformations are holomorphic, so this follows from the general fact that holomorphic maps are conformal (c.f. Example Sheet 1, Problem 13).

Proposition. If z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} are two sets of three distinct points in \mathbb{C}_{∞}, there is a unique $\varphi \in \operatorname{Mob}$ with $\varphi\left(z_{i}\right)=w_{i},(i=1,2,3)$.
Proof. Since Mob is a group acting on \mathbb{C}_{∞}, it suffices to prove the statement in the case where $\left(z_{1}, z_{2}, z_{3}\right)=(0,1, \infty)$. In order for $\varphi_{A}\left(z_{i}\right)=w_{i}$, we must have

$$
\frac{b}{d}=w_{1} \quad \frac{a}{c}=w_{2} \quad \frac{a+c}{b+d}=w_{3}
$$

In light of the first two equations, the last equation reduces to $w_{2} c+c=\left(w_{1} d+d\right) w_{3}$, or equivalently,

$$
\frac{c}{d}=\frac{w_{3}\left(w_{1}+1\right)}{w_{2}+1}
$$

If follows that the equations have a unique solution up to scaling (i.e. replacing A with λA). Since $\varphi_{\lambda A}=\varphi_{A}$, there is a unique Möbius transformation with the desired properties.

Let $\mathcal{C}:=\left\{S \subset \mathbb{C}_{\infty} \mid S\right.$ is a Euclidean circle or a Euclidean line $\left.\cup\{\infty\}\right\}$.
Lemma. $S \in \mathcal{C}$ if and only if it is the set of solutions to an equation of the form

$$
\alpha z \bar{z}+(\bar{b} z+\beta \bar{z})+\gamma=0
$$

where $\alpha, \gamma \in \mathbb{R}, \beta \in \mathbb{C}$, and the equation has more than solution.
Proof. A Euclidean circle with center a and radius r satisfies the equation $|z-a|^{2}=$ r^{2}, or equivalently,

$$
z \bar{z}-a \bar{z}-\bar{a} z+\left(|a|^{2}-r^{2}\right)=0
$$

which is of the desired form. Similarly, if $z=x+i y$, the line $l x+m y=n$ $(l, m, n \in \mathbb{R})$ satisfies the equation

$$
(l-i m) z+(l+i m) \bar{z}-2 c=0
$$

Conversely, given an equation of the form

$$
\alpha z \bar{z}+(\bar{b} z+\beta \bar{z})+\gamma=0
$$

either $\alpha \neq 0$, in which case we may divide and assume $\alpha=1$, or $\alpha=0$. In the first case, we have

$$
|z+\beta|^{2}=|\beta|^{2}-\gamma
$$

which is the equation of either a circle, a point, or the empty set. In the second, we have

$$
(\operatorname{Re} \beta)+(\operatorname{Im} \beta) y=\gamma / 2
$$

which is the equation of a line.
Proposition. If $C \in \mathcal{C}$ and $\varphi \in \operatorname{Mob}$, then $\varphi(C) \in \mathcal{C}$.
Proof. Suppose that C satisfies an equation of the form

$$
\alpha z \bar{z}+(\bar{b} z+\beta \bar{z})+\gamma=0
$$

If $z=\varphi_{A}(w)$, then w satisfies

$$
\alpha^{\prime} w \bar{w}+\left(\bar{b}^{\prime} w+\beta^{\prime} \bar{w}\right)+\gamma^{\prime}=0
$$

where

$$
\begin{aligned}
& \alpha^{\prime}=\alpha|a|^{2}+(\beta \bar{a} c+\bar{\beta} a \bar{c})+\gamma|c|^{2} \\
& \beta^{\prime}=\alpha b \bar{a}+\beta \bar{a} d+\bar{\beta} a \bar{c}+\gamma d \bar{c} \\
& \gamma^{\prime}=\alpha|b|^{2}+(\beta \bar{b} d+\bar{\beta} b \bar{d})+\gamma|d|^{2}
\end{aligned}
$$

Moreover, φ_{A} is a bijection, so if C contains 0 or 1 points, so does $\varphi_{A}(C)$.

