Geodesic Polar Coordinates

First, let us recall the definition. If g is a Riemannian metric on U, and $\mathbf{p} \in U$, we choose a g-orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of $T_{\mathbf{p}} U$, and let

$$
\mathbf{v}_{\theta}=\cos \theta \mathbf{v}_{1}+\sin \theta \mathbf{v}_{2}
$$

There is a unique geodesic $\gamma_{\mathbf{v}_{\theta}}$ with $\gamma_{\mathbf{v}_{\theta}}(0)=\mathbf{p}, \gamma_{\mathbf{v}_{\theta}}^{\prime}(0)=\mathbf{v}_{\theta}$, and we let

$$
\varphi_{\mathbf{p}}(r, \theta)=\gamma_{\mathbf{v}_{\theta}}(r)
$$

where this is defined. We view $\varphi_{\mathbf{p}}$ as a map from an open subset of $(0, \infty) \times S^{1}$ to U. Our first goal is to show there is a smaller open subset $V \subset(0, \infty) \times S^{1}$ such that $\left.\varphi_{\mathbf{p}}\right|_{V}$ is a diffeomorphism onto its image.

To do this, we define a new map $\psi_{\mathbf{p}}$, whose domain is an open subset of $T_{\mathbf{p}} U$. Specifically, we let

$$
\psi_{\mathbf{p}}(\mathbf{v})=\gamma_{\mathbf{v}}(1)
$$

where $\gamma_{\mathbf{v}}$ is the unique geodesic with $\gamma_{\mathbf{v}}(0)=\mathbf{p}$, and $\gamma_{\mathbf{v}}^{\prime}(0)=\mathbf{v}$. (For reasons we won't get into here, $\psi_{\mathbf{p}}$ is usually known as the exponential map.)

Lemma. $D_{\mathbf{0}}\left(\psi_{\mathbf{p}}\right)$ is the identity map.
Proof.

$$
\begin{aligned}
D_{\mathbf{0}} \psi_{\mathbf{p}}(\mathbf{v}) & =\lim _{\epsilon \rightarrow 0} \frac{\psi_{\mathbf{p}}(\epsilon \mathbf{v})-\psi_{\mathbf{p}}(\mathbf{0})}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{\gamma_{\epsilon \mathbf{v}}(1)-\mathbf{p}}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{\gamma_{\mathbf{v}}(\epsilon)-\mathbf{p}}{\epsilon} \\
& =\gamma_{\mathbf{v}}^{\prime}(0)=\mathbf{v}
\end{aligned}
$$

Corollary. There's an open set $V_{1} \subset T_{\mathbf{p}} U$ containing $\mathbf{0}$ such that $\left.\psi_{\mathbf{p}}\right|_{V_{1}}$ is a diffeomorphism onto its image.
Proof. The map $\psi_{\mathbf{p}}$ is a smooth function of \mathbf{v}. This follows from a result in the theory of differential equations which we won't try to justify here; namely that if we have a system of ordinary differential equations $\gamma^{\prime}(t)=F(\gamma(t))$, where F : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth, then the solutions to this system depend smoothly on the initial conditions. So we can apply the inverse function theorem to $\psi_{\mathbf{p}}$ at $\mathbf{0}$ to get the statement of the corollary.

Given $\epsilon>0$, let $V(\epsilon)=(0, \epsilon) \times S^{1} \subset(0, \infty) \times S^{1}$.
Theorem. We can find $\epsilon>0$ so that $\left.\varphi_{\mathbf{p}}\right|_{V(\epsilon)}$ is a diffeomorphism onto its image.
Proof. Note that $\varphi_{\mathbf{p}}(r, \theta)=\gamma_{\mathbf{v}_{\theta}}(r)=\gamma_{r \mathbf{v}_{\theta}}(1)=\psi_{\mathbf{p}}\left(r \mathbf{v}_{\theta}\right)$. So $\varphi_{\mathbf{p}}=\psi_{\mathbf{p}} \circ P$, where $P:(0, \infty) \times S^{1} \rightarrow\left(T_{\mathbf{p}} U-\mathbf{0}\right)$ given by $P(r, \theta)=r \mathbf{v}_{\theta}$ is the ordinary polar coordinates map, which is a diffeomorphism. Choose $\epsilon>0$ so that the ball $B_{\epsilon}(\mathbf{0})=\{\mathbf{v} \in$ $\left.\left.T_{\mathbf{p}} U| | \mathbf{v}\right|_{g_{\mathbf{p}}}<\epsilon\right\}$ is contained in the set V_{1} given by the corollary. Then P gives a diffeomorphism from $V(\epsilon)$ to $B_{\epsilon}(\mathbf{0})$ - $\mathbf{0}$. Since the composition of diffeomorphisms is a diffeomorphism, $\left.\varphi_{\mathbf{p}}(\mathbf{v})\right|_{V(\epsilon)}$ is a diffeomorphism onto its image.

Let $W=\psi_{\mathbf{p}}\left(B_{\epsilon}(\mathbf{0})\right)$. One useful way of rephrasing the theorem is
Corollary. Any point $\mathbf{q} \in W$ is joined to \mathbf{p} by a unique geodesic of length $<\epsilon$.

Proof. Geodesics have constant speed, so the length of $\left.\gamma_{\mathbf{v}}\right|_{[0,1]}$ is $|\mathbf{v}|_{g_{\mathbf{p}}}$. Thus \mathbf{q} is joined to \mathbf{p} by a geodesic of length $<\epsilon$ if and only if $\mathbf{q}=\psi_{\mathbf{p}}(\mathbf{v})$ for $\mathbf{v} \in B_{\epsilon}(\mathbf{0})$.

We can use the exponential map to prove a stronger version of this result.
Theorem. There is an open set $W^{\prime} \subset U, \mathbf{p} \in W^{\prime}$ and a constant $\epsilon>0$ such that any two points $\mathbf{q}, \mathbf{r} \in W^{\prime}$ are joined by a unique geodesic of length $<\epsilon$.
Proof. We consider a map Ψ which takes an open subset of U to $U \times U$. Ψ is defined by

$$
\Psi(\mathbf{q}, \mathbf{v})=\left(\mathbf{q}, \psi_{\mathbf{q}}(\mathbf{v})\right) .
$$

The derivative $D_{(\mathbf{p}, \mathbf{0})} \Psi$ is a 4×4 matrix which can be written in block form as

$$
D_{(\mathbf{p}, \mathbf{0})} \Psi=\left(\begin{array}{ll}
I & 0 \\
* & I
\end{array}\right)
$$

The first row in this matrix is easily computed; the I entry in the second row is the derivative of $\psi_{\mathbf{p}}(\mathbf{v})$ with respect to \mathbf{v}, which was computed in the lemma.

It follows that $D_{(\mathbf{p}, \mathbf{0})}$ is invertible, and we can apply the inverse function theorem to see that there is an open subset $V \subset T U$ containing $(\mathbf{p}, \mathbf{0})$ such that $\left.\Psi\right|_{V}$ is a diffeomorphism onto its image.

Since V is open, we can find an open set $U_{1} \subset U$ with $\mathbf{p} \in U_{1}$ and an $\epsilon>0$ so that the set $V_{1}=\left\{(\mathbf{q}, \mathbf{v}) \in T U\left|\mathbf{q} \in U_{1},|\mathbf{v}|_{g_{\mathbf{q}}}<\epsilon\right\}\right.$ is contained in V. Let $W_{1}=\Psi\left(V_{1}\right)$. W_{1} is open in $U \times U$ and contains $\psi(\mathbf{p}, \mathbf{0})=(\mathbf{p}, \mathbf{p})$, so we can find an open set $W^{\prime} \subset U$ containing \mathbf{p} such that $W^{\prime} \times W^{\prime} \subset W_{1}$.

We claim that W^{\prime} has the desired property. Indeed, if $\mathbf{q}, \mathbf{r} \in W^{\prime}$, then $(\mathbf{q}, \mathbf{r}) \in$ W_{1}, so $(\mathbf{q}, \mathbf{r})=\Psi(\mathbf{q}, \mathbf{v})$ for some $(\mathbf{q}, \mathbf{v}) \in V_{1}$. It follows that $\mathbf{r}=\psi_{\mathbf{q}}(\mathbf{v})$. Since $(\mathbf{q}, \mathbf{v}) \in V_{1},|\mathbf{v}|_{g_{\mathbf{q}}}<\epsilon$. Thus \mathbf{r} is joined to \mathbf{q} by a geodesic of length $<\epsilon$.

To see that this geodesic is unique, suppose that $\mathbf{r}=\psi_{\mathbf{q}}\left(\mathbf{v}^{\prime}\right)$ with $\left|\mathbf{v}^{\prime}\right|_{g_{\mathbf{q}}}<\epsilon$. Then $\left(\mathbf{q}, \mathbf{v}^{\prime}\right) \in V_{1} \subset V$, and $\Psi(\mathbf{q}, \mathbf{v})=\Psi\left(\mathbf{q}, \mathbf{v}^{\prime}\right)=(\mathbf{q}, \mathbf{r})$. But $\left.\Psi\right|_{V}$ is a diffeomorphism onto its image, so this implies that $\mathbf{v}=\mathbf{v}^{\prime}$.

