
Riemannian metrics define ordinary metrics

Recall that if g is a Riemannian metric on a path-connected open set U ⊂ R2,
we define the distance between p and q by

d(p,q) = inf
γ∈P(p,q)

L(γ)

where the inf runs over the set of all piecewise smooth paths γ from p to q. Our
aim here is to show that d satisfies the axioms for a metric space.

Proposition 1. For all p,q and r in U ,

(1) d(p,q) ≥ 0, with equality if and only if p = q.
(2) d(p,q) = d(q,p).
(3) d(p, r) ≤ d(p,q) + d(q, r)

Proof. Somewhat unusually, item (1) is the most difficult to prove. Since L(γ) ≥ 0
for any curve γ, it is clear that d(p,q) ≥ 0. The tricky part is to show that
d(p,q) > 0 if p 6= q. To do this, we compare g with the standard Euclidean metric
on R2. For p ∈ U , let Bε(p) be the closed ball of radius ε around p with respect
to the Euclidean metric.

Lemma. Given p ∈ U , we can find ε, λ > 0 so that for any q in the ball Bε(p),
we have gq(u,u) ≥ λ(u · u).

Proof. The metric g is a smooth map from U to BS+
2 , which is the set of positive-

definite, symmetric bilinear forms on R3. Under the identification

(a, b, d) 7→
(
a b
b d

)
,

we view BS+
2 as an open subset of R3 equipped with the Euclidean metric. Thus

for any A ∈ BS+
2 , we can find some η > 0 so that the ball Bη(A) is contained in

BS+
2 . Now if λ < 2−1/2η, A − λI ∈ Bη(A). Using the triangle inequality, we see

that if A′ ∈ Bη/2(A) and λ < 2−3/2η, then A′ − λI ∈ BS+
2 .

Now given p ∈ U , let A = gp. Choose η as above, and take λ < 2−3/2η.
The map g is continuous, so we can find ε > 0 so that gq ∈ Bη/2(A) whenever
q ∈ Bε(p). It follows that for such q, gq − λI is positive definite. This means that
(gq − λI)(u,u) ≥ 0 for all u, or equivalently, that gq(u,u) ≥ λ(u · u). �

Now let γ : [a, b]→ Bε(p) be a smooth path. If Lg(γ) and L(γ) are the lengths
of γ with respect to g and the Euclidean metric, then

Lg(γ) =

∫ b

a

|γ′(t)|gdt ≥
∫ b

a

λ1/2|γ′(t)|dt = λ1/2L(γ).

The same inequality clearly holds if γ is piecewise smooth.
Finally, suppose γ : [a, b] → U is a path from p to q. If the image of γ is

contained in Bε(p), then

Lg(γ) ≥ λ1/2L(γ) ≥ λ1/2|q− p|.
On the other hand, if γ exits Bε(p), the intermediate value theorem implies there
must be some point t ∈ [a, b] with d(γ(t)) = ε/2. The set of all such t is closed and
contained in [a, b], so it has a minimum value t0. Then

Lg(γ) ≥ Lg(γ|[a,t0]) ≥ λ
1/2L(γ|[a,t0]) ≥ λ

1/2|γ(t0)− p| = λ1/2ε/2.

To sum up, we see that Lg(γ) ≥ λ1/2 min(|p− q|, ε/2). Thus for p 6= q, the inf
is strictly positive.
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The other two conditions are much easier. For (2), note that if γ : [a, b]→ U is
a path from p to q, then the path γ : [a, b] → U given by γ(s) = γ(b + a − s) is
a path from q to p with the same length. So the sets {Lg(γ) | γ ∈ P(p,q)} and
{Lg(γ) | γ ∈ P(q,p)} are the same, and thus have the same inf.

Finally, for (3), note that if γ1 : [a1, b1] → U is a piecewise smooth path from
p to q, and γ2 : [a2, b2] → U is a piecewise smooth path from q to r, then their
concatenation γ : [a1, b1 + b2 − a2]→ U , defined by

γ(t) =

{
γ1(t) t ≤ b1
γ2(t− b1 + a2) t ≥ b1

is a piecewise smooth path from p to r, and Lg(γ) = Lg(γ1) + Lg(γ2).
Now pick γ1 γ2 as above, with Lg(γ1) ≤ d(p,q) + ε and Lg(γ2) ≤ d(q, r) + ε.

Then d(p, r) ≤ L(γ) ≤ d(p,q) + d(q, r) + 2ε. Since this holds for any ε > 0,
d(p, r) ≤ d(p,q) + d(q, r) as desired.

�


