Riemannian metrics define ordinary metrics

Recall that if g is a Riemannian metric on a path-connected open set $U \subset \mathbb{R}^{2}$, we define the distance between \mathbf{p} and \mathbf{q} by

$$
d(\mathbf{p}, \mathbf{q})=\inf _{\gamma \in \mathcal{P}(\mathbf{p}, \mathbf{q})} L(\gamma)
$$

where the inf runs over the set of all piecewise smooth paths γ from \mathbf{p} to \mathbf{q}. Our aim here is to show that d satisfies the axioms for a metric space.
Proposition 1. For all \mathbf{p}, \mathbf{q} and \mathbf{r} in U,
(1) $d(\mathbf{p}, \mathbf{q}) \geq 0$, with equality if and only if $\mathbf{p}=\mathbf{q}$.
(2) $d(\mathbf{p}, \mathbf{q})=d(\mathbf{q}, \mathbf{p})$.
(3) $d(\mathbf{p}, \mathbf{r}) \leq d(\mathbf{p}, \mathbf{q})+d(\mathbf{q}, \mathbf{r})$

Proof. Somewhat unusually, item (1) is the most difficult to prove. Since $L(\gamma) \geq 0$ for any curve γ, it is clear that $d(\mathbf{p}, \mathbf{q}) \geq 0$. The tricky part is to show that $d(\mathbf{p}, \mathbf{q})>0$ if $\mathbf{p} \neq \mathbf{q}$. To do this, we compare g with the standard Euclidean metric on \mathbb{R}^{2}. For $\mathbf{p} \in U$, let $B_{\epsilon}(\mathbf{p})$ be the closed ball of radius ϵ around \mathbf{p} with respect to the Euclidean metric.

Lemma. Given $\mathbf{p} \in U$, we can find $\epsilon, \lambda>0$ so that for any \mathbf{q} in the ball $B_{\epsilon}(\mathbf{p})$, we have $g_{\mathbf{q}}(\mathbf{u}, \mathbf{u}) \geq \lambda(\mathbf{u} \cdot \mathbf{u})$.

Proof. The metric g is a smooth map from U to $B S_{2}^{+}$, which is the set of positivedefinite, symmetric bilinear forms on \mathbb{R}^{3}. Under the identification

$$
(a, b, d) \mapsto\left(\begin{array}{cc}
a & b \\
b & d
\end{array}\right)
$$

we view $B S_{2}^{+}$as an open subset of \mathbb{R}^{3} equipped with the Euclidean metric. Thus for any $A \in B S_{2}^{+}$, we can find some $\eta>0$ so that the ball $B_{\eta}(A)$ is contained in $B S_{2}^{+}$. Now if $\lambda<2^{-1 / 2} \eta, A-\lambda I \in B_{\eta}(A)$. Using the triangle inequality, we see that if $A^{\prime} \in B_{\eta / 2}(A)$ and $\lambda<2^{-3 / 2} \eta$, then $A^{\prime}-\lambda I \in B S_{2}^{+}$.

Now given $\mathbf{p} \in U$, let $A=g_{\mathbf{p}}$. Choose η as above, and take $\lambda<2^{-3 / 2} \eta$. The map g is continuous, so we can find $\epsilon>0$ so that $g_{\mathbf{q}} \in B_{\eta / 2}(A)$ whenever $\mathbf{q} \in B_{\epsilon}(\mathbf{p})$. It follows that for such $\mathbf{q}, g_{\mathbf{q}}-\lambda I$ is positive definite. This means that $\left(g_{\mathbf{q}}-\lambda I\right)(\mathbf{u}, \mathbf{u}) \geq 0$ for all \mathbf{u}, or equivalently, that $g_{\mathbf{q}}(\mathbf{u}, \mathbf{u}) \geq \lambda(\mathbf{u} \cdot \mathbf{u})$.

Now let $\gamma:[a, b] \rightarrow B_{\epsilon}(\mathbf{p})$ be a smooth path. If $L_{g}(\gamma)$ and $L(\gamma)$ are the lengths of γ with respect to g and the Euclidean metric, then

$$
L_{g}(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right|_{g} d t \geq \int_{a}^{b} \lambda^{1 / 2}\left|\gamma^{\prime}(t)\right| d t=\lambda^{1 / 2} L(\gamma)
$$

The same inequality clearly holds if γ is piecewise smooth.
Finally, suppose $\gamma:[a, b] \rightarrow U$ is a path from \mathbf{p} to \mathbf{q}. If the image of γ is contained in $B_{\epsilon}(\mathbf{p})$, then

$$
L_{g}(\gamma) \geq \lambda^{1 / 2} L(\gamma) \geq \lambda^{1 / 2}|\mathbf{q}-\mathbf{p}|
$$

On the other hand, if γ exits $B_{\epsilon}(\mathbf{p})$, the intermediate value theorem implies there must be some point $t \in[a, b]$ with $d(\gamma(t))=\epsilon / 2$. The set of all such t is closed and contained in $[a, b]$, so it has a minimum value t_{0}. Then

$$
L_{g}(\gamma) \geq L_{g}\left(\left.\gamma\right|_{\left[a, t_{0}\right]}\right) \geq \lambda^{1 / 2} L\left(\left.\gamma\right|_{\left[a, t_{0}\right]}\right) \geq \lambda^{1 / 2}\left|\gamma\left(t_{0}\right)-\mathbf{p}\right|=\lambda^{1 / 2} \epsilon / 2
$$

To sum up, we see that $L_{g}(\gamma) \geq \lambda^{1 / 2} \min (|\mathbf{p}-\mathbf{q}|, \epsilon / 2)$. Thus for $\mathbf{p} \neq \mathbf{q}$, the inf is strictly positive.

The other two conditions are much easier. For (2), note that if $\gamma:[a, b] \rightarrow U$ is a path from \mathbf{p} to \mathbf{q}, then the path $\bar{\gamma}:[a, b] \rightarrow U$ given by $\bar{\gamma}(s)=\gamma(b+a-s)$ is a path from \mathbf{q} to \mathbf{p} with the same length. So the sets $\left\{L_{g}(\gamma) \mid \gamma \in \mathcal{P}(\mathbf{p}, \mathbf{q})\right\}$ and $\left\{L_{g}(\gamma) \mid \gamma \in \mathcal{P}(\mathbf{q}, \mathbf{p})\right\}$ are the same, and thus have the same inf.

Finally, for (3), note that if $\gamma_{1}:\left[a_{1}, b_{1}\right] \rightarrow U$ is a piecewise smooth path from \mathbf{p} to \mathbf{q}, and $\gamma_{2}:\left[a_{2}, b_{2}\right] \rightarrow U$ is a piecewise smooth path from \mathbf{q} to \mathbf{r}, then their concatenation $\gamma:\left[a_{1}, b_{1}+b_{2}-a_{2}\right] \rightarrow U$, defined by

$$
\gamma(t)= \begin{cases}\gamma_{1}(t) & t \leq b_{1} \\ \gamma_{2}\left(t-b_{1}+a_{2}\right) & t \geq b_{1}\end{cases}
$$

is a piecewise smooth path from \mathbf{p} to \mathbf{r}, and $L_{g}(\gamma)=L_{g}\left(\gamma_{1}\right)+L_{g}\left(\gamma_{2}\right)$.
Now pick $\gamma_{1} \gamma_{2}$ as above, with $L_{g}\left(\gamma_{1}\right) \leq d(\mathbf{p}, \mathbf{q})+\epsilon$ and $L_{g}\left(\gamma_{2}\right) \leq d(\mathbf{q}, \mathbf{r})+\epsilon$. Then $d(\mathbf{p}, \mathbf{r}) \leq L(\gamma) \leq d(\mathbf{p}, \mathbf{q})+d(\mathbf{q}, \mathbf{r})+2 \epsilon$. Since this holds for any $\epsilon>0$, $d(\mathbf{p}, \mathbf{r}) \leq d(\mathbf{p}, \mathbf{q})+d(\mathbf{q}, \mathbf{r})$ as desired.

