Riemannian metrics define ordinary metrics

Recall that if ¢ is a Riemannian metric on a path-connected open set U C R?,
we define the distance between p and q by

d(p,q) = inf L
(p,q) L ()

where the inf runs over the set of all piecewise smooth paths v from p to q. Our
aim here is to show that d satisfies the axioms for a metric space.

Proposition 1. For all p,q and r in U,
(1) d(p,q) > 0, with equality if and only if p = q.
(2) d(p,a) = d(q,p).
(3) d(p,r) < d(p.q) +d(q,r)

Proof. Somewhat unusually, item (1) is the most difficult to prove. Since L(v) > 0
for any curve 7, it is clear that d(p,q) > 0. The tricky part is to show that
d(p,q) > 0 if p # q. To do this, we compare g with the standard Euclidean metric
on R2. For p € U, let B.(p) be the closed ball of radius € around p with respect
to the Euclidean metric.

Lemma. Given p € U, we can find e, \ > 0 so that for any q in the ball B.(p),
we have gq(u,u) > A(u-u).

Proof. The metric g is a smooth map from U to BS;' , which is the set of positive-
definite, symmetric bilinear forms on R?. Under the identification

(a,b,d) ~ (Z Z)

we view BSS as an open subset of R? equipped with the Euclidean metric. Thus
for any A € BS, we can find some n > 0 so that the ball B, (A) is contained in
BSy. Now if A < 2712y, A — A\I € B,(A). Using the triangle inequality, we see
that if A’ € B, /2(A) and A < 27%/2p, then A’ — X\ € BS3.

Now given p € U, let A = g,. Choose 1 as above, and take A < 2-3/2y,
The map g is continuous, so we can find € > 0 so that gq € B, /2(A) whenever
q € B(p). It follows that for such q, gq — Al is positive definite. This means that
(9q — AI)(u,u) > 0 for all u, or equivalently, that gq(u,u) > A(u - u). O

Now let v : [a,b] = Be(p) be a smooth path. If L,(y) and L(y) are the lengths
of v with respect to g and the Euclidean metric, then

b b
L) = [ W (Olde= [ 32 @)= XL,

The same inequality clearly holds if v is piecewise smooth.
Finally, suppose v : [a,b] — U is a path from p to q. If the image of v is
contained in B(p), then

Ly(v) = AY2L(v) > AY?|q - p|.

On the other hand, if v exits B.(p), the intermediate value theorem implies there
must be some point ¢ € [a, b] with d(y(t)) = €/2. The set of all such ¢ is closed and
contained in [a,b], so it has a minimum value ¢y3. Then

L) = Le(Wiato) = N2L(V|[a.0) = A2 (t0) — | = A 2e/2.

To sum up, we see that L,(y) > A/?min(|p — q|,¢/2). Thus for p # q, the inf
is strictly positive.
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The other two conditions are much easier. For (2), note that if « : [a,b] — U is
a path from p to q, then the path 7 : [a,b] — U given by F(s) = v(b+ a — s) is
a path from q to p with the same length. So the sets {Lq(v) |y € P(p,q)} and
{Ly(7) |7 € P(q,p)} are the same, and thus have the same inf.

Finally, for (3), note that if v : [a1,b1] — U is a piecewise smooth path from
p to q, and 73 : [ag,b2] — U is a piecewise smooth path from q to r, then their
concatenation v : [a1, b1 + by — az] — U, defined by

<
1) = e
Yot —b1 +a2) t>b

is a piecewise smooth path from p to r, and Ly(y) = Lg(71) + Lg(72).

Now pick ;1 72 as above, with L,(y1) < d(p,q) + € and Ly(v2) < d(q,r) + €.
Then d(p,r) < L(y) < d(p,q) + d(q,r) + 2¢. Since this holds for any e > 0,
d(p,r) <d(p,q) + d(q,r) as desired.
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