EXAMPLE SHEET 3

1. Let $S : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$S(u,v) = \frac{(2u, 2v, u^2 + v^2 - 1)}{1 + u^2 + v^2}.$$

Show that S defines a parametrized surface whose image is contained in S^2 .

- 2. Using the chart from the previous exercise, verify that the tangent space to S^2 at a point **x** in the image of S is \mathbf{x}^{\perp} .
- 3. Find an atlas of charts on S^2 for which each chart preserves area, and the transition functions relating charts have derivatives with determinant 1. (Hint: consider the circumscribed cylinder.)
- 4. Using the geodesic equations, show directly that the geodesics in the hyperbolic plane are hyperbolic lines parametrized with constant speed. (Hint: first consider vertical lines in the upper half-pane model.)
- 5. Let Σ be the cylinder $\Sigma = \{(x, y, z) | x^2 + y^2 = 1\}$. Prove that Σ is locally isometric to the Euclidean plane. Show all geodesics on Σ are spirals of the form $\gamma(t) = (\cos at, \sin at, bt)$ where $a^2 + b^2 = 1$.
- 6. For a > 0, let Σ be the circular half-cone $\Sigma = \{(x, y, z) | z^2 = a(x^2 + y^2), z > 0\}$. Show that Σ minus a ray through the origin is locally isometric to the Euclidean plane. When a = 3, give an explicit formula for the geodesics on S and show that no geodesic intersects itself. For a < 3 show that there are geodesics which intersect themselves.
- 7. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function, and let $\Sigma \subset \mathbb{R}^3$ be its graph. Show that Σ is an embedded surface, and that its Gauss curvature at the point (x, y, F(x, y)) is the value of

$$\frac{F_{xx}F_{yy} - F_{xy}^2}{(1 + F_x^2 + F_y^2)^2}$$

at the point (x, y).

8. Let γ be an embedded curve in the *xz*-plane given by the parametrization $\gamma(t) = (f(t), 0, g(t))$, where f(t) > 0 for all t, and let Σ be the surface obtained by rotating γ around the *z*-axis. Show that the Gauss curvature of Σ is

$$K = \frac{(\dot{f}\ddot{g} - \ddot{f}\dot{g})\dot{g}}{f(\dot{f}^2 + \dot{g}^2)^2}.$$

If γ is parametrized so as to have unit speed $(\dot{f}^2 + \dot{g}^2 = 1)$, show that this reduces to $K = -\ddot{f}/f$.

9. Using the previous question, compute the Gauss curvature of the surfaces given by the equations $x^2 + y^2 - z^2 = 1$ and $x^2 + y^2 - z^2 = -1$. Describe the qualitative properties of the curvature in these cases (sign and behavior near ∞) and explain what you find using pictures of these surfaces.

10. Let T be the torus obtained by rotating the circle in the xz-plane given by the equation $(x-2)^2 + z^2 = 1$ around the z-axis. Find the Gauss curvature K of T, and identify the points on T where K is positive, negative, and zero. Verify that

$$\int_T K \ dA = 0.$$

- 11. Let D be an open disc centered at the origin in \mathbb{R}^2 . Give D a Riemannian metric of the form $(dx^2 + dy^2)/f(r)^2$, where $r = \sqrt{x^2 + y^2}$ and f(r) > 0. Show that the curvature of this metric is $K = ff'' (f')^2 + ff'/r$.
- 12. Show that the embedded surface given by the equation $x^2 + y^2 + c^2 z^2 = 1$ (c > 0) is homeomorphic to S^2 . Deduce from the global Gauss-Bonnet theorem that

$$\int_0^1 (1 + (c^2 - 1)u^2)^{-3/2} du = c^{-1}.$$

Can you verify this formula directly?

- 13. Let γ : [a, b] → ℝ² be a curve in the plane with ||γ'(t)|| = 1, and let **n** be the unit normal vector obtained by rotating γ'(t) counterclockwise by an angle of π/2. Show that γ''(t) = κ(t)**n** for some function κ(t). κ(t) is called the curvature of γ at the point γ(t). If C(t) is the circle which is tangent to second-order to γ at γ(t), show that the radius of C(t) is 1/|κ(t)|. If the image of γ is a graph (x, f(x)) with f(0) = f'(0) = 0, show that the curvature at (0,0) is f''(0).
- 14. Suppose Σ is a surface of revolution obtained by rotating a curve γ in the *xz*-plane about the *z*-axis. Find γ such that the Gauss curvature of Σ is identically -1.
- 15. Let Σ be a compact embedded surface in \mathbb{R}^3 . By considering the smallest closed ball centered at the origin which contains Σ , show that the Gauss curvature must be strictly positive at some point of Σ . Conclude that the locally Euclidean metric on the torus cannot obtained as the first fundamental form of a smoothly embedded torus in \mathbb{R}^3 .
- 16. Show that a genus two surface can be obtained by appropriately identifying the sides of a regular octogon. Using problem 10 on example sheet 2, show that the genus two surface admits a Riemannian metric with constant curvature K = -1. Explain how to generalize your argument to arbitrary surfaces of genus g > 1.

Note to the reader: You should look at all questions up to question (12), and then any further questions you have time for.

J.Rasmussen@dpmms.cam.ac.uk