EXAMPLE SHEET 3

1. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
S(u, v)=\frac{\left(2 u, 2 v, u^{2}+v^{2}-1\right)}{1+u^{2}+v^{2}}
$$

Show that S defines a parametrized surface whose image is contained in S^{2}.
2. Using the chart from the previous exercise, verify that the tangent space to S^{2} at a point \mathbf{x} in the image of S is \mathbf{x}^{\perp}.
3. Find an atlas of charts on S^{2} for which each chart preserves area, and the transition functions relating charts have derivatives with determinant 1. (Hint: consider the circumscribed cylinder.)
4. Using the geodesic equations, show directly that the geodesics in the hyperbolic plane are hyperbolic lines parametrized with constant speed. (Hint: first consider vertical lines in the upper half-pane model.)
5. Let Σ be the cylinder $\Sigma=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$. Prove that Σ is locally isometric to the Euclidean plane. Show all geodesics on Σ are spirals of the form $\gamma(t)=(\cos a t, \sin a t, b t)$ where $a^{2}+b^{2}=1$.
6. For $a>0$, let Σ be the circular half-cone $\Sigma=\left\{(x, y, z) \mid z^{2}=a\left(x^{2}+y^{2}\right), z>0\right\}$. Show that Σ minus a ray through the origin is locally isometric to the Euclidean plane. When $a=3$, give an explicit formula for the geodesics on S and show that no geodesic intersects itself. For $a<3$ show that there are geodesics which intersect themselves.
7. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function, and let $\Sigma \subset \mathbb{R}^{3}$ be its graph. Show that Σ is an embedded surface, and that its Gauss curvature at the point $(x, y, F(x, y))$ is the value of

$$
\frac{F_{x x} F_{y y}-F_{x y}^{2}}{\left(1+F_{x}^{2}+F_{y}^{2}\right)^{2}}
$$

at the point (x, y).
8. Let γ be an embedded curve in the $x z$-plane given by the parametrization $\gamma(t)=(f(t), 0, g(t))$, where $f(t)>0$ for all t, and let Σ be the surface obtained by rotating γ around the z-axis. Show that the Gauss curvature of Σ is

$$
K=\frac{(\dot{f} \ddot{g}-\ddot{f} \dot{g}) \dot{g}}{f\left(\dot{f}^{2}+\dot{g}^{2}\right)^{2}} .
$$

If γ is parametrized so as to have unit speed $\left(\dot{f}^{2}+\dot{g}^{2}=1\right)$, show that this reduces to $K=-\ddot{f} / f$.
9. Using the previous question, compute the Gauss curvature of the surfaces given by the equations $x^{2}+y^{2}-z^{2}=1$ and $x^{2}+y^{2}-z^{2}=-1$. Describe the qualitative properties of the curvature in these cases (sign and behavior near ∞) and explain what you find using pictures of these surfaces.
10. Let T be the torus obtained by rotating the circle in the $x z$-plane given by the equation $(x-2)^{2}+z^{2}=1$ around the z-axis. Find the Gauss curvature K of T, and identify the points on T where K is positive, negative, and zero. Verify that

$$
\int_{T} K d A=0
$$

11. Let D be an open disc centered at the origin in \mathbb{R}^{2}. Give D a Riemannian metric of the form $\left(d x^{2}+d y^{2}\right) / f(r)^{2}$, where $r=\sqrt{x^{2}+y^{2}}$ and $f(r)>0$. Show that the curvature of this metric is $K=f f^{\prime \prime}-\left(f^{\prime}\right)^{2}+f f^{\prime} / r$.
12. Show that the embedded surface given by the equation $x^{2}+y^{2}+c^{2} z^{2}=1(c>0)$ is homeomorphic to S^{2}. Deduce from the global Gauss-Bonnet theorem that

$$
\int_{0}^{1}\left(1+\left(c^{2}-1\right) u^{2}\right)^{-3 / 2} d u=c^{-1}
$$

Can you verify this formula directly?
13. Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be a curve in the plane with $\left\|\gamma^{\prime}(t)\right\|=1$, and let \mathbf{n} be the unit normal vector obtained by rotating $\gamma^{\prime}(t)$ counterclockwise by an angle of $\pi / 2$. Show that $\gamma^{\prime \prime}(t)=\kappa(t) \mathbf{n}$ for some function $\kappa(t) . \kappa(t)$ is called the curvature of γ at the point $\gamma(t)$. If $C(t)$ is the circle which is tangent to second-order to γ at $\gamma(t)$, show that the radius of $C(t)$ is $1 /|\kappa(t)|$. If the image of γ is a graph $(x, f(x))$ with $f(0)=f^{\prime}(0)=0$, show that the curvature at $(0,0)$ is $f^{\prime \prime}(0)$.
14. Suppose Σ is a surface of revolution obtained by rotating a curve γ in the $x z$-plane about the z-axis. Find γ such that the Gauss curvature of Σ is identically -1 .

15 . Let Σ be a compact embedded surface in \mathbb{R}^{3}. By considering the smallest closed ball centered at the origin which contains Σ, show that the Gauss curvature must be strictly positive at some point of Σ. Conclude that the locally Euclidean metric on the torus cannot obtained as the first fundamental form of a smoothly embedded torus in \mathbb{R}^{3}.
16. Show that a genus two surface can be obtained by appropriately identifying the sides of a regular octogon. Using problem 10 on example sheet 2 , show that the genus two surface admits a Riemannian metric with constant curvature $K=-1$. Explain how to generalize your argument to arbitrary surfaces of genus $g>1$.

Note to the reader: You should look at all questions up to question (12), and then any further questions you have time for.
J.Rasmussen@dpmms.cam.ac.uk

