
IB GEOMETRY LENT 2012

EXAMPLE SHEET 1

1. Suppose that l1 and l2 are non-parallel lines in R2, and that Ri : R2 → R2 denotes
the reflection in the line li for i = 1, 2. Show that the composition R1R2 is a rotation.
Describe the center and angle of rotation in terms of l1 and l2.

2. Suppose that φ ∈ Isom(R2). Show that there is either a point x ∈ R2 with φ(x) = x
or a line l ⊂ R2 with φ(l) = l. Conclude that φ is either (a) a translation, (b) a
rotation, (c) a reflection, or (d) a composition R ◦ T , where R is reflection in a line
l and T is translation by some nonzero vector.

3. Suppose that H is a hyperplane in Rn defined by the equation u · x = c for some
unit vector u and constant c. The reflection in H is the map from Rn to itself given
by x 7→ x − 2(x · u − c)u. Show this is an isometry. If P and Q are points of Rn,
show that reflection in some hyperplane maps P to Q.

4. Suppose that P1, P2 are points in R2, and that a1, a2 ∈ R. Show that there are at
most two points Q ∈ R2 with d(Pi, Q) = ai. If ∆1,∆2 are two triangles in R2 with
the same side lengths, show there is a φ ∈ Isom(R2) with φ(∆1) = ∆2.

5. Let G be a finite subgroup of Isom(Rn). By considering the barycentre (i.e. average)
of the orbit of the origin under G, show that G fixes some point of Rn. If n = 2,
show that G is either cyclic or dihedral (that is D4 = Z/2×Z/2, and for n ≥ 3, D2n

is the full symmetry group of a regular 2n-gon.)

6. Prove that any matrix A ∈ O(3, R) is the product of at most three reflections in
planes through the origin. Deduce that an isometry of the unit sphere can be ob-
tained as the product of at most three reflections in spherical lines. Which isometries
are obtained as the product of two reflections? Which are the product of three re-
flections and no fewer?

7. Let ∆ be a spherical triangle with sides of length a, b, c and opposite angles α, β, γ.
Extend the sides of ∆ to form complete great circles. Show that this divides the
sphere into 8 triangles and find the side lengths and angles for each.

8. In the spherical triangle ∆ = ABC show that b = c if and only if β = γ. Show that
this occurs if and only if there is a reflection which exchanges the sides of length
b and c. Are there equilateral spherical triangles? Are they all isometric to one
another?

9. Let P be a point on the unit sphere S2. For fixed 0 < ρ < π, the spherical circle
with centre P and radius ρ is the set of points Q ∈ S2 whose spherical distance from
P is ρ. Prove that a spherical circle of radius ρ has circumference 2π sin ρ and area
2π(1− cos ρ). Deduce that the map from the cylinder of radius one to S2 given (in
cylindrical coordinates) by (1, θ, z) 7→ (

√
1− z2, θ, z) is area preserving.
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10. Prove that Mobius transformations of C∞ preserve cross ratios. If u, v,∈ C corre-
spond to points P,Q on S2, and d denotes the angular distance from P to Q on S2,
show that − tan2(d/2) is the cross ratio of the points u, v,−1/u,−1/v, taken in an
appropriate order.

11. Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic pro-
jection map) to a rotation of S2 through a nonzero angle has exactly two fixed points
z1 and z2 = −1/z1. If T is a Möbius transformation with two fixed points z1 and
z2 = −1/z1, show that either T corresponds to a rotation of S2, or one of the fixed
points — say z1 — is an attracting fixed point; that is for z 6= z2, Tnz → z1 as
n →∞.

12. Suppose we have a polygonal decomposition of S2 by convex geodesic polygons,
where each polygon is contained in some hemisphere. Denote by Fn the number of
faces with precisely n edges, and Vm the number of vertices where precisely m edges
meet; show that

∑
n nFn = 2E =

∑
m mVm.

Suppose that Vi = Fi = 0 for i < 3. If in addition V3 = 0 , deduce that E ≥ 2V .
Similarly, if F3 = 0, deduce that E ≥ 2F . Conclude that V3 + F3 > 0. Prove the
identity ∑

n

(6− n)Fn = 12 + 2
∑
m

(m− 3)Vm.

Deduce that 3F3 + 2F4 + F5 ≥ 12. The surface of a football is decomposed into
spherical hexagons and pentagons, with precisely three faces meeting at each vertex.
How many pentagons are there?

13. A spherical triangle ∆ = ABC has vertices given by unit vectors A,B,C in R3,
sides of length a, b, c, and angles α, β, γ. The polar triangle A′B′C ′ is defined by the
unit vectors in the directions B×C, C×A, and B×A. Prove that the sides and
angles of the polar triangle are π − α, π − β, π − γ, and π − a, π − b and π − c,
respectively. Deduce that

sinα sinβ cos c = cos γ + cos α cos β.

14. Exhibit a subset X of R2 such that (a) any two points x, y ∈ X can be joined by
a continuous path γ : [0, 1] → X and (b) for x 6= y the length of any such path is
infinite.

15. Let v be a vertex of a convex Euclidean polyhedron P . For each face f containing
v, let θv(f) be the angle of f with vertex v. Prove that

∑
f θv(f) < 2π. If we define

d(v) = 2π−
∑

f θv(f), show that
∑

v d(v) = 4π, where the sum runs over all vertices
of P .

A regular polyhedron is one in which all two-dimensional faces are congruent regular
polygons, and such that for each pair of vertices v and v′ there is some φ ∈ Isom(R3)
with φ(P ) = P and φ(v) = v′. Show that there are five types of regular polyhedron,
and compute the number of vertices, edges, and faces for each type.
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16. The Euler characteristic of an n-dimensional convex polyhedron P is χn(P ) =∑
i(−1)iFi, where Fi denotes the number of i-dimensional faces. Compute χ for

the n-dimensional analogs of the tetrahedron and the cube. Assuming that the
value of χn(P ) does not depend on the choice of convex polyhedron P , prove that
χn(P ) = 0 for n odd.

Note to the reader: You should look at all questions up to question (12), and then any
further questions you have time for.
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