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GEODESIC POLAR COORDINATES

Suppose U ⊂ R2 is an open set, and g is a Riemannian metric on U . Let p be a point
of U , and let v ∈ TpU = R2 be a tangent vector. We saw previously that there is a unique
geodesic γv with γv(0) = p and γ′v(0) = v.

Lemma. γkv(t) = γv(kt).

Proof. Let Γ(t) = γv(kt). Inspecting the equations for a geodesic, we see that they are
also satisfied by Γ. Now Γ(0) = γ(0) = p, and Γ′(0) = kγ′v(0) = kv, so γkv(t) = Γ(t). �

We now define a map S : B(ε) → U by S(v) = γv(1).

Proposition. For small enough ε, S is a diffeomorphism onto its image.

Proof. By the Inverse Function theorem, it suffices to show that DS|0 is invertible. We
compute

DS(w) = lim
ε→0

(S(εw)− S(0))/ε

=
d

dε
(S(εw))|ε=0

=
d

dε
(γεw(1))

=
d

dε
(γw(ε)))|ε=0

= γ′w(0)
= w

In other words, DS|0 is the identity map, which is certainly invertible. �

Choose a basis e1, e2 for TpU which is orthonormal with respect to the metric g. Let
p : (0, ε) × [0, 2π) → B(ε) be the map : p(r, θ) = r cos θ e1 + r sin θ e2, and let T :
(0, ε)× [0, 2π) → U be the composition T = S ◦ p. In other words

T (r, θ) = γrvθ
(1) = γvθ

(r)

where vθ = cos θ e1 + sin θ e2. The coordinates on the image of T defined by r and θ are
known as geodesic polar coordinates. The metric with respect to geodesic polar coordinates
takes an especially simple form:

Theorem. T ∗(g) = dr2 + G(r, θ)dθ2

Proof. T ∗(g) = Edr2 + 2Fdrdθ + Gdθ2, where

E = 〈Tr, Tr〉g F = 〈Tr, Tθ〉g G = 〈Tθ, Tθ〉g.
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We compute

Tr(r, θ) =
∂

∂r
T (r, θ)

=
d

dr
γvθ

(r)

= γ′vθ
(r)

Now γvθ
is a geodesic, so it has constant speed with respect to the metric g. Thus

E = 〈Tr, Tr〉g = 〈γ′vθ
(r), γ′vθ

(r)〉g = 〈γ′vθ
(0), γ′vθ

(0)〉g = 〈vθ,vθ〉g = 1.

To show that 〈Tr, Tθ〉g = 0, observe that γθ is a geodesic with unit speed, so the energy

E[0,r](γθ) =
∫ r

0
〈γ′vθ

(t), γ′vθ
(t)〉g dt =

∫ r

0
dt = r.

Thus
0 =

∂

∂θ
(E[0,r](γvθ

)) = DVE|γvθ

where V(t) = ∂
∂θ (γvθ

(t)). In particular, V(r) = ∂
∂θ (γvθ

(r)) = Tθ.
Now we use the formula for the variation of energy we derived in class:

DVE|γ = 2[(Eγ̇1 + F γ̇2)V1 + (F γ̇1 + Gγ̇2)V2]r0

− 2
∫ r

0

d

dt
(Eγ̇1 + F γ̇2)V1 +

d

dt
(F γ̇1 + Gγ̇2)V2 dt

+
∫ r

0
(Euγ̇2

1 + 2Fuγ̇1γ̇2 + Guγ̇2
2)V1 + (Evγ̇

2
1 + 2Fvγ̇1γ̇2 + Gvγ̇

2
2)V2 dt

In our case γ = γvθ
is a geodesic, so the combined contribution from the second and third

lines is 0. Moreover, γvθ
(0) ≡ p, so V(0) = 0. Thus the above expression reduces to

0 = DVE|γvθ
= 2[(Eγ̇1(r) + F γ̇2(r))V1(r) + (F γ̇1(r) + Gγ̇2(r))V2(r)]

= 2〈γ′vθ
(r),V(r)〉g

= 2〈Tr(r, θ), Tθ(r, θ)〉g.
This is what we wanted to prove. �

The following result will be helpful in the proof of the Gauss-Bonnet theorem:

Lemma. G(r, θ) = r2f(r, θ), where limr→0 f(r, θ) = 1.

Proof. Let g1 be any Riemannian metric on B(ε), and let e1, e2 be an orthonormal basis
of T0(B(ε)). Define p : (0, ε) × (0, 2π) → B(ε) by p(r, θ) = r cos θ e1 + r sin θ e2, and let
p∗(g1) = E dr2 + 2F drdθ + G dθ2.

We claim that G is of the form stated in the lemma. Indeed,

G = 〈pθ, pθ〉g1

= 〈−r sin θ e1 + r cos θ e2,−r sin θ e1 + r cos θ e2〉g1

= r2 sin2 θ 〈e1, e1〉g1 − 2r sin θ cos θ 〈e1, e2〉g1 + r2 cos2 θ 〈e2, e2〉g1 .

Now e1 and e2 were an orthonormal basis of T0B(ε), so as r → 0,

〈e1, e1〉g1 → 1 〈e1, e2〉g1 → 0 〈e2, e2〉g1 → 1,
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and the claim follows.
The statement of the lemma follows immediately, since T ∗(g) = p∗(S∗(g)). �
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