GEODESIC POLAR COORDINATES

Suppose $U \subset \mathbb{R}^2$ is an open set, and g is a Riemannian metric on U. Let p be a point of U, and let $\mathbf{v} \in T_p U = \mathbb{R}^2$ be a tangent vector. We saw previously that there is a unique geodesic $\gamma_{\mathbf{v}}$ with $\gamma_{\mathbf{v}}(0) = p$ and $\gamma'_{\mathbf{v}}(0) = \mathbf{v}$.

Lemma. $\gamma_{k\mathbf{v}}(t) = \gamma_{\mathbf{v}}(kt).$

Proof. Let $\Gamma(t) = \gamma_{\mathbf{v}}(kt)$. Inspecting the equations for a geodesic, we see that they are also satisfied by Γ . Now $\Gamma(0) = \gamma(0) = p$, and $\Gamma'(0) = k\gamma'_{\mathbf{v}}(0) = k\mathbf{v}$, so $\gamma_{k\mathbf{v}}(t) = \Gamma(t)$. \Box

We now define a map $S: B(\epsilon) \to U$ by $S(\mathbf{v}) = \gamma_{\mathbf{v}}(1)$.

Proposition. For small enough ϵ , S is a diffeomorphism onto its image.

Proof. By the Inverse Function theorem, it suffices to show that $DS|_0$ is invertible. We compute

$$DS(\mathbf{w}) = \lim_{\epsilon \to 0} (S(\epsilon \mathbf{w}) - S(0))/\epsilon$$
$$= \frac{d}{d\epsilon} (S(\epsilon \mathbf{w}))|_{\epsilon=0}$$
$$= \frac{d}{d\epsilon} (\gamma_{\epsilon \mathbf{w}}(1))$$
$$= \frac{d}{d\epsilon} (\gamma_{\mathbf{w}}(\epsilon)))|_{\epsilon=0}$$
$$= \gamma'_{\mathbf{w}}(0)$$
$$= \mathbf{w}$$

In other words, $DS|_0$ is the identity map, which is certainly invertible.

Choose a basis $\mathbf{e}_1, \mathbf{e}_2$ for $T_p U$ which is orthonormal with respect to the metric g. Let $p : (0, \epsilon) \times [0, 2\pi) \to B(\epsilon)$ be the map : $p(r, \theta) = r \cos \theta \ \mathbf{e}_1 + r \sin \theta \ \mathbf{e}_2$, and let $T : (0, \epsilon) \times [0, 2\pi) \to U$ be the composition $T = S \circ p$. In other words

$$T(r,\theta) = \gamma_{r\mathbf{v}_{\theta}}(1) = \gamma_{\mathbf{v}_{\theta}}(r)$$

where $\mathbf{v}_{\theta} = \cos \theta \, \mathbf{e}_1 + \sin \theta \, \mathbf{e}_2$. The coordinates on the image of T defined by r and θ are known as *geodesic polar coordinates*. The metric with respect to geodesic polar coordinates takes an especially simple form:

Theorem. $T^*(g) = dr^2 + G(r, \theta)d\theta^2$

Proof. $T^*(g) = Edr^2 + 2Fdrd\theta + Gd\theta^2$, where

$$E = \langle T_r, T_r \rangle_g \quad F = \langle T_r, T_\theta \rangle_g \quad G = \langle T_\theta, T_\theta \rangle_g.$$

We compute

$$T_r(r,\theta) = \frac{\partial}{\partial r} T(r,\theta)$$
$$= \frac{d}{dr} \gamma_{\mathbf{v}_{\theta}}(r)$$
$$= \gamma'_{\mathbf{v}_{\theta}}(r)$$

Now $\gamma_{\mathbf{v}_{\theta}}$ is a geodesic, so it has constant speed with respect to the metric g. Thus

$$E = \langle T_r, T_r \rangle_g = \langle \gamma'_{\mathbf{v}_{\theta}}(r), \gamma'_{\mathbf{v}_{\theta}}(r) \rangle_g = \langle \gamma'_{\mathbf{v}_{\theta}}(0), \gamma'_{\mathbf{v}_{\theta}}(0) \rangle_g = \langle \mathbf{v}_{\theta}, \mathbf{v}_{\theta} \rangle_g = 1.$$

To show that $\langle T_r, T_\theta \rangle_g = 0$, observe that γ_θ is a geodesic with unit speed, so the energy

$$\mathcal{E}_{[0,r]}(\gamma_{\theta}) = \int_0^r \langle \gamma'_{\mathbf{v}_{\theta}}(t), \gamma'_{\mathbf{v}_{\theta}}(t) \rangle_g \ dt = \int_0^r dt = r$$

Thus

$$0 = \frac{\partial}{\partial \theta} (\mathcal{E}_{[0,r]}(\gamma_{\mathbf{v}_{\theta}})) = D_{\mathbf{V}} \mathcal{E}|_{\gamma_{\mathbf{v}_{\theta}}}$$

where $\mathbf{V}(t) = \frac{\partial}{\partial \theta}(\gamma_{\mathbf{v}_{\theta}}(t))$. In particular, $\mathbf{V}(r) = \frac{\partial}{\partial \theta}(\gamma_{\mathbf{v}_{\theta}}(r)) = T_{\theta}$. Now we use the formula for the variation of energy we derived in class:

$$\begin{split} D_{\mathbf{V}}\mathcal{E}|_{\gamma} &= 2[(E\dot{\gamma}_{1}+F\dot{\gamma}_{2})\mathbf{V}_{1}+(F\dot{\gamma}_{1}+G\dot{\gamma}_{2})\mathbf{V}_{2}]_{0}^{r} \\ &- 2\int_{0}^{r}\frac{d}{dt}(E\dot{\gamma}_{1}+F\dot{\gamma}_{2})\mathbf{V}_{1}+\frac{d}{dt}(F\dot{\gamma}_{1}+G\dot{\gamma}_{2})\mathbf{V}_{2} \ dt \\ &+ \int_{0}^{r}(E_{u}\dot{\gamma}_{1}^{2}+2F_{u}\dot{\gamma}_{1}\dot{\gamma}_{2}+G_{u}\dot{\gamma}_{2}^{2})\mathbf{V}_{1}+(E_{v}\dot{\gamma}_{1}^{2}+2F_{v}\dot{\gamma}_{1}\dot{\gamma}_{2}+G_{v}\dot{\gamma}_{2}^{2})\mathbf{V}_{2} \ dt \end{split}$$

In our case $\gamma = \gamma_{\mathbf{v}_{\theta}}$ is a geodesic, so the combined contribution from the second and third lines is 0. Moreover, $\gamma_{\mathbf{v}_{\theta}}(0) \equiv p$, so $\mathbf{V}(0) = 0$. Thus the above expression reduces to

$$0 = D_{\mathbf{V}} \mathcal{E}|_{\gamma_{\mathbf{v}_{\theta}}} = 2[(E\dot{\gamma}_{1}(r) + F\dot{\gamma}_{2}(r))\mathbf{V}_{1}(r) + (F\dot{\gamma}_{1}(r) + G\dot{\gamma}_{2}(r))\mathbf{V}_{2}(r)]$$

= $2\langle\gamma'_{\mathbf{v}_{\theta}}(r), \mathbf{V}(r)\rangle_{g}$
= $2\langle T_{r}(r,\theta), T_{\theta}(r,\theta)\rangle_{g}.$

This is what we wanted to prove.

The following result will be helpful in the proof of the Gauss-Bonnet theorem:

Lemma. $G(r, \theta) = r^2 f(r, \theta)$, where $\lim_{r\to 0} f(r, \theta) = 1$.

Proof. Let g_1 be any Riemannian metric on $B(\epsilon)$, and let $\mathbf{e}_1, \mathbf{e}_2$ be an orthonormal basis of $T_0(B(\epsilon))$. Define $p: (0,\epsilon) \times (0,2\pi) \to B(\epsilon)$ by $p(r,\theta) = r \cos \theta \, \mathbf{e}_1 + r \sin \theta \, \mathbf{e}_2$, and let $p^*(g_1) = E \, dr^2 + 2F \, dr d\theta + G \, d\theta^2$.

We claim that G is of the form stated in the lemma. Indeed,

$$G = \langle p_{\theta}, p_{\theta} \rangle_{g_1}$$

= $\langle -r \sin \theta \, \mathbf{e}_1 + r \cos \theta \, \mathbf{e}_2, -r \sin \theta \, \mathbf{e}_1 + r \cos \theta \, \mathbf{e}_2 \rangle_{g_1}$
= $r^2 \sin^2 \theta \, \langle \mathbf{e}_1, \mathbf{e}_1 \rangle_{g_1} - 2r \sin \theta \cos \theta \, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle_{g_1} + r^2 \cos^2 \theta \, \langle \mathbf{e}_2, \mathbf{e}_2 \rangle_{g_1}.$

Now \mathbf{e}_1 and \mathbf{e}_2 were an orthonormal basis of $T_0B(\epsilon)$, so as $r \to 0$,

$$\langle \mathbf{e}_1, \mathbf{e}_1 \rangle_{g_1} \to 1 \qquad \langle \mathbf{e}_1, \mathbf{e}_2 \rangle_{g_1} \to 0 \qquad \langle \mathbf{e}_2, \mathbf{e}_2 \rangle_{g_1} \to 1$$

and the claim follows. The statement of the lemma follows immediately, since $T^*(g) = p^*(S^*(g))$. \Box J.Rasmussen@dpmms.cam.ac.uk