GEODESIC POLAR COORDINATES

Suppose $U \subset \mathbb{R}^{2}$ is an open set, and g is a Riemannian metric on U. Let p be a point of U, and let $\mathbf{v} \in T_{p} U=\mathbb{R}^{2}$ be a tangent vector. We saw previously that there is a unique geodesic $\gamma_{\mathbf{v}}$ with $\gamma_{\mathbf{v}}(0)=p$ and $\gamma_{\mathbf{v}}^{\prime}(0)=\mathbf{v}$.

Lemma. $\gamma_{k \mathbf{v}}(t)=\gamma_{\mathbf{v}}(k t)$.
Proof. Let $\Gamma(t)=\gamma_{\mathbf{v}}(k t)$. Inspecting the equations for a geodesic, we see that they are also satisfied by Γ. Now $\Gamma(0)=\gamma(0)=p$, and $\Gamma^{\prime}(0)=k \gamma_{\mathbf{v}}^{\prime}(0)=k \mathbf{v}$, so $\gamma_{k \mathbf{v}}(t)=\Gamma(t)$.

We now define a map $S: B(\epsilon) \rightarrow U$ by $S(\mathbf{v})=\gamma_{\mathbf{v}}(1)$.
Proposition. For small enough ϵ, S is a diffeomorphism onto its image.
Proof. By the Inverse Function theorem, it suffices to show that $\left.D S\right|_{0}$ is invertible. We compute

$$
\begin{aligned}
D S(\mathbf{w}) & =\lim _{\epsilon \rightarrow 0}(S(\epsilon \mathbf{w})-S(0)) / \epsilon \\
& =\left.\frac{d}{d \epsilon}(S(\epsilon \mathbf{w}))\right|_{\epsilon=0} \\
& =\frac{d}{d \epsilon}\left(\gamma_{\epsilon \mathbf{w}}(1)\right) \\
& \left.=\frac{d}{d \epsilon}\left(\gamma_{\mathbf{w}}(\epsilon)\right)\right)\left.\right|_{\epsilon=0} \\
& =\gamma_{\mathbf{w}}^{\prime}(0) \\
& =\mathbf{w}
\end{aligned}
$$

In other words, $\left.D S\right|_{0}$ is the identity map, which is certainly invertible.
Choose a basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ for $T_{p} U$ which is orthonormal with respect to the metric g. Let $p:(0, \epsilon) \times[0,2 \pi) \rightarrow B(\epsilon)$ be the map : $p(r, \theta)=r \cos \theta \mathbf{e}_{1}+r \sin \theta \mathbf{e}_{2}$, and let $T:$ $(0, \epsilon) \times[0,2 \pi) \rightarrow U$ be the composition $T=S \circ p$. In other words

$$
T(r, \theta)=\gamma_{r \mathbf{v}_{\theta}}(1)=\gamma_{\mathbf{v}_{\theta}}(r)
$$

where $\mathbf{v}_{\theta}=\cos \theta \mathbf{e}_{1}+\sin \theta \mathbf{e}_{2}$. The coordinates on the image of T defined by r and θ are known as geodesic polar coordinates. The metric with respect to geodesic polar coordinates takes an especially simple form:

Theorem. $T^{*}(g)=d r^{2}+G(r, \theta) d \theta^{2}$
Proof. $T^{*}(g)=E d r^{2}+2 F d r d \theta+G d \theta^{2}$, where

$$
\left.E=\left\langle T_{r}, T_{r}\right\rangle_{g} \quad F=\underset{1}{\left\langle T_{r}\right.}, T_{\theta}\right\rangle_{g} \quad G=\left\langle T_{\theta}, T_{\theta}\right\rangle_{g}
$$

We compute

$$
\begin{aligned}
T_{r}(r, \theta) & =\frac{\partial}{\partial r} T(r, \theta) \\
& =\frac{d}{d r} \gamma_{\mathbf{v}_{\theta}}(r) \\
& =\gamma_{\mathbf{v} \theta}^{\prime}(r)
\end{aligned}
$$

Now $\gamma_{\mathbf{v}_{\theta}}$ is a geodesic, so it has constant speed with respect to the metric g. Thus

$$
E=\left\langle T_{r}, T_{r}\right\rangle_{g}=\left\langle\gamma_{\mathbf{v}_{\theta}}^{\prime}(r), \gamma_{\mathbf{v}_{\theta}}^{\prime}(r)\right\rangle_{g}=\left\langle\gamma_{\mathbf{v}_{\theta}}^{\prime}(0), \gamma_{\mathbf{v}_{\theta}}^{\prime}(0)\right\rangle_{g}=\left\langle\mathbf{v}_{\theta}, \mathbf{v}_{\theta}\right\rangle_{g}=1 .
$$

To show that $\left\langle T_{r}, T_{\theta}\right\rangle_{g}=0$, observe that γ_{θ} is a geodesic with unit speed, so the energy

$$
\mathcal{E}_{[0, r]}\left(\gamma_{\theta}\right)=\int_{0}^{r}\left\langle\gamma_{\mathbf{v}_{\theta}}^{\prime}(t), \gamma_{\mathbf{v}_{\theta}}^{\prime}(t)\right\rangle_{g} d t=\int_{0}^{r} d t=r .
$$

Thus

$$
0=\frac{\partial}{\partial \theta}\left(\mathcal{E}_{[0, r]}\left(\gamma_{\mathbf{v}_{\theta}}\right)\right)=\left.D_{\mathbf{V}} \mathcal{E}\right|_{\gamma_{\mathbf{v}_{\theta}}}
$$

where $\mathbf{V}(t)=\frac{\partial}{\partial \theta}\left(\gamma_{\mathbf{v}_{\theta}}(t)\right)$. In particular, $\mathbf{V}(r)=\frac{\partial}{\partial \theta}\left(\gamma_{\mathbf{v}_{\theta}}(r)\right)=T_{\theta}$.
Now we use the formula for the variation of energy we derived in class:

$$
\begin{aligned}
\left.D_{\mathbf{V}} \mathcal{E}\right|_{\gamma} & =2\left[\left(E \dot{\gamma}_{1}+F \dot{\gamma}_{2}\right) \mathbf{V}_{1}+\left(F \dot{\gamma}_{1}+G \dot{\gamma}_{2}\right) \mathbf{V}_{2}\right]_{0}^{r} \\
& -2 \int_{0}^{r} \frac{d}{d t}\left(E \dot{\gamma}_{1}+F \dot{\gamma}_{2}\right) \mathbf{V}_{1}+\frac{d}{d t}\left(F \dot{\gamma}_{1}+G \dot{\gamma}_{2}\right) \mathbf{V}_{2} d t \\
& +\int_{0}^{r}\left(E_{u} \dot{\gamma}_{1}^{2}+2 F_{u} \dot{\gamma}_{1} \dot{\gamma}_{2}+G_{u} \dot{\gamma}_{2}^{2}\right) \mathbf{V}_{1}+\left(E_{v} \dot{\gamma}_{1}^{2}+2 F_{v} \dot{\gamma}_{1} \dot{\gamma}_{2}+G_{v} \dot{\gamma}_{2}^{2}\right) \mathbf{V}_{2} d t
\end{aligned}
$$

In our case $\gamma=\gamma_{\mathbf{v}_{\theta}}$ is a geodesic, so the combined contribution from the second and third lines is 0 . Moreover, $\gamma_{\mathbf{v}_{\theta}}(0) \equiv p$, so $\mathbf{V}(0)=0$. Thus the above expression reduces to

$$
\begin{aligned}
0=\left.D_{\mathbf{V}} \mathcal{E}\right|_{\gamma_{\mathbf{v}_{\theta}}} & =2\left[\left(E \dot{\gamma}_{1}(r)+F \dot{\gamma}_{2}(r)\right) \mathbf{V}_{1}(r)+\left(F \dot{\gamma}_{1}(r)+G \dot{\gamma}_{2}(r)\right) \mathbf{V}_{2}(r)\right] \\
& =2\left\langle\gamma_{\mathbf{v}_{\boldsymbol{v}}}^{\prime}(r), \mathbf{V}(r)\right\rangle_{g} \\
& =2\left\langle T_{r}(r, \theta), T_{\theta}(r, \theta)\right\rangle_{g} .
\end{aligned}
$$

This is what we wanted to prove.
The following result will be helpful in the proof of the Gauss-Bonnet theorem:
Lemma. $G(r, \theta)=r^{2} f(r, \theta)$, where $\lim _{r \rightarrow 0} f(r, \theta)=1$.
Proof. Let g_{1} be any Riemannian metric on $B(\epsilon)$, and let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be an orthonormal basis of $T_{0}(B(\epsilon))$. Define $p:(0, \epsilon) \times(0,2 \pi) \rightarrow B(\epsilon)$ by $p(r, \theta)=r \cos \theta \mathbf{e}_{1}+r \sin \theta \mathbf{e}_{2}$, and let $p^{*}\left(g_{1}\right)=E d r^{2}+2 F d r d \theta+G d \theta^{2}$.

We claim that G is of the form stated in the lemma. Indeed,

$$
\begin{aligned}
G & =\left\langle p_{\theta}, p_{\theta}\right\rangle_{g_{1}} \\
& =\left\langle-r \sin \theta \mathbf{e}_{1}+r \cos \theta \mathbf{e}_{2},-r \sin \theta \mathbf{e}_{1}+r \cos \theta \mathbf{e}_{2}\right\rangle_{g_{1}} \\
& =r^{2} \sin ^{2} \theta\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle_{g_{1}}-2 r \sin \theta \cos \theta\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle_{g_{1}}+r^{2} \cos ^{2} \theta\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle_{g_{1}} .
\end{aligned}
$$

Now \mathbf{e}_{1} and \mathbf{e}_{2} were an orthonormal basis of $T_{0} B(\epsilon)$, so as $r \rightarrow 0$,

$$
\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle_{g_{1}} \rightarrow 1 \quad\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle_{g_{1}} \rightarrow 0 \quad\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle_{g_{1}} \rightarrow 1,
$$

and the claim follows.
The statement of the lemma follows immediately, since $T^{*}(g)=p^{*}\left(S^{*}(g)\right)$.
J.Rasmussen@dpmms.cam.ac.uk

