IB GEOMETRY LENT 2012

GEODESIC POLAR COORDINATES

Suppose U C R? is an open set, and ¢ is a Riemannian metric on U. Let p be a point
of U, and let v € T,U = R? be a tangent vector. We saw previously that there is a unique
geodesic 7y with 14 (0) = p and 7., (0) = v.

Lemma. 7y (t) = v (kt).

Proof. Let T'(t) = v (kt). Inspecting the equations for a geodesic, we see that they are
also satisfied by I'. Now I'(0) = v(0) = p, and I'(0) = k74, (0) = kv, so 1y (t) =T'(¢). O

We now define a map S : B(e) — U by S(v) = 1(1).
Proposition. For small enough €, S is a diffeomorphism onto its image.

Proof. By the Inverse Function theorem, it suffices to show that DS|y is invertible. We
compute

DS(w) = lim(S(ew) — S(0))/e

e—0

d

= 2 (S(ew))le=o
d

= —(Yew(1))

de
= 2 (e
= 7w(0)

In other words, DS|y is the identity map, which is certainly invertible. O

Choose a basis ey, ex for T,U which is orthonormal with respect to the metric g. Let
p : (0,e) x [0,2r) — B(e) be the map : p(r,0) = rcosf e; + rsinf ey, and let T :
(0,€) x [0,27) — U be the composition "= S o p. In other words

T(T’ 9) = ’Yrve(l) = Vvg ("")

where vy = cosf e 4+ sinf es. The coordinates on the image of T" defined by r and 6 are
known as geodesic polar coordinates. The metric with respect to geodesic polar coordinates
takes an especially simple form:

Theorem. T*(g) = dr? + G(r, 0)do?
Proof. T*(g) = Edr? + 2Fdrdf + Gdf?, where

E=(T.T)), F=(T.,Tp)y G =Ty, Ty,
1
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We compute

L,(r,0) = 2-7(r,0)

d
= %')’Ve (r)
= Yo, (7)
Now ~y, is a geodesic, so it has constant speed with respect to the metric g. Thus

E = (T}, Tr)g = (1 (1), 1, (1))g = (14,(0), 7, (0))g = (vo, vo)g = 1.
To show that (T, Ty), = 0, observe that 4 is a geodesic with unit speed, so the energy

o1 (v0) = /0 r(’y’va(t),%g(t»g dt = /0 Cdt =1

Thus 5
= 59 E071(w)) = DvEly,
where V(t) = %(fyve (t)). In particular, V(r) = %(’yve(r)) =Tp.
Now we use the formula for the variation of energy we derived in class:

0

Dv&|y = 2[(Ev + Fy2) Vi + (Fy1 + G¥2) Val

d . . d, .. }
- 2/ E(E71 + Fy2)Vi1+ —(F4 + Gi2)Va dt
o dt dt

«
+ / (BEuAT 4 2Fuinie + Gu¥3) Vi + (Bt + 2F, 192 + Go¥3) Va dt
0

In our case v = 7y, is a geodesic, so the combined contribution from the second and third
lines is 0. Moreover, 7y, (0) = p, so V(0) = 0. Thus the above expression reduces to

0= Dvé&ly, = 2[(En(r) + Fi2(r)) Vi(r) + (F(r) + Gia(r)) Va(r)]
= 2(7, (1), V(r))g
= 2T (r,0),Ty(r,0)),.
This is what we wanted to prove. O
The following result will be helpful in the proof of the Gauss-Bonnet theorem:
Lemma. G(r,0) = r2f(r,0), where lim,_ f(r,0) = 1.

Proof. Let g1 be any Riemannian metric on B(e), and let ej, e; be an orthonormal basis
of To(B(e€)). Define p : (0,€) x (0,27) — B(e) by p(r,0) = rcosfe; + rsinfeq, and let
p*(g1) = Edr? + 2F drdf + G d§>.

We claim that G is of the form stated in the lemma. Indeed,

G: <p97p9>g1
= (—rsinfe; +rcosfey, —rsinfe; + 7“(:050e2>g1

=r%sin? 0 (e1, e1)y, — 2rsinfcosf (e1,ea),, + r’cos®f (ez,ea)y,.
Now e; and ey were an orthonormal basis of Ty B(e), so as r — 0,

<elvel>g1 —1 <e1’62>g1 —0 <eQ’eQ>gl — 1,



and the claim follows.
The statement of the lemma follows immediately, since T%(g) = p*(5*(g)). O
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