
ALGEBRAIC TOPOLOGY (PART III) MICHELMAS 2009

EXAMPLE SHEET 4

PART A

1. Suppose π : E → B is a locally trivial fibration, and that f : X → B. Describe
transition functions for f∗(E) in terms of transition functions for E.

2. If γ : Sn−1 → SO(k), let Vγ be the oriented k-dimensional vector bundle over Sn with
transition function given by γ. Show that if γ1 ∼ γ2, then Vγ1 ' Vγ2 . (You may assume
that f1 ∼ f2 implies f∗

1 (V ) ' f∗
2 (V ).)

3. If k is even, show there is an orientation-reversing isomorphism between Vγ and V−γ .

4. Let π : En → S2 be the bundle with fibre S1 whose transition function is given by a
map S1 → SO(2) of degree n. For this bundle, describe/compute

(a) the Leray-Serre spectral sequence on homology and cohomology.

(b) the Gysin sequence.

(c) the Thom class and the Euler class.

Show that E1 is S3 and that E2 is RP3. More generally, show that if m divides n there
is a covering map Em → En. Conclude that the universal cover of En is S3.

5. Use the Euler class to define a homomorphism πn−1(SO(n)) → Z. Conclude that
πn−1(SO(n)) is infinite for even n.

6. If V1 and V2 are two vector bundles over B, then V1 × V2 is a bundle over B ×B. The
Whitney sum V1⊕V2 is defined to be ∆∗(V1×V2), where ∆ : B → B×B is the diagonal
map. Show that e(V1 ⊕ V2) = e(V1) ∪ e(V2).

7. Suppose M is a 4-manifold, and that S ⊂ M is an embedded sphere with [S] · [S] = 1.
Show that M = M ′#CP2 for some M ′.

8. Show that up to isomorphism, there are precisely two 3-dimensional real vector bundles
over S2. Use the Leray-Serre spectral sequence to compute the cohomology groups of
their associated sphere bundles. Show directly that these sphere bundles are homeo-
morphic to S2 × S2 and CP2#CP2. Conclude that the ring structure on cohomology
cannot be deduced from the spectral sequence.
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PART B

1. Show that real 1-dimensional vector bundles over B are in 1-1 correspondence with
elements of H1(B; Z/2).

2. (For those who know something about Lie groups.) Suppose G is a Lie group and H is
a connected subgroup of G. Prove there is a fibration G → G/H with fibre H.

3. Show that SO(3) is homeomorphic to RP3, and that SO(4) is homeomorphic to S3 ×
S3/±1, where the ±1 acts diagonally on the two factors. (What does this have to do
with the Dynkin diagram?) Relate these homeomorphisms to the fibrations SO(n) → Sn

provided by the previous problem.

4. Show that SU(2) is homeomorphic to S3. Prove inductively that H∗(SU(n)) is an
exterior algebra on generators of dimensions 3, 5, 7, . . . 2n − 1. (Is SU(n) homotopy
equivalent to a product of spheres?)

5. Classify 3-dimensional real vector bundles over S4. Show that if V is such a bundle
which splits as a Whitney sum (V = V1 ⊕ V2), then V is trivial. Conclude that there
exist bundles with zero Euler class which do not admit any nonvanishing section.

6. Show that π3(SO(4)) ' Z2. Conclude that there are infinitely many different bundles
M → S4 with fibre S3 and H∗(M) ' H∗(S7). (The total spaces of these bundles are all
homeomorphic to S7, but not all of them are diffeomorphic to it.)

7. Show that the Euler class of an odd dimensional real vector bundle is V → B is a
2-torsion element of H∗(B).

8. The complex Grassmann variety G(k, n) is defined to be the set of k-dimensional sub-
spaces of Cn. Show that G(k, n) ' U(n)/(U(k) × U(n − k)). Compute its Poincare
polynomial.

9. The variety of complete flags in Cn (written Fln(C) ) is defined to be the set of sequences

0 = V0 ⊂ V1 ⊂ . . . Vn−1 ⊂ Vn = Cn

where each Vi is a complex linear subspace of dimension i. Show that there is fibration
Fln(C) → CPn−1 with fibre Fln−1(C). Compute the Poincare polynomial of Fln(C).
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