
ALGEBRAIC TOPOLOGY (PART III) MICHELMAS 2009

EXAMPLE SHEET 3

PART A

1. If X is a finite cell complex with H0(X) = Z,H1(X) = Z/2,H2(X) = Z/4, and H∗(X) =
0 for ∗ > 2, compute H∗(X;G) for G = Z/2, Z/4 and H∗(X;G) for G = Z, Z/2, Z/4.

2. For X as above, compute H∗(X ×X).

3. Suppose that M is a connected n-manifold and that ΣkM (the k-fold suspension) is an
n + k-manifold for some k > 0. Show that H∗(M) ' H∗(Sn).

4. If M1 and M2 are closed connected oriented n-manifolds, M1#M2 is the manifold ob-
tained by removing small n-balls from M1 and M2 and identifying their boundaries by a
homeomorphism which is orientation reversing with respect to the induced orientations
on the boundary spheres.

(a) Show that there is an orientation on M1#M2 which is compatible with the orien-
tations on M1 and M2, in the sense that there are natural maps pi : M1#M2 → Mi

with pi∗([M1#M2]) = [Mi].

(b) Show that H∗(M1#M2) ' H∗(M1)⊕H∗(M2) for ∗ 6= 0, n.

(c) Describe the ring structure on H∗(M1#M2) in terms of the ring structure on
H∗(Mi).

5. Let Sg be the orientable surface of genus g. Show that if g < h, then every map Sg → Sh

has degree 0.

6. If M is a simply connected 4-manifold, show that χ(M) ≥ 2.

7. Let CP2 have the orientation coming from its usual structure as a complex manifold,
and let CP2 be the same manifold with the opposite orientation. Show that no two of
S2 × S2, CP2#CP2, and CP2#CP2 are homotopy equivalent.

8. Show that any map f : CP2n → CP2n has a fixed point. Construct a map f : CP2n+1 →
CP2n+1 which has no fixed points.
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PART B

1. Suppose X and Y are finite cell complexes. A map f : X → Y is called cellular if
f(X(n)) ⊂ Y(n) for all n.

(a) Show that any f : X → Y is homotopic to a cellular map. (Hint: Induct on the
dimension of X).

(b) If f is cellular, there is a well-defined map f∗ : H∗(X(n), X(n−1)) → H∗(Y(n), Y(n−1)).
Show that f∗ defines a chain map Ccell

∗ (X) → Ccell
∗ (Y ) and that the induced map

on cellular homology agrees with f∗ : H∗(X) → H∗(Y ).
(c) Let π : X × Y → X be the projection and j : X → X × Y be the map given by

j(x) = (x, p) for a fixed point p ∈ Y . Use the natural cell structure on X × Y to
compute π∗([x]⊗ [y]) and π∗([a]), as well as j∗([x]) and j∗([a]⊗ [b]).

(d) Using the results of the previous part, show that 1 ∪ a = a for all a ∈ H∗(X).

2. Define f : CP1×CP1 → CP2 by f([z0 : z1], [w0 : w1]) = [z1w0 +z0w1 : z0w0; z1w1]. Show
that f is a 2-1 covering map away from the diagonal. Determine the maps f∗ and f∗.
Let x be a generator of H2(CP2). Use your answer to the previous question to compute
x ∪ x.

3. If M is an orientable 3-manifold, show that M can be decomposed as Hg ∪φ Hg, where
Hg denotes a handlebody of genus g, (i.e. the region inside the standard embedding
of Sg in R3) and φ : Sg → Sg is an orientation reversing homeomorphism. (You may
assume M has a handle decomposition.)

4. Use the Borsuk-Ulam theorem to prove the “Ham Sandwich Theorem”: if A1, . . . , An

are bounded measurable sets in Rn, there is a single hyperplane in Rn which divides
each Ai into two equal volumes.

5. Show that the Hopf invariant is additive: if f1, f2 ∈ π4n−1(S2n), then H(f1 + f2) =
H(f1) + H(f2). Conclude that the groups π3(S2) and π7(S4) are infinite.

6. Show that an orientable (4n+2)-manifold has even Euler characteristic. (Hint: consider
the intersection pairing on H2n+1(M).)

7. Let M be an orientable 4n-manifold. Show that the intersection pairing defines a non-
degenerate quadratic form on H2n(M ; R). Recall that nondegenerate quadratic forms
on real vector spaces are classified by their signature: if the form is represented by a
symmetric matrix M , its signature is the number of positive eigenvalues of M minus the
number of negative eigenvalues. Show that if M bounds an orientable (4n+1)-manifold,
then the signature of the associated quadratic form is 0. Conclude that CP2#CP2 does
not bound an orientable 5-manifold.
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