EXAMPLE SHEET 2

- 1. Let Y be an orientable 3-manifold with boundary, and let m be the rank of $H_1(\partial Y)$. Use Poincare duality and the long exact sequence of the pair $(Y, \partial Y)$ to show that the kernel of the map $H_1(\partial Y) \to H_1(Y)$ has rank m/2.
- 2. Suppose K is a null-homologous knot in a three-manifold Y. Show that $H_1(Y K) \cong H_1(Y) \oplus \mathbb{Z}$.
- 3. Suppose C_* is a finitely generated chain complex defined over the ring $\mathbb{Q}[U]$, where U has homological degree -2.
 - (a) Consider C_* as an (infinitely generated) complex defined over \mathbb{Q} . Show that the dual (over \mathbb{Q}) of C_* is C^+ .
 - (b) Show that $H_*(C)$ is a direct sum of copies of $\mathbb{Q}[U]$ and $\mathbb{Q}[U]/(U^{n_i})$. (Use the structure theorem for modules over a PID.)
 - (c) Give an example of a chain complex C with homology $\mathbb{Q}[U]/(U^n)$. Compute the homology of the chain complexes \widehat{C} , C^- , C^+ , and C^{∞} . Write out the long exact sequences discussed in class relating these homology groups.
 - (d) Explain how this is formally similar to the homology of the Hopf bundle over \mathbb{CP}^n .
- 4. Let C be the complex defined over $\mathbb{Q}[T,T^{-1}]$ and generated by two elements x and y, with dx = (T-1)y and dy = 0. Compute the homology of C as a $\mathbb{Q}[T]$ module. Let $M_a = \mathbb{Q}[T,T^{-1}]/(T-a)$. Compute the homology of the complex $C \otimes_{\mathbb{Q}[T]} M_a$ both directly and by using the universal coefficient theorem. (If you've only seen the universal coefficient theorem for complexes defined over \mathbb{Z} , note that $\mathbb{Q}[T,T^{-1}]$, like \mathbb{Z} , is a PID. The statement works (with obvious changes) over any PID.)
- 5. Let $K \subset Y$ be a knot, and let $K(\lambda)$ be the result of integer surgery on K along a longitude λ , and let m be a meridian of K, pushed out far enough so that it is on the boundary of the solid torus we remove to do the surgery. Thus we can view m as a curve on $K(\lambda)$.
 - (a) Let $K' = S^1 \times 0 \subset S^1 \times D^2$ be the core of the new torus we glued in to make K(n). Show that m is isotopic to K'. Explain why this is not the case if we replace $K(\lambda)$ with an arbitrary, nonintegral surgery $K(\alpha)$.

- (b) Let m' and ℓ' be the meridian and longitude of m in K. (ℓ' is the boundary of a little disk intersecting K.) If we identify $K(\lambda) m$ with Y K in the obvious way, show that $m' = \lambda$, $\ell' = -m$.
- (c) Now suppose that K is null-homologous. If we do n-surgery on K, followed by p/q surgery on m (with respect to the basis m', ℓ'), show that the resulting three-manifold is $K_{n-\frac{q}{2}}$.
- 6. The result of p/q surgery on the unknot is called the lens space L(p, -q).
 - (a) Show that $L(p, -q) = S^1 \times D^2 \cup_f S^1 \times D^2$, where the diffeomorphism f takes ∂D^2 in the second solid torus to $p[S^1] + q\partial[D^2]$ on the boundary of the first torus.
 - (b) Compute $\pi_1(L(p,q))$ and $H_*(L(p,-q))$. Show that the universal cover of L(p,-q) is S^3 . (Unless p/q = 0/q. What happens then?)
 - (c) Draw a Heegaard diagram of L(p-q). What is $\widehat{HF}(L(p,-q))$?
 - (d) Show that the manifold obtained by surgery on a chain of spheres (as in Figure 2) is a lens space. What are p and q for the chain shown in the figure?
- 7. Write down the complex $CF^-(H, z_i) \otimes (\mathbb{Z}/2)$ for the Heegaard splitting H shown in Figure 1 and for i = 1, 2, 3. In each case, check that $d^2 = 0$ and that the homology is $HF^-(S^3)$.
- 8. Assuming the existence of handle decompositions for manifolds, give a proof of Poincare duality, as follows.
 - (a) Suppose the manifold W^m is built out of n_i m-dimensional i-handles ($1 \le i \le m$.) Show that W is homotopy equivalent to a CW complex built out of n_i m-dimensional cells.
 - (b) If $X = D^i \times D^{m-i}$ is an *i*-handle, let $S_A(X) = \partial D^i \times 0$ and $S_B(X) = 0 \times \partial D^{m-i}$ be its *attaching* and *belt* spheres. Suppose X_i and X_{i+1} are an *i*-handle and an i+1-handle, and let Y_i and Y_{i+1} are the associated cells in the CW decomposition. Show that in the cellular chain complex, the coefficient of Y_i in dY_{i+1} is given by $\pm S_A(X_{i+1}) \cdot S_B(X_i)$. (Hint: how do we compute the degree of a map $S^n \to S^n$?)
 - (c) By reversing the roles of ∂_1 and ∂_2 , show that W has a handle decomposition with n_{m-i} i-handles.
 - (d) Show that the complex associated to this decomposition is the dual of the original cellular complex.
 - (e) Explain how the same principle can be used to prove Poincare duality for manifolds with boundary.
- 9. More about the Kummer surface

- (a) Let $\iota: \mathbb{R}^2 \to \mathbb{R}^2$ be the involution which sends x to -x. Show that ι descends to a map $T^2 \to T^2$. How many fixed points does this map have? Show that $T^2/(\iota(x) \sim x)$ is homeomorphic to S^2 .
- (b) Show that the Kummer surface (as defined in class) has a map to S^2 whose generic fibre is T^2 .
- (c) Show that there are four special fibres, each of which is consists of 5 spheres $F_1, F_2, \ldots F_5$ of self intersection -2, and that $F_i \cdot F_j = 1$ if i = 1, j > 1 and is 0 if i, j > 1. Express the homology class of the generic fibre in terms of these spheres.
- (d) Use this to compute explicitly compute the intersection form on the Kummer surface.

J.Rasmussen@dpmms.cam.ac.uk