Notes on Example Sheet 1

5. $i: S^{1} \times D^{2} \rightarrow S^{3}$ is an embedding. Let $U_{1}=\operatorname{int} i\left(S^{1} \times D_{1-\epsilon}^{2}\right)$ and let $U_{2}=$ $S^{3}-i\left(S^{1} \times D_{1-2 \epsilon}\right)$. Note that U_{2} deformation retracts to $S^{3}-\operatorname{int} i\left(S^{1} \times D\right)=S^{3}-U$ We'd like to show that the boundary map

$$
\partial: H_{3}\left(S^{3}\right) \rightarrow H_{2}\left(U_{1} \cap U_{2}\right) \simeq H_{2}\left(T^{2}\right)
$$

appearing in the Mayer-Vietoris sequence is an isomorphism. To do this consider the map of pairs $I:\left(S^{3}, \emptyset\right) \rightarrow\left(S^{3}, S^{3}-U\right)$. By excision,

$$
H_{3}\left(S^{3}, S^{3}-U\right) \simeq H_{3}\left(S^{1} \times D^{2}, T^{2}\right) \simeq \mathbb{Z}
$$

We claim that $i_{*}: H_{3}\left(S^{3}\right) \rightarrow H_{3}\left(S^{3}, S^{3}-U\right)$ is an isomorphism. To see this, consider the further inclusion $j:\left(S^{3}, S^{3}-U\right) \rightarrow\left(S^{3}, S^{3}-p\right)$. The composition $(j \circ i)_{*}$ is an isomorphism, so i_{*} must be an isomorphism as well. We have a commutative diagram of Mayer-Vietoris sequences:

(This diagram commutes because we can set up a corresponding commuting diagram of SES's of chain complexes). The maps i_{*} and 1 are isomorphisms, so it suffices to show ∂_{U} is an isomorphism as well. Now ∂_{U} is the same map, independent of the choice of embedding i. So to compute ∂_{U}, we may as well use a nice choice of i - for example, the one from problem 6 , where we wrote $S^{3}=S^{1} \times D^{2} \cup_{T}^{2} D^{2} \times S^{1}$. In this case $U_{2} \simeq S^{1} \times D^{2}$, and it is easy to see that ∂ is an isomorphism.
12. For the last part, we first prove

Lemma 1. If C is a free finitely generated chain complex over \mathbb{Z} and $H(C)=0$, then $1_{C} \sim 0$.

Proof. We must construct $H: C_{*} \rightarrow C_{*+1}$ with $d H(c)+H d(c)=c$. Let $A_{k}=$ $\operatorname{ker} d_{k} . \quad C_{k} / A_{k} \simeq \operatorname{im} d_{k} \subset C_{k-1}$ is free, so we can write $C_{k}=A_{k} \oplus B_{k}$. Since $H_{*}(C)=0, d_{k}: B_{k} \rightarrow A_{k}$ is an isomorphism. We define $\left.H\right|_{A_{k}}$ to be the inverse of this map, and $\left.H\right|_{B_{k}}$ to be the 0 map.

Now given $H(M(f))=0$, construct $H: M(f) \rightarrow M(f)$ as above. In matrix form, write

$$
H=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

so $\beta: C^{\prime} \rightarrow C$. Expanding the relation $H d+d H=1_{M}$ in matrix form, we see that β is a chain map and that $\beta \circ f \sim 1_{C}$ and $f \circ \beta \sim 1_{C}^{\prime}$. (The homotopies are given by α and γ.)

