Geometry of the Euclidean Plane

Lines

- A line is the shortest path between two points.
- Plane separation: the complement of a line is a disconnected topogical space.
- There is a unique line passing through two distinct points.
- Two distinct lines intersect in at most one point.
- Given a point \mathbf{x} and a line L not containing \mathbf{x} , there is a unique line passing through \mathbf{x} and parallel to L.
- Given a point \mathbf{x} and a line L not containing \mathbf{x} , there is a unique line passing through \mathbf{x} and perpendicular to L.

Circles

- A line and a circle intersect in at most two points.
- Two distinct circles intersect in at most two points.
- The perimeter of a circle of radius R is $2\pi R$.

Isometries

- If F_1 and F_2 are orthogonal frames, there is a unique isometry taking F_1 to F_2 .
- An isometry which fixes three non-colinear points is the identity.
- Any isometry can be written as the composition of ≤ 3 reflections.

Triangles

- The sum of the interior angles in a triangle is π .
- If A_1, A_2, A_3 and A'_1, A'_2, A'_3 are two sets of non-colinear points with $d(A_i, A_j) = d(A'_i, A'_j)$, then there is a unique $\phi \in \text{Isom}(\mathbb{R}^2)$ with $\phi(A_i) = A'_i$.
- If A_1, A_2, A_3 and A'_1, A'_2, A'_3 are two sets of non-colinear points with $d(A_1, A_j) = d(A'_1, A'_j)$ and $\angle A_2 A_1 A_3 = \angle A'_2 A'_1 A'_3$ then there is a unique $\phi \in \text{Isom}(\mathbb{R}^2)$ with $\phi(A_i) = A'_i$.

Trigonometry

If $\triangle ABC$ has sides a, b, c and opposite angles α, β, γ , then

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} \qquad c^2 = a^2 + b^2 - 2ab\cos \gamma.$$

 ${\it J. Rasmussen@dpmms.cam.ac.uk}$

1