Lemma: If $W: M_{0} \rightarrow M_{1}$ is a cobordism, there is a Morse function $f: W \rightarrow[0,1]$ such that $f^{-1}(0)=M_{0}, f^{-1}(1)=M_{1}$.
Proof: We first choose an open cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{k}, U_{1}^{\prime}, \ldots, U_{l}^{\prime}, V\right\}$ of W satisfying the following conditions:

1. The U_{i} 's cover M_{0} and the U_{i} 's cover M_{1}.
2. $U_{i} \cap U_{j}^{\prime}=\emptyset$ for all i, j.
3. Each U_{i} is the domain of a chart $\psi_{i}: U_{i} \rightarrow \mathbb{R}^{n} \times R^{\geq 0}$.
4. Each U_{i}^{\prime} is the domain of a chart $\psi_{i}^{\prime}: U_{i} \rightarrow \mathbb{R}^{n} \times R^{\geq 0}$.
5. $\bar{V} \cap \partial W=\emptyset$.

Let $\lambda:[0, \infty) \rightarrow \mathbb{R}$ be a smooth function which satisfies $\lambda(x)=x$ for $x \leq 1 / 4$ and $\lambda(x)=1 / 2$ for $x \geq 1 / 2$. Define $f_{0}, f_{1}: \mathbb{R}^{n} \times \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}$ by $f_{0}(\mathbf{x})=\lambda\left(x_{n+1}\right)$, and $f_{1}(\mathbf{x})=1-\lambda\left(x_{n+1}\right)$.

Now let $g_{i}=f_{0} \circ \psi_{i}$ and $g_{i}^{\prime}=f_{1} \circ \psi_{i}^{\prime}$. Let $g_{V}: V \rightarrow \mathbb{R}$ be the constant function with value $1 / 2$. Choose a partition of unity $\left\{\phi_{1}, \ldots, \phi_{k}, \phi_{1}^{\prime}, \ldots, \phi_{l}^{\prime}, \phi_{V}\right\}$ subordinate to \mathcal{U}, and let

$$
g=\phi_{V} g_{V}+\sum_{i=1}^{k} \phi_{i} g_{i}+\sum_{i=1}^{l} \phi_{i}^{\prime} g_{i}^{\prime}
$$

By construction, g is a weighted average of functions whose image is contained in $[0,1]$, so its image is contained in $[0,1]$.

Suppose $g(p)=0$. Then every term in the sum defining it must be 0 . Now either $\phi_{i}(p) \neq 0$ for some i, or $\phi_{i}^{\prime}(p) \neq 0$, or $\phi_{V}(p) \neq 0$. Since f_{1} and g_{V} are both strictly positive, the latter two cases are impossible. Thus $\phi_{i}(p) \neq 0$. It follows that $g_{i}(p)=0$, which implies $p \in M_{0}$. Thus $g^{-1}(0)=M_{0}$. A similar argument shows that $g^{-1}(1)=M_{1}$.

Suppose $p \in M_{1}$, and $\mathbf{v} \in T_{p}(W)$ points into W. Then $d g_{i}^{\prime}(\mathbf{v})<0$ whenever $p \in U_{i}^{\prime}$. Note that $\sum_{i=1}^{l} \phi_{i}^{\prime}(q) \equiv 1$ for all q in an open neighborhood of p, so $\left.\sum_{i=1}^{l} d \phi_{i}^{\prime}\right|_{p}=0$. Thus

$$
\begin{aligned}
d g(v) & =\sum_{i=1}^{l}\left(\phi_{i}^{\prime}(p) d g_{i}^{\prime}(\mathbf{v})+g_{i}(p) d \phi_{i}^{\prime}(\mathbf{v})\right) \\
& =\sum_{i=1}^{l} \phi_{i}^{\prime}(p) d g_{i}^{\prime}(\mathbf{v})<0
\end{aligned}
$$

A similar argument shows that $d g \neq 0$ on M_{0}. By compactness of ∂W, we conclude that there is an $\epsilon>0$ and an open set $U \subset M$ containing ∂W such that $|\nabla g|>\epsilon$ on U.

We now perturb g to obtain a Morse function f. Embed W into R^{N} for some $N \gg 0$. Then as shown in class, given $\delta>0$ we can find a linear function $L: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $|L|,|\nabla L|<\delta$ on W and $g+L$ is Morse. Consider perturbations of the form $f=g+\rho L$, where $\rho: W \rightarrow[0,1]$ is a function such that $\rho \equiv 1$ on a compact set K containing the complement of U, and $\rho \equiv 0$ on an open set V containing ∂W. By choosing δ small enough, we can arrange that f is Morse on K and that $d f \neq 0$ on $W-K$. Thus f is Morse. By choosing δ sufficiently small we can also ensure that $f^{-1}(1)=g^{-1}(1)=M_{1}, f^{-1}(0)=g^{-1}(0)=M_{0}$, and $\operatorname{im} f=[0,1]$.

