Example Sheet 4

1. (a) Is the set $(1,2]$ an open subset of \mathbb{R} with the usual metric? Is it closed? What if we replace \mathbb{R} with the space $[0,2]$, the space $(1,3)$, or the space $(1,2]$, in each case with the metric inherited from \mathbb{R} ?
(b) Let X be a set equipped with the discrete metric, and let Y be any metric space. Describe all open subsets of X, closed subsets of X, sequentially compact subsets of X, Cauchy sequences in X, continuous functions $f: X \rightarrow Y$, and continuous functions g : $Y \rightarrow X$.
2. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where it does define a metric, describe the open ball $B_{\epsilon}(x)$ for $x \in X$ and ϵ small.
(a) $X=\mathbb{R}^{n}, d(\mathbf{x}, \mathbf{y})=\min \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\}$.
(b) $X=\mathbb{Z}, d(x, x)=0$, and $d(x, y)=2^{n}$ where $x-y=2^{n} a$ with n a non-negative integer and a an odd integer.
(c) $X=\{f: \mathbb{N} \rightarrow \mathbb{N}\}, d(f, f)=0$, and $d(f, g)=2^{-n}$, where n is the smallest natural number such that $f(n) \neq g(n)$.
(d) $X=\mathbb{C}, d(z, w)=|z-w|$ if z and w lie on the same line through the origin, $d(z, w)=$ $|z|+|w|$ otherwise.
3. If X is a metric space and $Y \subset X$, we say Y is bounded if there is a constant M such that $d\left(y_{1}, y_{2}\right) \leq M$ for all $y_{1}, y_{2} \in Y$. Suppose that every closed bounded subset C of X is compact, in the sense that every sequence in C has a subsequence which converges to a limit in C. Must X be complete?
4. Show that the map $f:[0,1] \rightarrow \mathbb{R}$ given by $f(t)=t \sin \frac{1}{t}$ for $t>0, f(0)=0$, is uniformly continuous but not Lipschitz.
5. Use the contraction mapping theorem to show that the equation $x=\cos x$ has a unique real solution. Find this solution to some reasonable accuracy using a calculator (remember to work in radians) and justify the claimed accuracy of your approximation.
6. Let X be a complete metric space. Suppose $f: X \rightarrow X$ is a contraction map and $g: X \rightarrow X$ commutes with f, i.e. $f \circ g=g \circ f$. Show that g has a fixed point.
7. Given an example of a non-empty complete metric space X and a function $f: X \rightarrow X$ satisfying $d(f(x), f(y))<d(x, y)$ for all $x \neq y$, but for which f has no fixed point. If X is compact, show that such an f must have a fixed point.
8. Suppose X and Y are metric spaces. A map $f: X \rightarrow Y$ is an isometric embedding if $d_{X}\left(x_{1}, x_{2}\right)=d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ for all $x_{1}, x_{2} \in X$.
(a) Show that an isometric embedding is injective.
(b) Suppose that X is compact and that $f: X \rightarrow X$ is an isometric embedding. Show that f is surjective. (Hint: if $x \notin f(X)$, show that $\left(f_{n}(x)\right)$ has no convergent subsequence.)
(c) Show that the statement in (b) does not hold if "compact" is replaced by "complete."
(d) Let X be a bounded metric space and let V be the vector space of bounded continuous functions $f: X \rightarrow \mathbb{R}$, equipped with the uniform norm. Show that there is an isometric embedding of X into V. (Thus, up to isometry, every bounded metric space is a subspace of a normed space.)
9. Consider the set $C_{a}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{4}+4 x=y^{5}+5 a y\right\}$. Show that there is a unique $a_{0} \in \mathbb{R}$ for which $C_{a_{0}}$ is singular. Sketch C_{a} for $a<a_{0}, a=a_{0}$ and $a>a_{0}$.
10. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} map. Suppose that there is some constant $\mu<1$ such that $\left\|\left.D f\right|_{\mathbf{x}}-I\right\|_{o p}<\mu$ for all $\mathbf{x} \in \mathbb{R}^{n}$. If U is open in \mathbb{R}^{n}, show that $f(U)$ is open in \mathbb{R}^{n}. Show that $\|\mathbf{x}-\mathbf{y}\| \leq(1-\mu)^{-1}\|f(\mathbf{x})-f(\mathbf{y})\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Deduce that f is injective and that $f\left(\mathbb{R}^{n}\right)$ is a closed subset of \mathbb{R}^{n}. Conclude that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diffeomorphism.
11. Give an example of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime}(0)>0$ such that $\left.f\right|_{(-\epsilon, \epsilon)}$ is not injective for any $\epsilon>0$.
12. Let $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function satisfying $\rho(\mathbf{y})=1$ for $\|\mathbf{y}\| \leq R$ and $\rho(y)=0$ for $\|\mathbf{y}\| \geq R+1$. Suppose $V \in C^{1}\left(\mathbb{R}^{n}\right)$ and that $\mathbf{y}_{0} \in \mathbb{R}^{n}$ with $\left\|\mathbf{y}_{0}\right\|<R$. How are the solutions to the equations (a) $\mathbf{y}^{\prime}(t)=V(\mathbf{y}(t))$, subject to $\mathbf{y}(0)=\mathbf{y}_{0}$ and (b) $\mathbf{y}^{\prime}(t)=\rho(\mathbf{y}(t)) V(\mathbf{y}(t))$ subject to $\mathbf{y}(0)=\mathbf{y}_{0}$ related?
13. (a) For any $\alpha \in \mathbb{R}$, show that the function $\|\cdot\|_{\infty, \alpha}: C[0, R] \rightarrow \mathbb{R}$ given by $\|f\|_{\infty, \alpha}=$ $\left\|e^{-\alpha x} f\right\|_{\infty}$ defines a norm on $C[0, R]$ and that this norm is Lipschitz equivalent to $\|\cdot\|_{\infty}$.
(b) Now suppose that $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, and Lipschitz in the second variable. Consider the map $T: C[0, R] \rightarrow C[0, R]$ given by

$$
(T(f))(t)=y_{0}+\int_{0}^{t} V(s, f(s)) d s
$$

Show that T is a contraction map with respect to $\|\cdot\|_{\infty, \alpha}$ for some α. Deduce that the differential equation $f(t)=V(t, f(t))$ has a unique solution on $[0, R]$ satisfying $f(0)=y_{0}$, and hence that this equation has a unique solution on $[0, \infty)$ satisfying $f(0)=y_{0}$.
14. (a) Show that for small values of x, y, z and w, the set of solutions to the equations

$$
\begin{aligned}
& \sin x z+\cos y w=e^{z} \\
& \cos y z+\sin x w=e^{w}
\end{aligned}
$$

consists of points of the form $(x, y, F(x, y), G(x, y))$, where $F, G: B_{\epsilon}(\mathbf{0}) \rightarrow \mathbb{R}$ are C^{1} functions.
(b) Deduce that for small values of t, the system of differential equations

$$
\begin{aligned}
& \sin y_{1} y_{1}^{\prime}+\cos y_{2} y_{2}^{\prime}=e^{y_{1}^{\prime}} \\
& \cos y_{2} y_{1}^{\prime}+\sin y_{1} y_{2}^{\prime}=e^{y_{2}^{\prime}}
\end{aligned}
$$

has a unique solution $\mathbf{y}(t)=\left(y_{1}(t), y_{2}(t)\right)$ satisfying $\mathbf{y}(0)=\mathbf{0}$.

[^0]
[^0]: J.Rasmussen@dpmms.cam.ac.uk

