Example Sheet 3

1. Consider the map $f: \mathbb{R}^{6} \rightarrow \mathbb{R}^{3}$ defined by $f(\mathbf{x}, \mathbf{y})=\mathbf{x} \times \mathbf{y}$ (i.e. the usual cross product of vectors in \mathbb{R}^{3}.) Prove directly from the definition that f is differentiable and express its derivative at (\mathbf{x}, \mathbf{y}) first as a linear map and then as a matrix.
2. At which points of \mathbb{R}^{2} are the following functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable?
(a) $f(x, y)=x y|x-y|$.
(b) $f(x, y)=x y / \sqrt{x^{2}+y^{2}}$ for $(x, y) \neq(0,0), f(0,0)=0$.
(c) $f(x, y)=x y \sin 1 / x$ for $x \neq 0, f(0, y)=0$.
3. Show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{v})=\|\mathbf{v}\|_{2}$ is differentiable at all nonzero $\mathbf{v} \in V$. (Hint: first show that $\mathbf{v} \mapsto\|\mathbf{v}\|^{2}$ is differentiable.) At which points in \mathbb{R}^{2} are the functions $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ differentiable?
4. Let $f(x, y)=x^{2} y /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that f is continuous at $(0,0)$ and that it has directional derivatives in all directions there. Is f differentiable at $(0,0)$?
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function, and let $g(x)=f(x, c-x)$, where c is a constant. Show that $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and find its derivative a) directly from the definition and b) by using the chain rule. Deduce that if $D_{2} f=D_{1} f$ everywhere in \mathbb{R}^{2}, then $f(x, y)=h(x+y)$ for some differentiable function $h: \mathbb{R} \rightarrow \mathbb{R}$.
6. We work in \mathbb{R}^{n} with the usual inner product and $\|\cdot\|=\|\cdot\|_{2}$. Consider the map $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} given by $f(\mathbf{x})=\mathbf{x} /\|\mathbf{x}\|$ for $\mathbf{x} \neq \mathbf{0}$ and $f(\mathbf{0})=\mathbf{0}$. Show that f is differentiable except at $\mathbf{0}$ and

$$
\left.D f\right|_{\mathbf{x}}(\mathbf{v})=\frac{\mathbf{v}}{\|\mathbf{x}\|}-\langle\mathbf{x}, \mathbf{v}\rangle \frac{\mathbf{x}}{\|\mathbf{x}\|^{3}} .
$$

Verify that $\left.D f\right|_{\mathbf{x}}(\mathbf{v})$ is orthogonal to \mathbf{x} and explain geometrically why this is the case.
7. Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$. If the directional derivative $\left.D_{\mathbf{v}} F\right|_{\mathbf{x}}$ exists for all $\mathbf{v} \in \mathbb{R}^{n}$ and is a linear function of \mathbf{v}, must F be differentiable at \mathbf{x} ?
8. Let $f(x, y)=x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that
(a) $f, D_{1} f$, and $D_{2} f$ are continuous in \mathbb{R}^{2}.
(b) $D_{12} f$ and $D_{21} f$ exist at every point in \mathbb{R}^{2} and are continuous except at $(0,0)$.
(c) $\left.D_{12} f\right|_{0,0} \neq\left. D_{21} f\right|_{0,0}$.
9. Let $V=M_{n \times n}(\mathbb{R})=\mathbb{R}^{n^{2}}$, and let $U \subset V$ be an open subset. Given $f, g: U \rightarrow V$, define $f g: U \rightarrow V$ by $f g(X)=f(X) g(X)$ (matrix multiplication). If f and g are differentiable, show that $f g$ is differentiable, and that $\left.D(f g)\right|_{X}(A)=\left.D f\right|_{X}(A) g(X)+\left.f(X) D g\right|_{X}(A)$. Now let $U \subset V$ be the set of invertible matrices, and define $g: U \rightarrow V$ by $g(X)=X^{-1}$. Show that g is differentiable and compute its derivative.
10. Let $V=M_{n \times n}(\mathbb{R})$ as above. By considering $\operatorname{det}(I+A)$ as a polynomial in the entries of A, show that the function det : $V \rightarrow \mathbb{R}$ is differentiable at the identity matrix I and that its derivative there is the function $A \mapsto \operatorname{tr} A$. Hence show that det is differentiable at any invertible matrix X, with derivative $A \mapsto \operatorname{det}(X) \operatorname{tr}\left(X^{-1} A\right)$. Compute the second derivative of det at I as a bilinear map $V \times V \rightarrow \mathbb{R}$, and verify it is symmetric.
11. a) Let $V=M_{n \times n}(\mathbb{R})$, and define $f: V \rightarrow V$ by $f(X)=X^{3}$. Find the Taylor series for $f(X+A)$ centered at X. b) ${ }^{*}$ Let $U \subset V$ be the set of invertible matrices, and define $g: U \rightarrow U$ by $g(X)=X^{-1}$. Find the Taylor series for $g(I+A)$ centered at I.
12. ${ }^{*}$ A critical point of a differentiable function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a point $\mathbf{x} \in \mathbb{R}^{n}$ for which $\left.D F\right|_{\mathbf{x}}=0$. Suppose that \mathbf{x} is a critical point such that the second derivative $\left.D^{2} F\right|_{\mathbf{x}}$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a nondegenerate quadratic form. (That is, for any $\mathbf{v} \neq \mathbf{0}$ in \mathbb{R}^{n}, there is some \mathbf{w} with $\left.D^{2} f\right|_{\mathbf{x}}(\mathbf{v}, \mathbf{w}) \neq 0$.) Show that F attains a local maximum at \mathbf{x} if and only if $\left.D^{2} F\right|_{\mathbf{x}}$ is negative definite. (That is, $\left.D^{2} f\right|_{\mathbf{x}}(\mathbf{v}, \mathbf{v})<0$ for all $\mathbf{v} \neq \mathbf{0}$.)
13. ${ }^{*}$ Let $U \subset \mathbb{R}^{2}$ be an open set containing the rectangle $[a, b] \times[c, d]$. Suppose that $g: E \rightarrow \mathbb{R}$ is continuous and that $D_{2} g$ exists and is continuous on U. Set

$$
G(y)=\int_{a}^{b} g(x, y) d x
$$

Show that G is differentiable on (c, d) with derivative

$$
G^{\prime}(y)=\int_{a}^{b} D_{2} g(x, y) d x
$$

(Hint: $D_{2} g$ is uniformly continuous on $[a, b] \times[c, d]$.)

