EXAMPLE SHEET 1

- 1. Prove the following facts about convergence of sequences in a normed space:
 - (a) If $(\mathbf{v}_n) \to \mathbf{v}$ and $(\mathbf{w}_n) \to \mathbf{w}$, then $(\mathbf{v}_n + \mathbf{w}_n) \to \mathbf{v} + \mathbf{w}$.
 - (b) If $(\mathbf{v}_n) \to \mathbf{v}$ and $\lambda \in \mathbb{R}$, then $(\lambda \mathbf{v}_n) \to \lambda \mathbf{v}$.
 - (c) If $(\mathbf{v}_n) \to \mathbf{v}$, then any subsequence (\mathbf{v}_{n_i}) of (\mathbf{v}_n) also converges to \mathbf{v} .
 - (d) If $(\mathbf{v}_n) \to \mathbf{v}$ and $\mathbf{v}_n \to \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

Using (a) and (b), show that if $f, g: V \to W$ are continuous, so is $f + \lambda g$, where $\lambda \in \mathbb{R}$.

2. Suppose X is a finite subset of \mathbb{R}^n whose elements span \mathbb{R}^n . Show that

$$\|\mathbf{v}\|_X = \max_{\mathbf{w}\in X} |\mathbf{v}\cdot\mathbf{w}|$$

defines a norm on \mathbb{R}^n . Find a norm on \mathbb{R}^2 whose closed unit ball is a regular (Euclidean) hexagon.

- 3. Which of the following subsets of \mathbb{R}^2 are open? Which are closed? Why?
 - (a) $\{(x,0) \mid 0 \le x \le 1\}$
 - (b) $\{(x,0) \mid 0 < x < 1\}$
 - (c) $\{(x, y) | y \neq 0\}$
 - (d) $(x, y) \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}$
 - (e) (x, y) | y = nx for some $n \in \mathbb{N}$ }
- 4. Is the set $\{f \in C[0,1] | f(1/2) = 0\}$ a closed subset of C[0,1] with respect to $\|\cdot\|_{\infty}$? With respect to $\|\cdot\|_1$? What about the set $\{f \in C[0,1] | \int_0^1 f(x) \, dx = 0\}$?
- 5. Let ℓ_0 be the set of real sequences (x_n) such that all but finitely many x_n are 0. If we use the natural definition of addition and scalar multiplication: $((x_n) + (y_n) = (x_n + y_n)$ and $\lambda(x_n) = (\lambda x_n)$) then ℓ_0 is a vector space. Find two norms on ℓ_0 which are not Lipshitz equivalent. Can you find uncountably many?
- 6. Suppose V and W are normed spaces, and that $L : V \to W$ is a linear map. Show that L is continuous if and only if the set $S(L) = \{\|L\mathbf{v}\| | \|\mathbf{v}\| | \mathbf{v} \in V \setminus \mathbf{0}\}$ is bounded above. Let $\mathcal{B}(V, W) = \{L : V \to W | L \text{ is linear and continuous}\}$. For $L \in \mathcal{B}(V, W)$, let $\|L\| = \sup S(L)$.
 - (a) Show that $\|\cdot\|$ defines a norm on $\mathcal{B}(V, W)$. (This is called the *operator norm*.)
 - (b) If $L_1 \in \mathcal{B}(V_1, V_2)$ and $L_2 \in \mathcal{B}(V_2, V_3)$, show that $||L_2 \circ L_1|| \le ||L_2|| ||L_1||$.
 - (c) Now suppose $V = W = \mathbb{R}^n$ with the Euclidean norm, and that L is given by multiplication by a symmetric matrix A. What is ||L||?
- 7. Which of the following sequences of functions (f_n) converge uniformly on the set X?
 - (a) $f_n(x) = x^n$ on X = (0, 1)

- (b) $f_n(x) = x^n$ on $X = (0, \frac{1}{2})$
- (c) $f_n(x) = xe^{-nx}$ on $X = [0, \infty)$
- (d) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}$.
- 8. Consider the functions $f_n: [0,1] \to \mathbb{R}$ defined by $f_n(x) = n^p x \exp(-n^q x)$, where p and q are positive constants.
 - (a) Show that (f_n) converges pointwise on [0, 1] for any values of p and q.
 - (b) Show that if p < q, then (f_n) converges uniformly on [0, 1].
 - (c) Show that if $p \ge q$, then (f_n) does not converge uniformly on [0, 1].
- 9. Let $f_n(x) = n^{\alpha} x^n (1-x)$, where α is a real constant.
 - (a) For which values of α does $f_n(x) \to 0$ pointwise on [0, 1]?
 - (b) For which values of α does $(f_n) \to 0$ uniformly on [0, 1]?
 - (c) For which values of α does $(f_n) \to 0$ with respect to $\|\cdot\|_1$?
 - (d) For which values of α does $f'_n(x) \to 0$ pointwise on [0,1]?
 - (e) For which values of α does $(f'_n) \to 0$ uniformly on [0, 1]?
- 10. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers. Show that f(x) = $\sum_{n=1}^{\infty} a_n \sin nx$ defines a continuous function on \mathbb{R} , but that the series $\sum_{n=1}^{\infty} na_n \cos nx$ need not converge.
- 11. Consider the sequence of functions $f_n : (\mathbb{R} \mathbb{Z}) \to \mathbb{R}$ defined by

$$f_n(x) = \sum_{m=0}^n (x-m)^{-2}$$

Show that (f_n) converges pointwise on $\mathbb{R} - \mathbb{Z}$ to a function f. Does (f_n) converge uniformly to f? Is f continuous on $\mathbb{R} - \mathbb{Z}$?

- 12. * If a_n are real numbers such that $\sum_{n=0}^{\infty} a_n$ converges, show that $\sum_{n=0}^{\infty} a_n x^n$ converges for $x \in (-1, 1)$. If $f(x) = \sum_{n=0}^{\infty} a_n x^n$, show that f extends to a continuous function on (-1, 1]with $f(1) = \sum_{n=0}^{\infty} a_n$. (*Hint:* show that for $x \in (-1, 1)$, $f(x) = (1 - x) \sum_{n=0}^{\infty} s_n x^n$, where $s_n = \sum_{j=0}^{n} a_j$.) Show that for each $r \in (-1, 1)$, the series $\sum_{n=0}^{n} a_n x^n$ converges uniformly on [r, 1]. Must the one-sided derivative f'(1) exist?
- 13. * Define $\varphi(x) = |x|$ for $x \in [-1, 1]$ and extend the definition of $\varphi(x)$ to all of \mathbb{R} by requiring that $\varphi(x+2) = \varphi(x)$.

 - (a) Show that |φ(s) φ(t)| ≤ |s t| for all s, t ∈ ℝ.
 (b) Define f(x) = ∑_{n=0}[∞] (³/₄)ⁿ φ(4ⁿx). Prove that f is well-defined and continuous.
 (c) Fix a real number x and positive integer m. Put δ_m = ±¹/₂4^{-m}, where the sign is chosen so that no integer lies between $4^m x$ and $4^m (x + \delta_m)$. Show that

$$\left|\frac{f(x+\delta_m)-f(x)}{\delta_m}\right| \ge \frac{1}{2}(3^m+1).$$

Deduce that $f : \mathbb{R} \to \mathbb{R}$ is continuous but nowhere differentiable.

J.Rasmussen@dpmms.cam.ac.uk