Example Sheet 1

1. Prove the following facts about convergence of sequences in a normed space:
(a) If $\left(\mathbf{v}_{n}\right) \rightarrow \mathbf{v}$ and $\left(\mathbf{w}_{n}\right) \rightarrow \mathbf{w}$, then $\left(\mathbf{v}_{n}+\mathbf{w}_{n}\right) \rightarrow \mathbf{v}+\mathbf{w}$.
(b) If $\left(\mathbf{v}_{n}\right) \rightarrow \mathbf{v}$ and $\lambda \in \mathbb{R}$, then $\left(\lambda \mathbf{v}_{n}\right) \rightarrow \lambda \mathbf{v}$.
(c) If $\left(\mathbf{v}_{n}\right) \rightarrow \mathbf{v}$, then any subsequence $\left(\mathbf{v}_{n_{i}}\right)$ of $\left(\mathbf{v}_{n}\right)$ also converges to \mathbf{v}.
(d) If (\mathbf{v}_{n}) $\rightarrow \mathbf{v}$ and $\mathbf{v}_{n} \rightarrow \mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.

Using (a) and (b), show that if $f, g: V \rightarrow W$ are continuous, so is $f+\lambda g$, where $\lambda \in \mathbb{R}$.
2. Suppose X is a finite subset of \mathbb{R}^{n} whose elements span \mathbb{R}^{n}. Show that

$$
\|\mathbf{v}\|_{X}=\max _{\mathbf{w} \in X}|\mathbf{v} \cdot \mathbf{w}|
$$

defines a norm on \mathbb{R}^{n}. Find a norm on \mathbb{R}^{2} whose closed unit ball is a regular (Euclidean) hexagon.
3. Which of the following subsets of \mathbb{R}^{2} are open? Which are closed? Why?
(a) $\{(x, 0) \mid 0 \leq x \leq 1\}$
(b) $\{(x, 0) \mid 0<x<1\}$
(c) $\{(x, y) \mid y \neq 0\}$
(d) $(x, y) \mid x \in \mathbb{Q}$ or $y \in \mathbb{Q}\}$
(e) $(x, y) \mid y=n x$ for some $n \in \mathbb{N}\}$
4. Is the set $\{f \in C[0,1] \mid f(1 / 2)=0\}$ a closed subset of $C[0,1]$ with respect to $\|\cdot\|_{\infty}$? With respect to $\|\cdot\|_{1}$? What about the set $\left\{f \in C[0,1] \mid \int_{0}^{1} f(x) d x=0\right\}$?
5. Let ℓ_{0} be the set of real sequences $\left(x_{n}\right)$ such that all but finitely many x_{n} are 0 . If we use the natural definition of addition and scalar multiplication: $\left(\left(x_{n}\right)+\left(y_{n}\right)=\left(x_{n}+y_{n}\right)\right.$ and $\left.\lambda\left(x_{n}\right)=\left(\lambda x_{n}\right)\right)$ then ℓ_{0} is a vector space. Find two norms on ℓ_{0} which are not Lipshitz equivalent. Can you find uncountably many?
6. Suppose V and W are normed spaces, and that $L: V \rightarrow W$ is a linear map. Show that L is continuous if and only if the set $S(L)=\{\|L \mathbf{v}\| /\|\mathbf{v}\| \mid \mathbf{v} \in V \backslash \mathbf{0}\}$ is bounded above. Let $\mathcal{B}(V, W)=\{L: V \rightarrow W \mid L$ is linear and continuous $\}$. For $L \in \mathcal{B}(V, W)$, let $\|L\|=\sup S(L)$.
(a) Show that $\|\cdot\|$ defines a norm on $\mathcal{B}(V, W)$. (This is called the operator norm.)
(b) If $L_{1} \in \mathcal{B}\left(V_{1}, V_{2}\right)$ and $L_{2} \in \mathcal{B}\left(V_{2}, V_{3}\right)$, show that $\left\|L_{2} \circ L_{1}\right\| \leq\left\|L_{2}\right\|\left\|L_{1}\right\|$.
(c) Now suppose $V=W=\mathbb{R}^{n}$ with the Euclidean norm, and that L is given by multiplication by a symmetric matrix A. What is $\|L\|$?
7. Which of the following sequences of functions $\left(f_{n}\right)$ converge uniformly on the set X ?
(a) $f_{n}(x)=x^{n}$ on $X=(0,1)$
(b) $f_{n}(x)=x^{n}$ on $X=\left(0, \frac{1}{2}\right)$
(c) $f_{n}(x)=x e^{-n x}$ on $X=[0, \infty)$
(d) $f_{n}(x)=e^{-x^{2}} \sin (x / n)$ on $X=\mathbb{R}$.
8. Consider the functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=n^{p} x \exp \left(-n^{q} x\right)$, where p and q are positive constants.
(a) Show that $\left(f_{n}\right)$ converges pointwise on $[0,1]$ for any values of p and q.
(b) Show that if $p<q$, then $\left(f_{n}\right)$ converges uniformly on $[0,1]$.
(c) Show that if $p \geq q$, then $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$.
9. Let $f_{n}(x)=n^{\alpha} x^{n}(1-x)$, where α is a real constant.
(a) For which values of α does $f_{n}(x) \rightarrow 0$ pointwise on $[0,1]$?
(b) For which values of α does $\left(f_{n}\right) \rightarrow 0$ uniformly on $[0,1]$?
(c) For which values of α does $\left(f_{n}\right) \rightarrow 0$ with respect to $\|\cdot\|_{1}$?
(d) For which values of α does $f_{n}^{\prime}(x) \rightarrow 0$ pointwise on $[0,1]$?
(e) For which values of α does $\left(f_{n}^{\prime}\right) \rightarrow 0$ uniformly on $[0,1]$?
10. Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series of real numbers. Show that $f(x)=$ $\sum_{n=1}^{\infty} a_{n} \sin n x$ defines a continuous function on \mathbb{R}, but that the series $\sum_{n=1}^{\infty} n a_{n} \cos n x$ need not converge.
11. Consider the sequence of functions $f_{n}:(\mathbb{R}-\mathbb{Z}) \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)=\sum_{m=0}^{n}(x-m)^{-2}
$$

Show that $\left(f_{n}\right)$ converges pointwise on $\mathbb{R}-\mathbb{Z}$ to a function f. Does $\left(f_{n}\right)$ converge uniformly to f ? Is f continuous on $\mathbb{R}-\mathbb{Z}$?
12. * If a_{n} are real numbers such that $\sum_{n=0}^{\infty} a_{n}$ converges, show that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x \in(-1,1)$. If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, show that f extends to a continuous function on $(-1,1]$ with $f(1)=\sum_{n=0}^{\infty} a_{n}$. (Hint: show that for $x \in(-1,1), f(x)=(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}$, where $s_{n}=\sum_{j=0}^{n} a_{j}$.) Show that for each $r \in(-1,1)$, the series $\sum_{n=0} a_{n} x^{n}$ converges uniformly on $[r, 1]$. Must the one-sided derivative $f^{\prime}(1)$ exist?
13. * Define $\varphi(x)=|x|$ for $x \in[-1,1]$ and extend the definition of $\varphi(x)$ to all of \mathbb{R} by requiring that $\varphi(x+2)=\varphi(x)$.
(a) Show that $|\varphi(s)-\varphi(t)| \leq|s-t|$ for all $s, t \in \mathbb{R}$.
(b) Define $f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} x\right)$. Prove that f is well-defined and continuous.
(c) Fix a real number x and positive integer m. Put $\delta_{m}= \pm \frac{1}{2} 4^{-m}$, where the sign is chosen so that no integer lies between $4^{m} x$ and $4^{m}\left(x+\delta_{m}\right)$. Show that

$$
\left|\frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}\right| \geq \frac{1}{2}\left(3^{m}+1\right)
$$

Deduce that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous but nowhere differentiable.

