EXAMPLE SHEET 1

Examples Class 1: Tuesday November 1, 3:30-5:30 in MR 2. I will mark problems 6 and 10.

1. Let $\sigma_{1}, \sigma_{2}:[0,1] \rightarrow \mathbb{R}$ be given by $\sigma_{1}(x)=x, \sigma_{2}(x)=1-x$. Identifying $[0,1]$ with Δ^{1} gives a cycle $\sigma_{1}+\sigma_{2}$ in $C_{1}(\mathbb{R})$. Find an $x \in C_{2}(\mathbb{R})$ with $d x=\sigma_{1}+\sigma_{2}$.
2. If $0 \rightarrow H \rightarrow G \rightarrow \mathbb{Z}^{n} \rightarrow 0$ is an exact sequence of abelian groups, show that $G \simeq H \oplus \mathbb{Z}^{n}$. What are the possible isomorphism types of G in the exact sequences below?

$$
0 \rightarrow \mathbb{Z} / 4 \rightarrow G \rightarrow \mathbb{Z} / 4 \rightarrow 0 \quad 0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} / 4 \rightarrow 0
$$

3. If $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ is a chain map, the mapping cone of f is the chain complex $\left(M(f), d_{f}\right)$ whose underlying group is given by $M(f)_{n}=C_{n-1} \oplus C_{n}^{\prime}$, and whose differential is given by

$$
\left(d_{f}\right)_{n}=\left(\begin{array}{cc}
d_{n-1} & 0 \\
(-1)^{n} f_{n-1} & d_{n}^{\prime}
\end{array}\right) .
$$

Show that $\left(M(f), d_{f}\right)$ is a chain complex, and that if $f \sim g$, then $M(f) \sim M(g)$. Show that $H_{*}(M(f))=0$ if and only if the map $f_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)$ is an isomorphism.
4. If X is a space, the cone on X is defined to be $C X:=X \times I / X \times 0$. Show that $C X$ is contractible. The suspension of X is defined to be $\Sigma X:=C X / X \times 1$. Express $\widetilde{H}_{*}(\Sigma X)$ in terms of $\widetilde{H}_{*}(X)$. If ΣX is an n-manifold, show that $H_{*}(\Sigma X) \cong H_{*}\left(S^{n}\right)$.
5. Let S_{g} be a surface of genus g. Taking $H_{*}\left(T^{2}\right)$ as given, use the long exact sequence of a pair to compute $H_{*}\left(S_{g}\right)$ for $g>1$. If $A \subset S_{g}$ is a non-separating simple closed curve, what is $H_{*}\left(S_{g}, A\right)$?
6. Show S^{n+m+1} can be decomposed as the union of $S^{n} \times D^{m+1}$ and $D^{n+1} \times S^{m}$ along their common boundary $S^{n} \times S^{m}$. Compute $H_{*}\left(S^{n} \times S^{m}\right)$ and $H_{*}\left(D^{n+1} \times S^{m}, S^{n} \times S^{m}\right)$ when $n, m>0$.
7. Let $V \subset S^{3}$ be an open subset of S^{3} homeomorphic to $S^{1} \times \operatorname{int} D^{2}$, and let $K=S^{1} \times 0 \subset$ $S^{1} \times \operatorname{int} D^{2} \simeq V$. Compute $H_{*}\left(S^{3}, K\right)$ and $H_{*}\left(S^{3}-K\right)$.
8. A vector field on S^{n} is a continuous map $\mathbf{v}: S^{n} \rightarrow \mathbb{R}^{n+1}$ such that $\langle\mathbf{x}, \mathbf{v}(\mathbf{x})\rangle=0$ for all $\mathbf{x} \in S^{n}$. If $\mathbf{v}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in S^{n}$, show that $\mathrm{id}_{S^{n}}$ is homotopic to the antipodal map. Deduce that if S^{n} admits a nonvanishing vector field, then n is odd.
9. Show that $A \in G L_{2}(\mathbb{Z})$ defines a homeomorphism $A: T^{2} \rightarrow T^{2}$. Compute the induced map $A_{*}: H_{*}\left(T^{2}\right) \rightarrow H_{*}\left(T^{2}\right)$. (Hint: for H_{2}, consider $H_{2}\left(T^{2}, T^{2}-0\right)$.)
10. If $f: X \rightarrow X$ is a homeomorphism, let Y_{f} be the quotient of $X \times[0,1]$ obtained by identifying $(x, 0)$ and $(f(x), 1)$. Show there is a long exact sequence

$$
\longrightarrow H_{n+1}\left(Y_{f}\right) \longrightarrow H_{n}(X) \xrightarrow{1-f_{*}} H_{n}(X) \longrightarrow H_{n}\left(Y_{f}\right) \longrightarrow
$$

Compute $H_{*}\left(Y_{f}\right)$ when $X=S^{n}$ and f is the antipodal map; when $X=T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and f is multiplication by $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$.
11. Suppose C and C^{\prime} are free chain complexes over \mathbb{Z} and that $C_{i}=C_{i}^{\prime}=0$ for $i<0$. If $H_{*}(C)=0$, show that C is contractible, in the sense that $1_{C} \sim 0$. If $f: C \rightarrow C^{\prime}$ is a chain map which induces an isomorphism on homology, show that f is a chain homotopy equivalence. (Hint: use question 4).
12. Given $f:\left(D^{n}, S^{n-1}\right) \rightarrow\left(D^{n}, S^{n-1}\right)$, define

$$
g:\left(D^{n} \times D^{m}, \partial\left(D^{n} \times D^{m}\right)\right) \rightarrow\left(D^{n} \times D^{m}, \partial\left(D^{n} \times D^{m}\right)\right)
$$

by $g(x, y)=(f(x), y))$. Show that $\operatorname{deg} g=\operatorname{deg} f$.
J.Rasmussen@dpmms.cam.ac.uk

