ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 4

- 1. Suppose $\pi : E \to B$ is a real vector bundle and that $f : B' \to B$. Describe local trivializations and transition functions for the pullback $f^*(E)$ in terms of local trivializations and transition functions for E.
- 2. Let M be the Mobius bundle over S^1 . Show that $M \oplus M$ is the trivial bundle.
- 3. Let $E \to B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$. Deduce that if E is an orientable bundle which has a nowhere vanishing section, then e(E) = 0.
- 4. Let $E = TS^2$ be the tangent bundle of S^2 . Show that the unit sphere bundle S(E) is homeomorphic to SO(3), which is also homeomorphic to \mathbb{RP}^3 .
- 5. Let M be a closed orientable 4-manifold, and write $H_i(M) \simeq F_i \oplus T_i$, where F_i is free and T_i is torsion. Find all relations between F_i and F_j , T_i and T_j for differing values of i and j.
- 6. If M is a manifold with $H_1(M; \mathbb{Z}/2) = 0$, show that M is orientable.
- 7. If M is an orientable manifold of dimension 4n+2, show that the dimension of $H_{2n+1}(M;\mathbb{Q})$ is even.
- 8. a) Show that there is no orientation reversing homeomorphism $f : \mathbb{CP}^2 \to \mathbb{CP}^2$.
 - b) Let $\overline{\mathbb{CP}}^2$ denote \mathbb{CP}^2 with the opposite orientation, and define $X_1 = \mathbb{CP}^2 \# \mathbb{CP}^2$, $X_2 = \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$, and $X_3 = S^2 \times S^2$. Show that $H_*(X_1) \simeq H_*(X_2) \simeq H_*(X_3)$, but that no two of the X_i are homotopy equivalent.
- 9. If M is an oriented 4n dimensional manifold, the pairing $(a, b) = \langle a \cup b, [M] \rangle$ defines a symmetric bilinear form on $H^{2n}(M)$. If $H^*(M)$ is free over \mathbb{Z} , we can choose a basis of $H^{2n}(M)$ and write $(a, b) = a^T A b$ for some symmetric matrix A with entries in \mathbb{Z} . Show det $A = \pm 1$.
- 10. If $p \in \mathbb{C}[z_0, z_1, z_2]$ is a homogenous polynomial, we define

$$V_p = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid p(z_0, z_1, z_2) = 0 \}.$$

If p and q are chosen such that V_p and V_q are embedded submanifolds of \mathbb{CP}^2 which intersect transversely, show that V_p and V_q intersect in precisely $(\deg p)(\deg q)$ points.

11. Let E be the tangent bundle of \mathbb{CP}^n . Compute $H_*(S(E))$.

- 12. Suppose that M is a compact odd-dimensional manifold with boundary. Show that $\chi(M) = \frac{1}{2}\chi(\partial M)$. Conclude that \mathbb{RP}^2 does not bound a compact 3-manifold. Does \mathbb{RP}^3 bound a compact 4-manifold?
- 13. Given $\gamma: S^1 \to SO(2)$, let $E_{\gamma} = D_a^2 \times \mathbb{R}^2 \coprod D_b^2 \times \mathbb{R}^2 / \sim$, where \sim identifies $(x, v) \in S_a^1 \times \mathbb{R}^2$ with $(x, \gamma(x) \cdot v)$. Show that E_{γ} is an oriented vector bundle over S^2 and compute its Euler class in terms of γ .
- 14. Construct a 3 dimensional real vector bundle over S^4 which has no nonvanishing section.
- 15. Suppose B is compact, and that E is a vector bundle over $B \times I$. Show that $E|_{B \times 0} \simeq E|_{B \times 1}$ as follows.
 - (a) For each $b \in B$ show there is an open neighborhood V_b of b such that $E|_{V_b \times I}$ is trivial.
 - (b) Choose a finite cover $\mathcal{V} = V_1, \ldots, V_m$ of B such that $E|_{V_b \times I}$ is trivial. If $\{\phi_i\}$ is a partition of unity subordinate to \mathcal{V} , let $\psi_j = \sum_{i=1}^j \phi_i$. Consider the map $f_i : B \to B \times I$ given by $f_i(b) = (b, \psi_i(b))$. Show that $f_i^*(E) \simeq f_{i+1}^*(E)$.

Deduce that if E' is a vector bundle over B' and $f, g : B \to B'$ are homotopic, then $f^*(E') \simeq g^*(E')$.

- 16. Let M be an oriented manifold with the property that $H_*(M)$ is generated by embedded submanifolds. Given $f: M \to M$, let $\Lambda = \{(p, f(p)) \in M \times M\}$ be the graph of f. Λ is an embedded submanifold of $M \times M$.
 - (a) If $\langle a_i \rangle$ is a basis of $H_i(M;k)$ and $\langle b_i \rangle$ is the dual basis under the cup product pairing, show that $PD(\Lambda) = \sum f^*(a_i) \times b_i$.
 - (b) Show that $L(f) := \Lambda \cdot \Delta = \sum_{j=0}^{n} (-1)^{j} \operatorname{Tr} f_{j}^{*}$, where $f_{j}^{*} : H^{j}(M; k) \to H^{j}(M; k)$.
 - (c) Deduce that if $L(f) \neq 0$, f must have a fixed point. (This is the Lefshetz fixed point theorem.)
 - (d) Show that any map $f: \mathbb{CP}^2 \to \mathbb{CP}^2$ has a fixed point.
- 17. Given $\phi: S^{2n-1} \to S^n$, let $X_{\phi} = S^n \cup_{\phi} D^{2n}$. $H^*(X_{\phi}) = \langle 1, x_n, x_{2n} \rangle$, where $x_i \in H^i(X_{\phi})$. Thus $x_n^2 = H(\phi)x_{2n}$ for some $H(\phi) \in \mathbb{Z}$.
 - (a) Show that the map $[\phi] \to H(\phi)$ defines a homomorphism $H : \pi_{2n-1}(S^n) \to \mathbb{Z}$. *H* is known as the *Hopf invariant*.
 - (b) Show that H is surjective for n = 2, 4.
 - (c) By considering a cell decomposition of $S^n \times S^n$, show that H is nontrivial for every even n. Deduce that $\pi_{4m-1}(S^{2m})$ is infinite for all m > 0.
- J.Rasmussen@dpmms.cam.ac.uk