ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 4

1. Suppose $\pi: E \rightarrow B$ is a real vector bundle and that $f: B^{\prime} \rightarrow B$. Describe local trivializations and transition functions for the pullback $f^{*}(E)$ in terms of local trivializations and transition functions for E.
2. Let M be the Mobius bundle over S^{1}. Show that $M \oplus M$ is the trivial bundle.
3. Let $E \rightarrow B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$. Deduce that if E is an orientable bundle which has a nowhere vanishing section, then $e(E)=0$.
4. Let $E=T S^{2}$ be the tangent bundle of S^{2}. Show that the unit sphere bundle $S(E)$ is homeomorphic to $S O(3)$, which is also homeomorphic to $\mathbb{R P}^{3}$.
5. Let M be a closed orientable 4-manifold, and write $H_{i}(M) \simeq F_{i} \oplus T_{i}$, where F_{i} is free and T_{i} is torsion. Find all relations between F_{i} and F_{j}, T_{i} and T_{j} for differing values of i and j.
6. If M is a manifold with $H_{1}(M ; \mathbb{Z} / 2)=0$, show that M is orientable.
7. If M is an orientable manifold of dimension $4 n+2$, show that the dimension of $H_{2 n+1}(M ; \mathbb{Q})$ is even.
8. a) Show that there is no orientation reversing homeomorphism $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.
b) Let $\overline{\mathbb{C P}}^{2}$ denote $\mathbb{C P}^{2}$ with the opposite orientation, and define $X_{1}=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$, $X_{2}=\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2}$, and $X_{3}=S^{2} \times S^{2}$. Show that $H_{*}\left(X_{1}\right) \simeq H_{*}\left(X_{2}\right) \simeq H_{*}\left(X_{3}\right)$, but that no two of the X_{i} are homotopy equivalent.
9. If M is an oriented $4 n$ dimensional manifold, the pairing $(a, b)=\langle a \cup b,[M]\rangle$ defines a symmetric bilinear form on $H^{2 n}(M)$. If $H^{*}(M)$ is free over \mathbb{Z}, we can choose a basis of $H^{2 n}(M)$ and write $(a, b)=a^{T} A b$ for some symmetric matrix A with entries in \mathbb{Z}. Show $\operatorname{det} A= \pm 1$.
10. If $p \in \mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]$ is a homogenous polynomial, we define

$$
V_{p}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2} \mid p\left(z_{0}, z_{1}, z_{2}\right)=0\right\} .
$$

If p and q are chosen such that V_{p} and V_{q} are embedded submanifolds of $\mathbb{C P}^{2}$ which intersect transversely, show that V_{p} and V_{q} intersect in precisely $(\operatorname{deg} p)(\operatorname{deg} q)$ points.
11. Let E be the tangent bundle of $\mathbb{C P}^{n}$. Compute $H_{*}(S(E))$.
12. Suppose that M is a compact odd-dimensional manifold with boundary. Show that $\chi(M)=\frac{1}{2} \chi(\partial M)$. Conclude that \mathbb{R}^{2} does not bound a compact 3-manifold. Does $\mathbb{R P}^{3}$ bound a compact 4-manifold?
13. Given $\gamma: S^{1} \rightarrow S O(2)$, let $E_{\gamma}=D_{a}^{2} \times \mathbb{R}^{2} \coprod D_{b}^{2} \times \mathbb{R}^{2} / \sim$, where \sim identifies $(x, v) \in$ $S_{a}^{1} \times \mathbb{R}^{2}$ with $(x, \gamma(x) \cdot v)$. Show that E_{γ} is an oriented vector bundle over S^{2} and compute its Euler class in terms of γ.
14. Construct a 3 dimensional real vector bundle over S^{4} which has no nonvanishing section.
15. Suppose B is compact, and that E is a vector bundle over $B \times I$. Show that $\left.E\right|_{B \times 0} \simeq$ $\left.E\right|_{B \times 1}$ as follows.
(a) For each $b \in B$ show there is an open neighborhood V_{b} of b such that $\left.E\right|_{V_{b} \times I}$ is trivial.
(b) Choose a finite cover $\mathcal{V}=V_{1}, \ldots, V_{m}$ of B such that $\left.E\right|_{V_{b} \times I}$ is trivial. If $\left\{\phi_{i}\right\}$ is a partition of unity subordinate to \mathcal{V}, let $\psi_{j}=\sum_{i=1}^{j} \phi_{i}$. Consider the map $f_{i}: B \rightarrow B \times I$ given by $f_{i}(b)=\left(b, \psi_{i}(b)\right)$. Show that $f_{i}^{*}(E) \simeq f_{i+1}^{*}(E)$.

Deduce that if E^{\prime} is a vector bundle over B^{\prime} and $f, g: B \rightarrow B^{\prime}$ are homotopic, then $f^{*}\left(E^{\prime}\right) \simeq g^{*}\left(E^{\prime}\right)$.
16. Let M be an oriented manifold with the property that $H_{*}(M)$ is generated by embedded submanifolds. Given $f: M \rightarrow M$, let $\Lambda=\{(p, f(p)) \in M \times M\}$ be the graph of $f . \Lambda$ is an embedded submanifold of $M \times M$.
(a) If $\left\langle a_{i}\right\rangle$ is a basis of $H_{i}(M ; k)$ and $\left\langle b_{i}\right\rangle$ is the dual basis under the cup product pairing, show that $P D(\Lambda)=\sum f^{*}\left(a_{i}\right) \times b_{i}$.
(b) Show that $L(f):=\Lambda \cdot \Delta=\sum_{j=0}^{n}(-1)^{j} \operatorname{Tr} f_{j}^{*}$, where $f_{j}^{*}: H^{j}(M ; k) \rightarrow H^{j}(M ; k)$.
(c) Deduce that if $L(f) \neq 0, f$ must have a fixed point. (This is the Lefshetz fixed point theorem.)
(d) Show that any map $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ has a fixed point.
17. Given $\phi: S^{2 n-1} \rightarrow S^{n}$, let $X_{\phi}=S^{n} \cup_{\phi} D^{2 n} . H^{*}\left(X_{\phi}\right)=\left\langle 1, x_{n}, x_{2 n}\right\rangle$, where $x_{i} \in H^{i}\left(X_{\phi}\right)$. Thus $x_{n}^{2}=H(\phi) x_{2 n}$ for some $H(\phi) \in \mathbb{Z}$.
(a) Show that the map $[\phi] \rightarrow H(\phi)$ defines a homomorphism $H: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \mathbb{Z} . H$ is known as the Hopf invariant.
(b) Show that H is surjective for $n=2,4$.
(c) By considering a cell decomposition of $S^{n} \times S^{n}$, show that H is nontrivial for every even n. Deduce that $\pi_{4 m-1}\left(S^{2 m}\right)$ is infinite for all $m>0$.
J.Rasmussen@dpmms.cam.ac.uk

