## ALGEBRAIC TOPOLOGY (PART III)

## EXAMPLE SHEET 3

1. Suppose $f: X \rightarrow Y$. If $\alpha \in H^{k}(Y)$ and $x \in H_{k}(X)$, show that $\left\langle f^{*}(\alpha), x\right\rangle=\left\langle\alpha, f_{*}(x)\right\rangle$. Deduce that if $H_{*}(X)$ and $H_{*}(Y)$ are free over $\mathbb{Z}$, then $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ and $f^{*}: H^{*}(X) \rightarrow H^{*}(Y)$ are dual maps.
2. Suppose $A \subset X$, and let $\partial: H_{n}(X, A) \rightarrow H_{n-1}(A)$ and $\partial^{*}: H^{n-1}(A) \rightarrow H^{n}(X, A)$ be the boundary maps in the long exact sequence of a pair. If $\alpha \in H^{n-1}(A), a \in H_{n}(X, A)$, show that $\left\langle\partial^{*} \alpha, a\right\rangle=\langle\alpha, \partial a\rangle$.
3. Compute $H_{*}\left(L^{3}(12,1) \times \mathbb{R} \mathbb{P}^{3}\right)$ with coefficients in $\mathbb{Z}, \mathbb{Z} / 2$, and $\mathbb{Z} / 4$.
4. If $X$ is a space, let $\Delta_{X}: X \rightarrow X \times X$ be the diagonal map given by $\Delta(x)=(x, x)$. Compute $\Delta_{S^{2} *}\left(\left[S^{2}\right]\right) \in H_{2}\left(S^{2} \times S^{2}\right)$ and $\Delta_{T^{2} *}\left(\left[T^{2}\right]\right) \in H_{2}\left(T^{2} \times T^{2}\right)$.
5.     * Let $G$ be a topological group (i.e. $G$ is a group and a space, and the actions of multiplication and taking inverse are continuous.) Show there is a map $\Delta: H^{*}(G) \rightarrow$ $H^{*}(G) \otimes H^{*}(G)$ satisfying the following properties:
(a) $\Delta(a \cup b)=\Delta(a) \cup \Delta(b)$, where $\left(a_{1} \otimes a_{2}\right) \cup\left(b_{1} \otimes b_{2}\right)=(-1)^{\left|a_{2}\right|\left|b_{1}\right|}\left(a_{1} \cup b_{1}\right) \otimes\left(a_{2} \cup b_{2}\right)$.
(b) $\Delta(a)=a \otimes 1+1 \otimes a+\sum_{i} a_{i}^{\prime} \otimes a_{i}^{\prime \prime}$, where $\left|a_{i}\right|<|a|$ for all $i$.

Deduce that $S^{1} \times S^{2 n}$ cannot be given the structure of a topological group.
6. Let $U, V \subset X$ be open sets. If $x \in H^{*}(X, U)$ and $y \in H^{*}(X, V)$, show that $x \cup y \in$ $H^{*}(X, U \cup V)$. Using this, show that if $X$ has a covering by $n$ contractible open subsets, then $a_{1} \cup a_{2} \cup \ldots \cup a_{n}=0$ whenever $a_{1}, \ldots a_{n} \in H^{*}(X)$ have grading $>0$.
7. Let $\Sigma_{g}$ be the surface of genus $g$. Show that if $g<h$, any map $\Sigma_{g} \rightarrow \Sigma_{h}$ has degree 0 .
8. Let $X_{1}=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$, $X_{2}=\mathbb{C P}^{2} \# \overline{\mathbb{P}}^{2}$, and $X_{3}=S^{2} \times S^{2}$. Show that $H_{*}\left(X_{1}\right) \simeq$ $H_{*}\left(X_{2}\right) \simeq H_{*}\left(X_{3}\right)$, but that no two of the $X_{i}$ are homotopy equivalent.
9. Given that $f: S^{2} \times S^{2} \times S^{2} \rightarrow \mathbb{C P}^{3}$, what are the possible values of the degree of $f$ ?
10. Let $M$ be the Mobius bundle over $S^{1}$. Show that $M \oplus M$ is the trivial bundle.
11. Let $E=T S^{2}$ be the tangent bundle of $S^{2}$. Show that the unit sphere bundle $S(E)$ is homeomorphic to $S O(3)$, which is also homeomorphic to $\mathbb{R P}^{3}$.
12. Identify $S^{3}-0$ with $\mathbb{R}^{3}$ by stereographic projection. Describe what the fibres of the Hopf fibration look like under this identification. Sketch three distinct fibres.
13. Let $E \rightarrow B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that $F^{\perp}$ is a vector bundle, and that $F \oplus F^{\perp} \cong E$.
14. Let $M$ be a smooth manifold, and let $\Delta \subset M \times M$ be the image of the diagonal embedding $M \rightarrow M \times M$ which sends $x$ to $(x, x)$. Show that $\nu_{\Delta} \simeq T M$.
15. Let $M$ be a triangulated $n$-manifold. By considering $H_{*}(M, M-p)$ show that every cell of $M$ has dimension $\leq n$, and that every $n-1$ dimensional face of $M$ is in the boundary of precisely two $n$ dimensional faces.
16. Give a definition of a triangulated $n$-manifold with boundary. If $M$ is a connected triangulated $n$-manifold with boundary, show that $H_{n}(M, \partial M ; R)$ is either 0 or $R$. In the latter case we say that $M$ is $R$-orientable. If $M$ is $R$-orientable, show that $\partial M$ is $R$-orientable. An $R$-orientation on $M$ is a class $[M, \partial M] \in H_{n}(M, \partial M)$ whose image in $H_{n}(M, M-p)$ is a generator of $H_{n}(M, M-p)$ for all $p \in M$. If $[M, \partial M]$ is an $R$-orientation on $M$, show that its image under $\partial$ is an $R$-orientation on [ $\partial M$ ], where $\partial$ is the boundary map in the long exact sequence of the pair $(M, \partial M)$.
J.Rasmussen@dpmms.cam.ac.uk

