ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 4

1. Suppose $\pi: E \rightarrow B$ is a real vector bundle. If $f: B^{\prime} \rightarrow B$, let $E^{\prime}=\{(v, b) \in$ $\left.E \times B^{\prime} \mid \pi(v)=f(b)\right\}$, and let $p: E^{\prime} \rightarrow B$ be the obvious projection.
(a) Show that E^{\prime} is a vector bundle. Describe local trivializations and transition functions for E^{\prime} in terms of local trivalizations and transition functions for $E . E^{\prime}$ is called the pull-back of E, and is usually denoted by $f^{*}(E)$.
(b) If U is Thom class for E, show that $f^{*}(U)$ is a Thom class for $f^{*}(E)$. Deduce that $e\left(f^{*}(E)\right)=f^{*}(e(E))$.
2. Use Poincaré duality to show that $H^{*}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z} / 2\right) \simeq \mathbb{Z} / 2[x] /\left(x^{n+1}\right)$. (Hint: induct on n, using the inclusion $\mathbb{R P}^{n-1} \rightarrow \mathbb{R} \mathbb{P}^{n}$.) Determine the ring structure on $H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z}\right)$.
3. Let M be a closed orientable 4-manifold, and write $H_{i}(M) \simeq F_{i} \oplus T_{i}$, where F_{i} is free and T_{i} is torsion. Find all relations between F_{i} and F_{j}, T_{i} and T_{j} for differing values of i and j.
4. Show that if M is a manifold with $H_{1}(M ; \mathbb{Z} / 2)=0$, then M is orientable.
5. If M is an orientable manifold of dimension $4 n+2$, show that the dimension of $H_{2 n+1}(M$; $\mathbb{Q})$ is even.
6. If M is an oriented $4 n$ dimensional manifold, the pairing $(a, b)=\langle a \cup b,[M]\rangle$ defines a symmetric bilinear form on $H^{2 n}(M)$. If $H^{*}(M)$ is free over \mathbb{Z}, we can choose a basis of $H^{2 n}(M)$ and write $(a, b)=a^{T} A b$ for some symmetric matrix A with entries in \mathbb{Z}. Show $\operatorname{det} A= \pm 1$.
7. If $p \in \mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]$ is a homogenous polynomial, we define

$$
V_{p}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2} \mid p\left(z_{0}, z_{1}, z_{2}\right)=0\right\} .
$$

If p and q are chosen such that V_{p} and V_{q} are embedded submanifolds of $\mathbb{C P}^{2}$ which intersect transversely, show that V_{p} and V_{q} intersect in precisely $(\operatorname{deg} p)(\operatorname{deg} q)$ points.
8. Suppose $f: M \rightarrow N$ is a map of connected oriented manifolds. A point $p \in N$ is a regular point of f if it has an open neighborhood U such that $V=f^{-1}(U) \simeq U \times F$, and $\left.f\right|_{V}$ is projection on the first factor. (If f is a map of smooth manifolds, Sard's theorem tells us that most $p \in N$ are regular.) We say $F_{p}=f^{-1}(p)$ is a regular fibre of F.
(a) Show that $\operatorname{PD}\left(\left[F_{p}\right]\right)=f^{*}\left([N]^{*}\right)$. Deduce that any two regular fibres represent the same homology class in M.
(b) If $f: \mathbb{C P}^{2} \# \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{1}$, show that any regular fibre is null-homologous. Show there is map $f: \mathbb{C P}^{2} \# \overline{\mathbb{P}}^{2} \rightarrow \mathbb{C P}^{1}$ whose regular fibre is nontrivial.
9. Suppose M is a closed n-manifold, and $f: S^{m-1} \rightarrow M, 1 \leq m \leq n$. Can $M \cup_{f} D^{m}$ be homotopy equivalent to a closed n-manifold for $n=3$? $n=4$?
10. Let E be the tangent bundle of $\mathbb{C P}^{n}$. Compute $H_{*}(S(E))$.
11. Suppose that M is a compact odd-dimensional manifold with boundary. Show that $\chi(M)=\frac{1}{2} \chi(\partial M)$. Conclude that \mathbb{R}^{2} does not bound a compact 3 -manifold. Does $\mathbb{R P}^{3}$ bound a compact 4-manifold?
12. Given $\gamma: S^{1} \rightarrow S O(2)$, let $E_{\gamma}=D_{a}^{2} \times \mathbb{R}^{2} \amalg D_{b}^{2} \times \mathbb{R}^{2} / \sim$, where \sim identifies $(x, v) \in$ $S_{a}^{1} \times \mathbb{R}^{2}$ with $(x, \gamma(x) \cdot v)$. Show that E_{γ} is an oriented vector bundle over S^{2} and compute its Euler class in terms of γ.
13. Let M be an oriented manifold with the property that $H_{*}(M)$ is generated by embedded submanifolds. Given $f: M \rightarrow M$, let $\Lambda=\{(p, f(p)) \in M \times M\}$ be the graph of $f . \Lambda$ is an embedded submanifold of $M \times M$.
(a) If $\left\langle a_{i}\right\rangle$ is a basis of $H_{i}(M ; k)$ and $\left\langle b_{i}\right\rangle$ is the dual basis under the cup product pairing, show that $P D(\Lambda)=\sum f^{*}\left(a_{i}\right) \times b_{i}$.
(b) Show that $L(f):=\Lambda \cdot \Delta=\sum_{j=0}^{n}(-1)^{j} \operatorname{Tr} f_{j}^{*}$, where $f_{j}^{*}: H^{j}(M ; k) \rightarrow H^{j}(M ; k)$.
(c) Deduce that if $L(f) \neq 0, f$ must have a fixed point. (This is the Lefshetz fixed point theorem.)
(d) Show that any map $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ has a fixed point.
14. Construct a 3 dimensional real vector bundle over S^{4} which does not have a nonvanishing section.
15. Given $\phi: S^{2 n-1} \rightarrow S^{n}$, let $X_{\phi}=S^{n} \cup_{\phi} D^{2 n} . H^{*}\left(X_{\phi}\right)=\left\langle 1, x_{n}, x_{2 n}\right\rangle$, where $x_{i} \in H^{i}\left(X_{\phi}\right)$. Thus $x_{n}^{2}=H(\phi) x_{2 n}$ for some $H(\phi) \in \mathbb{Z}$.
(a) Show that the map $[\phi] \rightarrow H(\phi)$ defines a homomorphism $H: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \mathbb{Z} . H$ is known as the Hopf invariant.
(b) Show that H is surjective for $n=2,4$.
(c) By considering a cell decomposition of $S^{n} \times S^{n}$, show that H is nontrivial for every even n. Deduce that $\pi_{4 m-1}\left(S^{2 m}\right)$ is infinite for all $m>0$.
J.Rasmussen@dpmms.cam.ac.uk

