ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 3

1. Suppose $A \subset X$, and let $\partial: H_{n}(X, A) \rightarrow H_{n-1}(A)$ and $\partial^{*}: H^{n-1}(A) \rightarrow H^{n}(X, A)$ be the boundary maps in the long exact sequence of a pair. If $\alpha \in H^{n-1}(A), a \in H_{n}(X, A)$, show that $\left\langle\partial^{*} \alpha, a\right\rangle=\langle\alpha, \partial a\rangle$.
2. Let C_{*} be a free finitely generated chain complex defined over \mathbb{Z}. Show that $H_{*}(C)=0$ if and only if $H_{*}(C \otimes \mathbb{Z} / p)=0$ for every prime p. Now suppose $f: C_{*} \rightarrow C_{*}^{\prime}$ is a chain map. Using problem 5 on Example Sheet 1, show that f is a chain homotopy equivalence if and only if the map $f_{*}: H_{*}(C \otimes \mathbb{Z} / p) \rightarrow H_{*}\left(C^{\prime} \otimes \mathbb{Z} / p\right)$ is an isomorphism for every prime p.
3. Let $R=\mathbb{C}[x] /\left(x^{3}\right)$, and for $i=1,2$, let M_{i} be the R-module $\mathbb{C}[x] /\left(x^{i}\right)$. Find a free resolution of M_{1} and use it to compute $\operatorname{Tor}_{*}^{R}\left(M_{1}, M_{1}\right)$ and $\operatorname{Tor}_{*}^{R}\left(M_{1}, M_{2}\right)$.
4. Compute $H_{*}\left(L^{3}(12,1) \times \mathbb{R} \mathbb{P}^{3}\right)$ with coefficients in $\mathbb{Z}, \mathbb{Z} / 2$, and $\mathbb{Z} / 4$.
5. If X is a space, let $\Delta_{X}: X \rightarrow X \times X$ be the diagonal map given by $\Delta(x)=(x, x)$. Compute $\Delta_{S^{2} *}\left(\left[S^{2}\right]\right) \in H_{2}\left(S^{2} \times S^{2}\right)$ and $\Delta_{T^{2} *}\left(\left[T^{2}\right]\right) \in H_{2}\left(T^{2} \times T^{2}\right)$.
6. * Let G be a topological group (i.e. G is a group and a space, and the actions of multiplication and taking inverse are continuous.) Show there is a map $\Delta: H^{*}(G) \rightarrow$ $H^{*}(G) \otimes H^{*}(G)$ satisfying the following properties:
(a) $\Delta(a \cup b)=\Delta(a) \cup \Delta(b)$, where $\left(a_{1} \otimes a_{2}\right) \cup\left(b_{1} \otimes b_{2}\right)=(-1)^{\left|a_{2}\right|\left|b_{1}\right|}\left(a_{1} \cup b_{1}\right) \otimes\left(a_{2} \cup b_{2}\right)$.
(b) $\Delta(a)=a \otimes 1+1 \otimes a+\sum_{i} a_{i}^{\prime} \otimes a_{i}^{\prime \prime}$, where $\left|a_{i}\right|<|a|$ for all i.

Deduce that $S^{1} \times S^{2 n}$ cannot be given the structure of a topological group.
7. Let $U, V \subset X$ be open sets. If $x \in H_{*}(X, U)$ and $y \in H_{*}(X, V)$, show that $x \cup y \in$ $H_{*}(X, U \cup V)$. Deduce that $\mathbb{C P}^{n}$ cannot be covered by n contractible open sets.
8. Let Σ_{g} be the surface of genus g. Show that if $g<h$, any map $\Sigma_{g} \rightarrow \Sigma_{h}$ has degree 0 .
9. Let $X_{1}=\mathbb{C P}^{2} \# \mathbb{C P}^{2}, X_{2}=\mathbb{C P}^{2} \# \overline{\mathbb{P}}^{2}$, and $X_{3}=S^{2} \times S^{2}$. Show that $H_{*}\left(X_{1}\right) \simeq$ $H_{*}\left(X_{2}\right) \simeq H_{*}\left(X_{3}\right)$, but that no two of the X_{i} are homotopy equivalent.
10. Given that $f: S^{2} \times S^{2} \times S^{2} \rightarrow \mathbb{C P}^{3}$, what are the possible values of the degree of f ?
11. Let M be the Mobius bundle over S^{1}. Show that $M \oplus M$ is the trivial bundle.
12. Let $E=T S^{2}$ be the tangent bundle of S^{2}. Show that the unit sphere bundle $S(E)$ is homeomorphic to $S O(3)$, which is also homeomorphic to $\mathbb{R} \mathbb{P}^{3}$.
13. Identify $S^{3}-0$ with \mathbb{R}^{3} by stereographic projection. Describe what the fibres of the Hopf fibration look like under this identification. Sketch three distinct fibres.
14. Let $E \rightarrow B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$.
15. Let M be a smooth manifold, and let $\Delta \subset M \times M$ be the image of the diagonal embedding $M \rightarrow M \times M$ which sends x to (x, x). Show that $\nu_{\Delta} \simeq T M$.
J.Rasmussen@dpmms.cam.ac.uk

