ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 2

- 1. If $f_0, f_1: S^{n-1} \to X$ and $f_0 \sim f_1$, show that $X \cup_{f_0} D^n \sim X \cup_{f_1} D^n$.
- 2. Consider the cell structure on S^n which has two cells of dimension k for each $0 \le k \le n$, corresponding to the northern and southern hemispheres of $S^k \subset S^n$. Write out its cellular chain complex and verify that it has the correct homology.
- 3. Let $X = S^1 \times D^2/S^1 \times S^1$. Find a cell decomposition of X and compute its homology using the cellular chain complex.
- 4. Write $S^{2k-1} = \{(z_1, \ldots, z_k) \in \mathbb{C}^k \mid \sum |z_i|^2 = 1\}$ The group \mathbb{Z}/p acts on S^{2k-1} by $a \cdot \mathbf{z} = \lambda^a \mathbf{z}$, where $\lambda = e^{2\pi i/p}$. The lens space $L^{2k-1}(p, 1)$ is the quotient $S^{2k-1}/(\mathbb{Z}/p)$. Show that $L^{2k-1}(p, 1)$ has a cell decomposition with one cell of each dimension between 0 and k. Find $C^{cell}_*(L^{2k-1}(p, 1))$ and compute its homology.
- 5. Suppose $x \in H_n(X)$, where X is an arbitrary topological space. Show that there is a finite cell complex A and a map $f: A \to X$ so that $x \in \text{ im } f_*$.
- 6. Let $f: S^n \to S^n$ have degree k, and let $X = S^n \cup_f D^{n+1}$. Let $\pi: X \to X/S^n \simeq S^{n+1}$ be the quotient map. Compute $\pi^*: H^*(S^{n+1}) \to H^*(X)$ and $\pi_*: H_*(X) \to H_*(S^{n+1})$.
- 7. Let $0 \to A \to B \to C \to 0$ be a short exact sequence of abelian groups. Show there is a long exact sequence

 $\dots \to H^n(X, A) \to H^n(X, B) \to H^n(X, C) \to H^{n+1}(X, A) \to \dots$

The boundary map in this sequence is known as the Bockstein homomorphism. Compute this boundary map when $X = \mathbb{RP}^3$ and the short exact sequence of groups is $0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \to \mathbb{Z}/2$. Do the same for $X = L^3(4, 1)$.

- 8. Let C_* be a finitely generated chain complex defined over \mathbb{Z} . Show that $H_*(C) = 0$ if and only if $H_*(C \otimes \mathbb{Z}/p) = 0$ for every prime p. Now suppose $f : C_* \to C'_*$ is a chain map. Using problem 5 on Example Sheet 1, show that f is a chain homotopy equivalence if and only if the map $f_* : H_*(C \otimes \mathbb{Z}/p) \to H_*(C' \otimes \mathbb{Z}/p)$ is an isomorphism for every prime p.
- 9. Let $R = \mathbb{C}[x]/(x^3)$, and for i = 1, 2, let M_i be the *R*-module $\mathbb{C}[x]/(x^i)$. Find a free resolution of M_1 and use it to compute $\operatorname{Tor}_*^R(M_1, M_1)$ and $\operatorname{Tor}_*^R(M_1, M_2)$.
- 10. Let X be a finite cell complex, and let A be a subcomplex of X. Let $Y = X \times \{0\} \cup A \times I \subset X \times I$. Show that any map $Y \to Z$ extends to a map $X \times I \to Z$. (Hint: start with the case $X = D^n$, $A = S^{n-1}$.)

- 11. * Let $f: X \to Y$ be a map of finite cell complexes, and suppose $\pi_i(Y, *) = 0$ for all $0 < i \le n$. Using problem 10, show there is a map $\overline{f}: X/X_n \to Y$ so that $\overline{f} \circ \pi \sim f$, where $\pi: X \to X/X_n$ is the quotient map. Deduce the following consequences:
 - (a) $H_i(Y) = 0$ for $0 < i \le n$.
 - (b) The Hurewicz homomorphism $\Phi: \pi_{n+1}(Y, *) \to H_{n+1}(Y)$ is surjective.
 - (c) If $\pi_i(Y, *) = 0$ for all i > 0, then Y is contractible.
- 12. * This question assumes some knowledge of π_1 .
 - (a) Construct a connected finite cell complex X with $\widetilde{H}_*(X) = 0$ but which is not contractible.
 - (b) Find a map $f: S^1 \vee S^2 \to S^1 \vee S^2$ which induces the identity map on $H_*(S^1 \vee S^2)$, but is not homotopic to the identity.

J.Rasmussen@dpmms.cam.ac.uk