ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 2

1. If $f_{0}, f_{1}: S^{n-1} \rightarrow X$ and $f_{0} \sim f_{1}$, show that $X \cup_{f_{0}} D^{n} \sim X \cup_{f_{1}} D^{n}$.
2. Consider the cell structure on S^{n} which has two cells of dimension k for each $0 \leq k \leq n$, corresponding to the northern and southern hemispheres of $S^{k} \subset S^{n}$. Write out its cellular chain complex and verify that it has the correct homology.
3. Let $X=S^{1} \times D^{2} / S^{1} \times S^{1}$. Find a cell decomposition of X and compute its homology using the cellular chain complex.
4. Write $S^{2 k-1}=\left\{\left.\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}\left|\sum\right| z_{i}\right|^{2}=1\right\}$ The group \mathbb{Z} / p acts on $S^{2 k-1}$ by $a \cdot \mathbf{z}=\lambda^{a} \mathbf{z}$, where $\lambda=e^{2 \pi i / p}$. The lens space $L^{2 k-1}(p, 1)$ is the quotient $S^{2 k-1} /(\mathbb{Z} / p)$. Show that $L^{2 k-1}(p, 1)$ has a cell decomposition with one cell of each dimension between 0 and k. Find $C_{*}^{\text {cell }}\left(L^{2 k-1}(p, 1)\right)$ and compute its homology.
5. Suppose $x \in H_{n}(X)$, where X is an arbitrary topological space. Show that there is a finite cell complex A and a map $f: A \rightarrow X$ so that $x \in \operatorname{im} f_{*}$.
6. Let $f: S^{n} \rightarrow S^{n}$ have degree k, and let $X=S^{n} \cup_{f} D^{n+1}$. Let $\pi: X \rightarrow X / S^{n} \simeq S^{n+1}$ be the quotient map. Compute $\pi^{*}: H^{*}\left(S^{n+1}\right) \rightarrow H^{*}(X)$ and $\pi_{*}: H_{*}(X) \rightarrow H_{*}\left(S^{n+1}\right)$.
7. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups. Show there is a long exact sequence

$$
\ldots \rightarrow H^{n}(X, A) \rightarrow H^{n}(X, B) \rightarrow H^{n}(X, C) \rightarrow H^{n+1}(X, A) \rightarrow \ldots
$$

The boundary map in this sequence is known as the Bockstein homomorphism. Compute this boundary map when $X=\mathbb{R} \mathbb{P}^{3}$ and the short exact sequence of groups is $0 \rightarrow \mathbb{Z} / 2 \rightarrow$ $\mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2$. Do the same for $X=L^{3}(4,1)$.
8. Let C_{*} be a finitely generated chain complex defined over \mathbb{Z}. Show that $H_{*}(C)=0$ if and only if $H_{*}(C \otimes \mathbb{Z} / p)=0$ for every prime p. Now suppose $f: C_{*} \rightarrow C_{*}^{\prime}$ is a chain map. Using problem 5 on Example Sheet 1, show that f is a chain homotopy equivalence if and only if the map $f_{*}: H_{*}(C \otimes \mathbb{Z} / p) \rightarrow H_{*}\left(C^{\prime} \otimes \mathbb{Z} / p\right)$ is an isomorphism for every prime p.
9. Let $R=\mathbb{C}[x] /\left(x^{3}\right)$, and for $i=1,2$, let M_{i} be the R-module $\mathbb{C}[x] /\left(x^{i}\right)$. Find a free resolution of M_{1} and use it to compute $\operatorname{Tor}_{*}^{R}\left(M_{1}, M_{1}\right)$ and $\operatorname{Tor}_{*}^{R}\left(M_{1}, M_{2}\right)$.
10. Let X be a finite cell complex, and let A be a subcomplex of X. Let $Y=X \times\{0\} \cup A \times I \subset$ $X \times I$. Show that any map $Y \rightarrow Z$ extends to a map $X \times I \rightarrow Z$. (Hint: start with the case $X=D^{n}, A=S^{n-1}$.)
11. ${ }^{*}$ Let $f: X \rightarrow Y$ be a map of finite cell complexes, and suppose $\pi_{i}(Y, *)=0$ for all $0<i \leq n$. Using problem 10 , show there is a map $\bar{f}: X / X_{n} \rightarrow Y$ so that $\bar{f} \circ \pi \sim f$, where $\pi: X \rightarrow X / X_{n}$ is the quotient map. Deduce the following consequences:
(a) $H_{i}(Y)=0$ for $0<i \leq n$.
(b) The Hurewicz homomorphism $\Phi: \pi_{n+1}(Y, *) \rightarrow H_{n+1}(Y)$ is surjective.
(c) If $\pi_{i}(Y, *)=0$ for all $i>0$, then Y is contractible.
12. * This question assumes some knowledge of π_{1}.
(a) Construct a connected finite cell complex X with $\widetilde{H}_{*}(X)=0$ but which is not contractible.
(b) Find a map $f: S^{1} \vee S^{2} \rightarrow S^{1} \vee S^{2}$ which induces the identity map on $H_{*}\left(S^{1} \vee S^{2}\right)$, but is not homotopic to the identity.
J.Rasmussen@dpmms.cam.ac.uk

