EXAMPLE SHEET 2

- 1. Let M be the Mobius bundle over S^1 . Show that $M \oplus M$ is the trivial bundle.
- 2. Let $E = TS^2$ be the tangent bundle of S^2 . Show that the unit sphere bundle S(E) is homeomorphic to SO(3), which is also homeomorphic to \mathbb{RP}^3 . What is the Euler class of E?
- 3. Identify $S^3 0$ with \mathbb{R}^3 by stereographic projection. Describe what the fibres of the Hopf fibration look like under this identification. Sketch three distinct fibres.
- 4. If $E \to B$ is a real vector bundle, let E^* be the vector bundle $\text{Hom}(E, \mathbb{R})$. Show that $E \cong E^*$. If E is a complex vector bundle, let E^* be the vector bundle $\text{Hom}(E, \mathbb{C})$. Give an example where $E \ncong E^*$.
- 5. Let $E \to B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$.
- 6. Let $\pi: E \to B$ be a fibration over a path connected base B. Show that $\pi^{-1}(x) \sim \pi^{-1}(y)$ for all $x, y \in B$.
- 7. Show that the rank of $\pi_7(S^4)$ is nonzero. (Hint: quaternions.)
- 8. Prove that S^{∞} is contractible.
- 9. Suppose that L_1 and L_2 are complex line bundles over B which are both locally trivial with respect to an open cover $\{U_\alpha\}$ of B. Describe how transition functions for L_1 and L_2 with respect to this cover are related to transition functions for $L_1 \otimes L_2$. Show that $c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$. (Hint: consider a map $BU(1) \times BU(1) \to BU(1)$.)
- 10. Let $i_n: U(n) \to U(n+1)$ be the map which sends a matrix A to $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$. Show that the map $i_{n*}: \pi_k(U(n)) \to \pi_k(U(n+1))$ is an isomorphism for sufficiently large n relative to k; in other words, that the group $\pi_k(U(n))$ stabilizes as $n \to \infty$. (A famous theorem of Bott says that the limiting group $\pi_k(U)$ is \mathbb{Z} if k is odd and 0 if k is even.)
- 11. Let G be a connected Lie group. By considering transition functions, show that the set of principal G-bundles over S^n up to isomorphism is in bijection with $\pi_{n-1}(G)$.

- 12. Suppose that $EG \to BG$ is a classifying bundle for G. Use the preceding problem to show that $\pi_k(EG) = 0$ for all k > 0.
- 13. Given $\gamma \in \pi_{n-1}(SO(n))$, let E_{γ} be the principal SO(n) bundle over S^n associated to γ in problem 11, and let E'_{γ} be the associated vector bundle. Show that the map $\pi_{n-1}(SO(n)) \to H^n(S^n)$ which sends γ to $e(E'_{\gamma})$ is a homomorphism.
- 14. Show that $SO(4) \simeq (SU(2) \times SU(2))/(\pm(I,I))$. (Hint: quaternions.) Deduce that the set of SO(4) bundles over S^4 is naturally in bijection with $\mathbb{Z} \oplus \mathbb{Z}$. Show that there are infinitely many distinct real 4-dimensional vector bundles over S^4 whose unit sphere bundle is homotopy equivalent to S^7 . (All of these unit sphere bundles are homeomorphic to S^7 , but they are not all diffeomorphic.)
- 15. Let $E_i \subset \mathbb{R}^n$ $(1 \leq i \leq n)$ be the subspace spanned by e_1, \ldots, e_i . Define a (discontinuous) map $f: G_{\mathbb{C}}(k,n) \to \mathbb{Z}^n$ by $f_n(H) = \mathbf{a}$ where $a_i = \dim H \cap E_i$. Show that $G_C(k,n)$ can be given the structure of a finite cell complex, in which the open cells are the sets are of the form $f^{-1}(p)$ for $p \in \mathbb{Z}^n$. Deduce that $H_*(G_{\mathbb{C}}(k,n))$ (ignoring gradings) is free of rank $\binom{n+k}{n}$. Compute $H_*(G_{\mathbb{C}}(2,4))$ (with gradings).
- 16. Show that a map $\phi: G_1 \to G_2$ induces a map $B\phi: BG_1 \to BG_2$. Taking $G_1 = U(1)^n$ and $G_2 = U(n)$ and ϕ to be the map whose image is the diagonal matrices in U(n), show that if $a \in H^*(BU(n))$,

$$B\phi^*(a) \in H^*(BU(1)^n) \simeq \mathbb{Z}[x_1, \dots, x_n]$$

is invariant under the action of S_n which permutes the x_i . If you know something about Lie groups, formulate an analogous statement for an arbitrary connected Lie groups G. Describe the corresponding ring of invariant polynomials for G = SO(n).

J.Rasmussen@dpmms.cam.ac.uk