ALGEBRAIC TOPOLOGY (PART III)

MICHELMAS 2012

EXAMPLE SHEET 1

1. If $X_{1} \sim X_{2}$ and $Y_{1} \sim Y_{2}$, show there is a bijection between the sets $\left[X_{1}, Y_{1}\right]$ and $\left[X_{2}, Y_{2}\right]$.
2. Let $\sigma_{1}, \sigma_{2}:[0,1] \rightarrow \mathbb{R}$ be given by $\sigma_{1}(x)=x, \sigma_{2}(x)=1-x$. Identifying $[0,1]$ with Δ^{1} gives a cycle $e_{\sigma_{1}}+e_{\sigma_{2}}$ in $C_{1}(\mathbb{R})$. Find an $x \in C_{2}(\mathbb{R})$ with $d x=e_{\sigma_{1}}+e_{\sigma_{2}}$.
3. What are the possible isomorphism types of the abelian group G in the following exact sequences?

$$
\begin{array}{rlr}
0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0 & 0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} / 4 \rightarrow 0 \\
0 \rightarrow \mathbb{Z} / 4 \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0 & 0 \rightarrow \mathbb{Z} / 4 \rightarrow G \rightarrow \mathbb{Z} / 4 \rightarrow 0
\end{array}
$$

4. Let X be the genus 2 surface shown in Figure 1.
(a) Use the Mayer Vietoris sequence to compute $H_{*}(X)$. (Hint: divide X along A.)
(b) Let A, B and C be curves as shown in the figure. What are $H_{*}(X-A), H_{*}(X-B)$ and $H_{*}(X-C)$?
(c) Use the exact sequence of a pair to compute $H_{*}(X, A), H_{*}(X, B)$ and $H_{*}(X, C)$.
5. Let $i: S^{1} \times D^{2} \rightarrow S^{3}$ be an embedding, and let U be the interior of its image. Use the Mayer-Vietoris sequence to compute $H_{*}\left(S^{3}-U\right)$.
6. Show S^{n+m+1} can be decomposed as the union of $S^{n} \times D^{m+1}$ and $D^{n+1} \times S^{m}$ along their common boundary $S^{n} \times S^{m}$. Compute $H_{*}\left(S^{n} \times S^{m}\right)$ and $H_{*}\left(D^{n+1} \times S^{m}, S^{n} \times S^{m}\right)$.
7. Suppose $f: T^{2} \rightarrow T^{2}$ is a homeomorphism. Show that $f_{*}: H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(T^{2}\right)$ defines an element of $G L(2, \mathbb{Z})$, and that any element of $G L(2, \mathbb{Z})$ can be realized by a homeomorphism of T^{2}.
8. (Cancellation) Suppose (C, d) is a chain complex, that $C_{n}=C_{n}^{\prime} \oplus A, C_{n-1}=C_{n-1}^{\prime} \oplus A$, and that the component of d_{n} mapping A to A is the identity map. Show that (C, d) is chain homotopy equivalent to $\left(C^{\prime}, d^{\prime}\right)$, where $C_{i}^{\prime}=C_{i}$ for $i \neq n, n-1, d_{i}^{\prime}=d_{i}$ for $i \neq n-1, n, n+1$, and d_{n+1}^{\prime} is the composition of d_{n+1} with the projection onto C_{n}^{\prime}. (Hint: use $d^{2}=0$ to determine d_{n}.)
9. If $f: X \rightarrow X$ is a homeomorphism, let Y be the quotient of $X \times[0,1]$ obtained by identifying $(x, 0)$ and $(f(x), 1)$. Show there is a long exact sequence

$$
\longrightarrow H_{n+1}(Y) \longrightarrow H_{n}(X) \xrightarrow{1-f_{*}} H_{n}(X) \longrightarrow H_{n}(Y) \longrightarrow
$$

Compute $H_{*}(Y)$ when $X=S^{n}$ and f is the antipodal map; when $X=T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and f is multiplication by $\left(\begin{array}{ll}3 & 4 \\ 1 & 3\end{array}\right)$.
10. If $H_{*}(X)$ is a free abelian group, show that $H_{*}\left(X \times S^{1}\right) \cong H_{*}(X) \oplus H_{*-1}(X)$. (In fact, this is true even if $H_{*}(X)$ is not free.) Compute $H_{*}\left(T^{n}\right)$.
11. Show that if $f: D^{n} \rightarrow D^{n}$ is any continuous map, there is some $x \in D^{n}$ with $f(x)=x$. (Hint: if not, you can construct a map $D^{n} \rightarrow S^{n-1}$ which restricts to the identity on S^{n-1}.)
12. If $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ is a chain map, the mapping cone of f is the chain complex $\left(M(f), d_{f}\right)$ whose underlying group is given by $M(f)_{n}=C_{n-1} \oplus C_{n}^{\prime}$, and whose differential is given by

$$
\left(d_{f}\right)_{n}=\left(\begin{array}{cc}
d_{n-1} & 0 \\
(-1)^{n} f_{n-1} & d_{n}^{\prime}
\end{array}\right)
$$

Show that $\left(M(f), d_{f}\right)$ is a chain complex, and that if $f \sim g$, then $M(f) \sim M(g)$. By considering an appropriate mapping cone, give a proof of the Five Lemma. If C and C^{\prime} are free finitely generated chain complexes over \mathbb{Z}, prove that $H_{*}(M(f))=0$ if and only if f is a chain homotopy equivalence.
J.Rasmussen@dpmms.cam.ac.uk

