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Introduction

The Beilinson conjectures describe the leading coefficients of L-series of varieties over number fields up
to rational factors in terms of generalized regulators. We begin with a short but almost selfcontained

introduction to this circle of ideas. This is possible by using Bloch’s description of Beilinson’s motivic

cohomology and regulator map in terms of higher Chow groups and generalized cycle maps. Here we follow

[Bl3] rather closely. We will then sketch how much of the known evidence in favour of these conjectures —
to the left of the central point — can be obtained in a uniform way. The basic construction is Beilinson’s

Eisenstein symbol which will be explained in some detail. Finally in an appendix a map is constructed from

higher Chow theory to a suitable Ext-group in the category of mixed motives as defined by Deligne and
Jannsen. This smooths the way towards an interpretation of Beilinson’s conjectures in terms of a Deligne

conjecture for critical mixed motives [Sc2]. It also explains how work of Harder [Ha2] and Anderson fits

into the picture.

For further preliminary reading on the Beilinson conjectures, one should consult the Bourbaki seminar
of Soulé [So1], the survey article by Ramakrishnan [Ra2] and the introductory article by Schneider [Sch].

For the full story see the book [RSS] and of course Beilinson’s original paper [Be1]. Here one will also find

the conjectures for the central and near-central points, which for brevity we have omitted here.

1. Motivic cohomology

Motivic cohomology is a kind of universal cohomology theory for algebraic varieties. There are two con-

structions both generalizing ideas from algebraic topology. The first one is due to Beilinson [Be1]. He

defines motivic cohomology as a suitable graded piece of the γ-filtration on Quillen’s algebraic K-groups
tensored with Q. This is analogous to the introduction of singular cohomology as a suitable graded piece of

topological K-theory by Atiyah in [At] 3.2.7.

For smooth varieties there is a second more elementary construction which is due to Bloch [Bl2,3,4].

It is modeled on singular cohomology: instead of continuous maps from the n-simplex to a topological space
one considers algebraic correspondences from the algebraic n-simplex ∆n

∼= An to the variety. We proceed

with the details:

Let k be a field and set for n≥ 0

∆n =Speck[T0, . . . ,Tn]/(ΣTi−1).

There are face maps

(1.1) ∂i :∆n →֒∆n+1 for 0≤ i≤n+1

which in coordinates are given by

∂i(t0, . . . , tn)= (t0, . . . , ti−1,0, ti . . . , tn).

Let X be an equidimensional scheme over k. A face of X×∆m is the image of some X×∆m′ , m′<m under
a composition of face maps induced by (1.1)

∂i :X×∆n →֒X×∆n+1.

* Partially funded by NSF grant DMS–8610730
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We denote by zq(X,n) the free abelian group generated by the irreducible codimension q subvarieties of

X×∆n meeting all faces properly. Here subvarieties Y1,Y2⊂X×∆n of codimensions c1, c2 are said to meet
properly if every irreducible component of Y1∩Y2 has codimension ≥ c1 +c2 on X. Observe that zq(X,n) is

a subgroup of correspondences from ∆n to X. Using the differential

d=
n+1∑
i=0

(−1)i∂∗i : zq(X,n+1)→ zq(X,n)

one obtains a complex of abelian groups zq(X, ·). If X is a smooth quasiprojective variety over k setting

ΓX(q)· = zq(X,2q−·)

we define:

(1.2) Hp
M(X,Λ(q))=Hp(ΓX(q)·⊗Λ)

for any ring Λ. By one of the main results of Bloch these groups coincide for Λ = Q with the groups
Hp

M(X,Q(q)) defined by Beilinson using algebraic K-theory. Using either definition the following formal

properties can be proved:

(1.3) Theorem. (1) H ·
M( ,Q(∗)) is a contravariant functor from the category of smooth quasiprojective

varieties over k into the category of bigraded Q-vector spaces. For proper maps f :X→Y of pure codimension

c=dimY −dimX we also have covariant functoriality with a shift of degrees

f∗ :H ·
M(X,Q(∗))→H ·+2c

M (Y,Q(∗+c)).

(2) There is a cup product which is contravariant functorial, associative and graded commutative with

respect to ·.

(3) There are functorial isomorphisms compatible with the product structure

H2p
M(X,Q(p))=CHp(X)⊗Q .

(4) H1
M(X,Q(1))=Γ(X,O∗)⊗Q functorially.

(5) Let i : Y →֒X be a closed immersion (of smooth varieties) of codimension c with open complement

j :U =X−Y →֒X. Then there is a functorial long exact localization sequence

· · ·→H ·−2c
M (Y,Q(∗−c))

i∗→H ·
M(X,Q(∗))

j∗

→H ·
M(U,Q(∗))

→H ·+1−2c
M (Y,Q(∗−c))→·· · .

(6) If π :X ′→X is a finite galois covering with group G we have π∗π
∗ = |G| id and π∗π∗ =

∑
σ∈Gσ

∗.

In particular

π∗ :H ·
M(X,Q(∗)) ∼−→H ·

M(X ′,Q(∗))G

is an isomorphism, i.e. H ·
M( ,Q(∗)) has galois descent.

For zero dimensional X over Q the motivic cohomology groups are known by the work of Borel
[Bo1,Bo2] on algebraic K-theory of number fields. A proof of the following result which does not make use

of algebraic K-theory seems to be out of reach.
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(1.4) Theorem. Let k be a number field, X =Speck. Then

(1)
dimQH

1
M(X,Q(q) = r1 +r2

= r2

if q > 1 is odd

if q > 1 is even

where r1, r2 denote the numbers of real resp. complex places of k.

(2) Hp
M(X,Q(q))= 0 for p 6=1.

Observe that for X as in the theorem we have:

H1
M(X,Q(1))= k∗⊗ZQ.

In view of the class number formula which involves a regulator formed with the units of k we see that for

arithmetic purposes the groups Hp
M(X,Q(q)) may have to be replaced by smaller ones:

If X is a variety over Q we set:

Hp
M(X,Q(q))Z =Hp

M(X,Q(q)) for q >p.(1.6)

Hp
M(X,Q(q))Z =Im(Hp

M(X ,Q(q))→Hp
M(X,Q(q)) for q≤ p.(1.7)

Here X is a proper regular model of X over SpecZ which is supposed to exist. The groups Hp
M(X ,Q(q)) are

either defined by the above construction which also works over SpecZ or by using the K-theory of X . The

“motivic cohomology groups of an integral model” Hp
M(X,Q(q))Z are independent of X . It is a conjecture

that (1.6) holds if the definition in (1.7) is extended to q >p.

2. Deligne cohomology and regulator map

The definition of Deligne cohomology which is about to follow may seem rather unmotivated at first. We

refer to (2.9) below where a conceptual interpretation of these groups as Ext’s in a category of mixed Hodge

structures is described.

(2.1) For a subring Λ of C we set Λ(q) = (2πi)qΛ⊂C. Let X be a smooth projective variety over C and

consider the following complex of sheaves on the analytic manifold Xan:

R(q)D =(R(q)→O→·· ·→Ωq−1)

in degrees 0 to q. We set
Hp

D(X,R(q))=Hp(Xan,R(q)D).

Apart from the Deligne cohomology groups we need the singular (Betti) cohomology groups of Xan

Hp
B(X,Λ(q))=Hp

sing(Xan,Λ(q))

and the de Rham groups
Hp

DR(X)=Hp
Zar(X,Ω

·
X/C)∼=Hp(Xan,Ω

·).

(2.2) If X is smooth projective over R there is an antiholomorphic involution F∞ on (XC)an, the infinite

Frobenius. We set

Hp
D(X,R(q))=Hp

D(XC,R(q))+

where the superscript + denotes the fixed module under

F
∗

∞ =F ∗
∞ ◦(complex conjugation on the coefficients).
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The groups Hp
B(X,Λ(q)) are defined similarly if 1/2∈Λ. Observe that under the comparison isomorphism

Hp
DR(XC/C) ∼−→Hp

B(XC,C)

the de Rham conjugation corresponds to F
∗

∞ and hence

Hp
DR(X) ∼−→Hp

B(X,C).

(2.3) Recall that if u :A·→B· is a morphism of complexes of sheaves the cone of u is the complex

Cone(A· u
−→B·)=A·[1]⊕B·

with the differentials

Aq+1⊕Bq→Aq+2⊕Bq+1

(a,b) 7→ (−d(a),u(a)+d(b)).

There are quasi-isomorphisms on Xan

Cone(Ω≥q⊕R(q)→Ω·)[−1] ∼−→R(q)D

where Ω≥q = (0→ ·· · → 0→ Ωq → Ωq+1 → ·· · ) and u is the difference of the obvious embeddings. For a
smooth projective variety X over R or C we thus obtain a long exact sequence

(2.3.1)
· · ·→Hp

D(X,R(q))→F qHp
DR(X)⊕Hp

B(X,R(q))

→Hp
DR(X)→Hp+1

D (X,R(q))→·· · .

Recall here the definition of the Hodge filtration (for X/C say):

F qHp
DR(X)= Im(Hp

Zar(X,Ω
≥q
X/C)→Hp

Zar(X,Ω
·
X/C))

and observe that by GAGA and the degeneration of the Hodge spectral sequence we have

F qHp
DR(X)∼=Hp

Zar(X,Ω
≥q
X/C)∼=Hp(Xan,Ω

≥q).

Now assume that X is a variety over R. Using Hodge theory we obtain for q > p
2 +1 exact sequences

0→F qHp
DR(X) →Hp

B(X,R(q−1))→Hp+1
D (X,R(q))→ 0(B)

0→Hp
B(X,R(q))→Hp

DR(X)/F q →Hp+1
D (X,R(q))→ 0.(D)

For a smooth projective variety X over Q these define Q-structures

(2.3.2)
Bp,q =det(Hp

B(XR,Q(q−1)))⊗det(F qHp
DR(X/Q))∨

Dp,q =det(Hp
DR(X/Q)/F q)⊗det(Hp

B(XR,Q(q))∨

on detHp+1
D (XR,R(q)). Here detW denotes the highest exterior power of a finite dimensional vector space

and ∨ is the dual.

(2.4) For smooth quasiprojective varieties X over C the above definition of Deligne cohomology leads to
vector spaces which are in general infinite dimensional. A more sophisticated definition imposing growth

conditions at infinity remedies this defect.
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By resolution of singularities there exists an open immersion

j :X →֒X

of X into a smooth, projective variety X over C such that the complement D = X −X is a divisor with

only normal crossings. Consider the natural maps of complexes of sheaves Ω≥q

X
〈D〉 → j∗Ω

·
X on Xan and

R(q)→Ω·
X on Xan. Choose injective resolutions

R(q) ∼−→ I · and Ω·
X
∼−→J ·

and set
Rj∗R(q)= j∗I

· and Rj∗Ω
·
X = j∗J

·.

We get induced maps on Xan

Ω≥q

X
〈D〉→Rj∗Ω

·
X and Rj∗R(q)→Rj∗Ω

·
X

and using the difference of these we can form

R(q)D =Cone(Ω≥q

X
〈D〉⊕Rj∗R(q)→Rj∗Ω

·
X)[−1].

The Deligne cohomology groups
Hp

D(X,R(q))=Hp(Xan,R(q)D)

are independent of the choice of resolutions and compactification. As before we can define D-cohomology of

varieties over R.

For X over R or C there is still a long exact sequence (2.3.1) where now F qHp
DR(X) is the Deligne

Hodge filtration on Hp
DR(X). Observe that by the degeneration of the logarithmic Hodge spectral sequence

F qHp
DR(X)∼=Hp(Xan,Ω

≥q

X
〈D〉).

Assertions (1), (2), (5), (6) of theorem (1.3) have their counterparts for Deligne cohomology. The analogue

of assertion (4) is the formula

(2.4.1) H1
D(X,R(1))= {g ∈H0(Xan,O/R(1)) | dg ∈H0(Xan,Ω

1
X
〈D〉)}

which follows immediately from the definition. The typical element of this group should be thought of as an

R-linear combination of logarithms of regular invertible functions on X.

(2.5) In the proofs of the Beilinson conjectures a more explicit description of D-cohomology in terms of

C∞-differential forms is used. Let A· be the de Rham complex of real valued C∞-forms and let πk :C→R(k),
πk(z)= 1

2 (z+(−1)kz̄) be the natural projection. There is a quasi isomorphism u

R(q)D =Cone(Ω≥q

X
〈D〉⊕Rj∗R(q)→Rj∗Ω

·
X)[−1]

u

y

R̃(q)D :=Cone(Ω≥q

X
〈D〉→ j∗A

·
X⊗R(q−1))[−1]

on Xan induced by the projection

Ω≥q

X
〈D〉⊕Rj∗R(q)→Ω≥q

X 〈D〉

and by the composition:

Rj∗Ω
·
X = j∗J

·→ j∗A
·
X⊗C

πq−1

−−→ j∗A
·
X⊗R(q−1).
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In particular

Hp
D(X,R(q))∼=Hp

D(Xan,R̃(q)D).

For p= q we obtain by a straightforward computation

(2.5.1) Hp
D(X,R(p))∼=

{
ϕ∈H0(Xan,A

p−1⊗R(p−1))|dϕ=πp−1(ω),

ω ∈H0(Xan,Ω
p

X
〈D〉)

}

dH0(Xan,Ap−2⊗R(p−1))
.

In case p=1 we find

H1
D(X,R(1))∼= {ϕ∈H0(Xan,A

0) | dϕ=π0(ω), ω ∈H0(Xan,Ω
1
X
〈D〉)}.

Under this isomorphism the section g of (2.4.1) is mapped to ϕ=π0(g) and ω= dg.

Using (2.5.1) as an identification the cup product of classes [ϕa], [ϕb] in Ha
D(X,R(a)) resp. Hb

D(X,R(b))

with associated forms ωa, ωb is represented by

ϕa∪ϕb :=ϕa∧πbωb +(−1)aπaωa∧ϕb.

One checks that ωa∧ωb is associated to ϕa∪ϕb.

We also note that in this description the boundary map in (2.4.1) is given by

∂ :Hp
D(X,R(p))→F pHp

DR(X)⊕Hp
B(X,R(p))

ϕ 7→ (ω, [ω]).

Observe that πp−1[ω] = 0 and hence [ω]∈Hp
B(X,R(p)).

(2.6) The final ingredient in the formulation of the Beilinson conjectures is the regulator map. This is a

co- and contravariant functorial homomorphism

rD :H ·
M(X,Q(∗))→H ·

D(X,R(∗))

for smooth quasiprojective varieties X over R or C which commutes with cup products. If motivic cohomol-

ogy is described in terms of K-theory rD is a generalized Chern character. In the description of H ·
M given

in section 1 rD becomes a generalized cycle map (see (2.8)). There is a commutative diagram:

(2.6.1)

H1
M(X,Q(1))

rD−→ H1
D(X,R(1))

‖
log

ր ↓ ≀π0

O∗(X)⊗Q →
log ||

{
ϕ∈Γ(X,A0)

∣∣∣ dϕ = π0(ω), ω with log-sing. at
infinity

}

If X is a smooth quasiprojective variety over Q the regulator map is defined by composition:

rD :H ·
M(X,Q(∗))

res
−→H ·

M(XR,Q(∗))
rD−→H ·

D(XR,R(∗)).

(2.7) The formal properties of motivic and Deligne cohomology and of the regulator map which we have

mentioned up to now are sufficient for an understanding of the proofs of Beilinson’s conjectures in the cases

sketched in section 4. For Bloch’s actual construction of the regulator map as a generalized cycle class map
in (2.8) however more properties of Deligne cohomology are required. We list them briefly:

(2.7.1) There are relative D-cohomology groups Hp
D,Y (X,R(q)) for smooth, quasi-projective X over R and

C and arbitrary closed subschemes Y of X. These fit into a co- and contravariant functorial long exact

sequence

→Hp
D,Y (X,R(q))→Hp

D(X,R(q))→Hp
D(X−Y,R(q))→Hp+1

D,Y (X,R(q))→·· ·
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(2.7.2) If Y ⊂X has pure codimension q there is a contravariant functorial cycle class [Y ] in H2q
D,Y (X,R(q)).

Moreover weak purity holds: in other words, Hp
D,Y (X,R(q))= 0 for p< 2q.

(2.7.3) Homotopy: Hp
D(X×A1,R(q))=Hp

D(X,R(q)).

(2.7.4) For Y ⊂ X of pure codimension there are complexes of R-vector spaces D·
Y (X,q) which are con-

travariant functorial with respect to cartesian diagrams

Y ′ →֒ X ′

↓ ↓
Y →֒ X

and such that

Hp
D,Y (X,R(q))=Hp(D·

Y (X,q)) functorially.

Remarks. (1) The relative D-cohomology groups are defined by

Hp
D,Y (X,R(q))=Hp(X,Cone(R(q)D,X

res
−→R(q)D,X−Y )[−1])

where R(q)D,X and R(q)D,X−Y are the Deligne complexes on X and X − Y computed with respect to

compatible compactifications. The long exact sequence is then an immediate consequence.

(2) For the complexes D·(X,q)=D·
φ(X,q) we can choose:

D·(X,q)= lim
→
sČ(U ,R(q)D)

the limit over all coverings U of Xan of the associated simple complex to the Čech complex with coefficients

in R(q). Moreover

D·
Y (X,q) :=Cone(D·(X,q)

res
−→D·(X−Y,q))[−1].

(2.8) We now proceed to the construction [Bl3] of the regulator map for smooth quasiprojective varieties

X over R or C. Consider the cohomological double complex

D·(X∗, q)=D·(X×∆−∗, q)

non-zero for · ≥ 0, ∗≤ 0 with ∗-differential:

d=
−a∑
i=0

(−1)i∂∗i :Db(Xa, q)→Db(Xa+1, q).

Similarly another double complex is defined

D·
supp(X∗, q)= lim

→

Z∈zq(X,−∗)

D·
SuppZ(X−∗, q).

For technical reasons we truncate these complexes (non-trivially) in large negative ∗-degree:

D·
(supp)(X

∗, q)= τ∗≥−ND
·
(supp)(X

∗, q)

where N >> 0 is an even integer.

Consider the spectral sequence

Ea,b
1 =Hb(D·(Xa, q))⇒Ha+b(sD·(X∗, q))
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where s denotes the associated simple complex of a double complex. Because of the homotopy axiom

Ea,b
1 =Hb

D(X,R(q)) for −N ≤ a≤ 0, b≥ 0

and Ea,b
1 = 0 for all other a, b. Moreover da,b

1 = 0 except for a even, −N ≤ a < 0 and b ≥ 0 in which case

da,b
1 = id. Hence we obtain isomorphisms

Hp(sD·(X∗, q))=Hp
D(X,R(q)).

In the spectral sequence

Ea,b
1 =Hb(D·

supp(Xa, q))⇒Ea+b =Ha+b(sD·
supp(X∗, q))

we have

Ea,b
1 = lim

→

Z∈zq(X,−a)

Hb
D,SuppZ(Xa,R(q))

for −N ≤ a≤ 0, b≥ 0 and Ea,b
1 =0 otherwise. The cycle map induces a natural map of complexes

ΓX(q)∗→E∗−2q,2q
1

and hence for all p a map

Hp
M(X,Z(q))→Ep−2q,2q

2 .

Due to weak purity the groups Ea,b
1 are zero for b< 2q and all r≥ 1. Hence there are natural maps

Ea,2q
2 →→Ea,2q

∞ →֒Ea+2q.

Choosing −N <p−2q the regulator map rD is defined by composition:

Hp
M(X,Z(q)) −−−−→ Hp(sD·

supp(X∗, q))

rD

y
ynat.

Hp
D(X,R(q)) Hp(sD·(X∗, q)).

It is independent of N . Similarly a regulator (or cycle) map into continuous étale cohomology [Ja1] can be

constructed.

(2.9) We now sketch how the notions introduced fit into the philosophy of motives. More details will be

given in the appendix.

Assume X is smooth, projective over R. Let MHR be the abelian category of R-mixed Hodge struc-

tures with the action of a real Frobenius. According to Beilinson ([Be3], see also [Ca]) there is a natural

isomorphism for p+1< 2q
Hp+1

D (X,R(q)) ∼−→Ext1MHR
(R(0),Hp

B(X)(q)).

One would like to give a similar interpretation to the motivic cohomology groups as Ext-groups in a suitable

abelian category of “mixed motives”. The ultimate definition of such a category remains to be found.

However via realizations (ℓ-adic, Betti, . . . ) working definitions have been found for MMQ and MMZ the
categories of mixed motives over Q resp. Z, see [De3,Ja2,Sc2]. It is shown in the appendix that for smooth,

projective varieties X over Q there are natural maps (conjecturally isomorphisms) for p+1< 2q

Hp+1
M (X,Q(q))→Ext1MMQ

(Q(0),Hp(X)(q))

and one hopes that the image of Hp+1
M (X,Q(q))Z is precisely Ext1MMZ

(Q(0),Hp(X)(q)). Moreover there is

a commutative diagram

Hp+1
M (X,Q(q))

rD−−−−→ Hp+1
D (XR,R(q))

y
y≀

Ext1MMQ
(Q(0),Hp(X)(q))

HB−−−−→ Ext1MHR
(R(0),Hp

B(XR)(q))

where HB maps a mixed motive to the Betti realization over R endowed with its mixed R-Hodge structure.
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3. The conjectures

Recall the definition of the i-th L-series of a smooth projective variety X over Q by the following Euler
product:

L(Hi(X),s)=
∏
p
Pp(H

i(X),p−s).

Here we have set

Pp(H
i(X), t)=det

(
1−Frpt

∣∣Hi
ét(XQp

,Qℓ)
Ip

)

where ℓ is a prime different from p, Ip is the inertia group in GQp
and Frp is the inverse of a Frobenius

element in GQp
. For primes p where X has good reduction the polynomial Pp(H

i(X), t) has coefficients in

Q independent of ℓ. The product of the Pp(H
i(X),p−s) extended over the good primes converges absolutely

in the usual topology for Res> i
2 +1. Conjectures [Se]:

- The polynomials Pp(H
i(X), t) lie in Q[t] for all p, and are independent of ℓ, and nonvanishing for

|t|<p−1−i/2.

- The Euler product has a meromorphic continuation to the whole plane.

- There is a functional equation relating L(Hi(X),s) and L(Hi(X), i+1−s) as in [Se].

Concerning the special values of these L-functions there is the following conjecture.

(3.1) Conjecture. Assume n> i
2 +1. Then:

(3.1.1) rD⊗R :Hi+1
M (X,Q(n))Z⊗R→Hi+1

D (XR,R(n)) is an isomorphism.

(3.1.2) rD(detHi+1
M (X,Q(n))Z)=L(Hi(X),n)Di,n in detHi+1

D (XR,R(n)) with Di,n as defined in (2.3.2).

If the above hypothesis on the L-function of Hi(X) are satisfied assertion (3.1.2) is equivalent to:

(3.1.3) rD(detHi+1
M (X,Q(n))Z)=L(Hi(X), i+1−n)∗Bi,n

in detHi+1
D (XR,R(n)) where L(Hi(X),k)∗ denotes the leading coefficient at s= k in the Taylor development

of the L-series [Ja3].

The following result on the order of vanishing follows from a straightforward calculation and the expected

functional equation[Sch]:

(3.1.4)
ords=i+1−nL(Hi(X),s) =dimHi+1

D (XR,R(n))

=dimHi+1
M (X,Q(n))Z assuming (3.1.1).

Observe that the conjectures determine the special values of the L-series up to a non-vanishing rational
number. Equation (3.1.3) is the original proposal by Beilinson. The version (3.1.2) is a reformulation due

to Deligne. It requires less information about the L-series to make sense.

For the remaining values of n: the right central point n = i
2 + 1 and the central point n = i+1

2 the

conjectures have to be modified ([Be1], Conjecture 3.7 et seq.). Since we don’t deal with examples for these
cases we skip the formulation. A uniform approach is possible in the framework of mixed motives: The

Beilinson conjectures are seen to be equivalent to a Deligne conjecture for critical mixed motives [Sc2]. An

integral refinement of the conjectures has been proposed by Bloch and Kato [BlK] using their philosophy of
Tamagawa measures for motives. Essentially the only case where (3.1.1) is known is for X the spectrum of

a number field. In this case the result is due to Borel with a different definition of the regulator map. For a

comparison of the regulator maps see [Be1,Rap]. For a proof of Borel’s result the K-theoretical approach
to motivic cohomology is essential.

In a number of cases to be treated in section 5 and 6 the following weakened version of the conjectures

can be proved.

9



(3.2) Conjecture. Assume n > i
2 + 1. Then (3.1.1) and (3.1.2) (or (3.1.3)) hold with Hi+1

M (X,Q(n))Z
replaced by a suitable Q-subspace.

Thus motivic cohomology as we have defined it should at least be large enough so that a sensible

regulator can be formed having the expected relation to the L-values.

(3.3) Generalization to Chow motives. For some well known L-series the above framework is too

restrictive. For example the Dirichlet L-functions of algebraic number theory are not covered. This is

remedied by extending the above notions and conjectures to the category of Chow motives, which should be
thought of as generalised varieties. Fix a number field T/Q – the field of coefficients. Let Vk be the category

of smooth projective varieties over a field k. Consider the category Ck(T ) with objects TX for each object

X in Vk and morphisms

Hom(TX,TY )=CHdim Y (X×k Y )⊗T.

For a :TX1→TX2 and b :TX2→TX3 composition is defined by intersecting cycles:

b◦a= p13∗(p
∗
12a ·p

∗
23b)

where pij :X1×X2×X3→Xi×Xj are the projections. Sending X to TX and a morphism f to its graph
f̃ defines a covariant functor from Vk→Ck(T ). The category of effective Chow motives M+

k (T ) is obtained

by adding images of projectors to Ck(T ). Objects are pairs M = (TX,p) where p ∈ End(TX), p2 = p and

morphisms are the obvious ones. Setting

H?(M)= p∗(H?(X)⊗T )

the cohomologies and conjecture (3.1) factorize overM+
Q(T ). They determine special values of T⊗C-valued

L-series L(Hi(M),s) up to numbers in T ∗. See [Be1,Ja3,Kl,Ma] for more details.

Remarks. The category M+
Q(T ) is not abelian. If instead of Chow theory one considers cycles modulo

homological equivalence one obtains what is essentially Grothendieck’s category of (effective) motives. Stan-

dard conjectures on algebraic cycles would imply that it is an abelian semisimple category. Nowadays these
motives are called pure in contrast to more general “mixed” motives which should come e.g. from the Hi of

singular varieties. The category of these mixed motives MMQ was already alluded to in section (2.9). As

yet there is no Grothendieck style definition for MMQ using cycles but only a definition via realizations.

As an example of a Chow motive let us construct the motive Mχ of a Dirichlet character χ of a number

field k: Via class field theory we may view χ as a one-dimensional representation of the absolute galois group
Gk of k with values in a number field T :

χ :Gk→T ∗.

We may assume that T is generated over Q by the values of χ. Choose a finite abelian extension F/k such

that χ factorizes over G=Gal(F/k) and set

Mχ = eχ(TSpec(F ))

inM+
k (T ) where eχ is the idempotent:

eχ =
1

|G|

∑
σ∈G

χ(σ)σ̃−1 in T [G].

Observe that Mχ is independent of the choice of F .

We end this section with a short discussion of known cases for the conjectures. (3.1) is known for
X =SpecF , F/Q a number field [Bo2] and for the motives Mχ attached to Dirichlet characters of k=Q or

k=K an imaginary quadratic field [Be1,Den2]. In section 5 and 6 we will deduce the evidence for the weak
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conjecture (3.2) from the theory of Beilinson’s Eisenstein symbol map (section 4). The logical dependences

in our approach are depicted in a diagram:

modular curves/Q;
Shimura curves/Q [Ra1]

↑
modular curves [Be1,Be2,SS1]

↑

Eisenstein symbol →
modular forms of
weight ≥ 2 [Sc2]

↓ ց

Dirichlet characters of imaginary
quadratic fields [Den2]

algebraic Hecke characters
of imaginary quadratic
fields [Den1,Den2]

↓ ↓

Dirichlet characters
of Q [Be1,Den2,N]

CM elliptic curves over
number fields of Shimura

type [Bl1,Den1]

4. Kuga-Sato varieties and the Eisenstein symbol

The Eisenstein symbol is a certain “universal” construction of elements of motivic cohomology of an elliptic

curve, or more generally self-products of an elliptic curve. It has its origins in the work of Bloch [Bl1] on
K2 of elliptic curves but was constructed in generality by Beilinson [Be2]. For a constant elliptic curve a

slightly refined construction is made in [Den1].

4.1 We first introduce the modular and Kuga-Sato varieties. In what follows n will be an integer ≥ 3.

Let Mn be the modular curve of level n, parameterising elliptic curves E together with level n structure

(Z/n)2
∼
−→E[n]. Thus the set of complex points Mn(C) is the disjoint union of φ(n) copies of Γ(n)\H, the

quotient of the upper half-plane by the principal congruence subgroup Γ(n)⊂SL2(Z).

The assumption n≥ 3 assures that there is a universal family of elliptic curves:

π :Xn→Mn.

Write Mn for the usual compactification of Mn, and M∞
n =Mn−Mn for the cusps of Mn (a sum of copies

of SpecQ(ζn)). Then we can consider the minimal (regular) model of Xn over Mn:

π̄ :Xn→Mn

whose restriction to Mn is just π. For each cusp s∈M∞
n , the fibre π̄−1(s) is a Néron polygon with n sides.

Write X̂n⊂Xn for the connected component of the smooth part (Néron model) of Xn. Then π̄−1(s)∩X̂n is
(non-canonically) isomorphic to the multiplicative group Gm.

(4.2) For l≥ 0 write X l
n, X l

n, X̂ l
n for the l-fold fibre product of Xn (resp. Xn, X̂n) over Mn. The variety

X l
n has singularities for l≥ 2; we shall consider these in 5.2 below. Since X l

n is a group scheme over Mn, in

addition to the obvious projections

pi :X l
n→Xn for 1≤ i≤ l

onto the factors, there is a further projection

p0 =−p1−·· ·−pl :X
l
n→Xn.

These (l+1) projections pi allow us to regard X l
n as a closed subscheme of X l+1

n . This gives an action
of the symmetric group Sl+1 on X l

n, permuting the projections p0, . . . pl. The same construction works also

for X̂ l
n.

11



(4.3) From the localisation sequence (1.3.5) for the pair (X̂ l
n,X

l
n) we have:

(4.3.1)
H l+1

M (X̂ l
n,Q(l+1))→H l+1

M (X l
n,Q(l+1))

→H l
M(M∞

n ×Gl
m,Q(l))→H l+2

M (X̂ l
n,Q(l+1)).

Consider the eigenspaces for the sign character sgnl+1 of Sl+1. Under the involution σ :x 7→x−1 of Gm, the

motivic cohomology (1.3.4) of Gm decomposes:—

H1
M(Gm/k,Q(1))= k[x,x−1]∗⊗Q= k∗⊗Q︸ ︷︷ ︸

σ=+1

⊕ Q.x︸︷︷︸
σ=−1

.

Using this it is not hard to see that

(4.3.2) H l
M(M∞

n ×Gl
m,Q(l))sgnl+1

=H0
M(M∞

n ,Q(0))=Q[M∞
n ].

Here Q[M∞
n ] denotes the set of Q-valued functions on the closed points of M∞

n . By composing (4.3.1) and

(4.3.2) we therefore obtain a “residue map” in motivic cohomology:

(4.3.3) H l+1
M (X l

n,Q(l+1))sgnl+1

Resl
M−−−→Q[M∞

n ].

Beilinson’s key result is then:—

(4.4) Theorem ([Be2], Theorem 3.1.7). Resl
M is surjective for l≥ 1.

(4.5) Remarks. This theorem can be viewed as a generalisation of the theorem of Manin and Drinfeld,

which is the case l=0. For then X0
n =Mn and (4.3.1) comes from the exact sequence

0 −−−−→ O∗(Mn) −−−−→ O∗(Mn)
Div
−−−−→ Z[M∞

n ]
c

−−−−→ PicMn∥∥∥

Q(ζn)∗

by tensorising with Q. Here Res0M = Div is the divisor map, and c maps a divisor supported on the cusps

to its class in PicMn. According to the Manin-Drinfeld theorem, the divisors of degree zero

Z[M∞
n ]0

def
= ker

{
Z[M∞

n ]
deg
−→Z

}

are torsion in PicMn, or equivalently

Res0M :H1
M(Mn,Q(1))→→Q[M∞

n ]0.

For l > 0 the picture should be even better. Firstly, there is no restriction to divisors of degree zero.
Secondly, the general Beilinson conjectures would imply that Resl

M is actually an isomorphism. (To see this

one examines carefully the exact sequence (4.3.1).) This makes Beilinson’s proof of (4.4) philosophically

reasonable—he constructs a totally explicit left inverse to Resl
M, the Eisenstein symbol map

E l
M :Q[M∞

n ]−→H l+1
M (X l

n,Q(l+1))sgnl+1

whose construction we now describe.

(4.6) Let Un⊂Xn be the complement of the n2 sections of order dividing n, and write

U l′
n =

⋂
0≤i≤l

p−1
i (Un)⊂X l

n.

12



We first construct symbols on U l′
n as follows. Start with any invertible functions g0, . . . gl ∈O

∗(Un). Then

(4.6.1) p∗0(g0)∪·· ·∪p
∗
l (gl)∈H

l+1
M (U l′

n ,Q(l+1)).

To get an element of H l+1
M (X l

n,Q(l+1)) we apply three projectors:

—U l′
n is stable under the symmetric group Sl+1, and we take the sgn-eigenspace;

—The group of sections of finite order (Z/n)2l acts on U l′
n by translations, and we project onto the

subspace of invariants;

—For an integer m≥ 1, there is a multiplication map

[m−1] :H ·
M(U l′

n ,Q(∗))→H ·
M(U l′

n ,Q(∗))

defined as follows: consider the diagram

U l′
n

j
←−−−− U l ′

mny[×m]

U l′
n

Here j denotes the inclusion map, and the multiplication [×m] is a Galois étale covering with group (Z/m)2l.
By (1.3.6) we have

H ·
M(U l′

n ,Q(∗))
−
−
−
−→

j∗

−−−−→ H ·
M(U l′

mn,Q(∗))(Z/m)2l

[m−1] ≀

x[×m]∗

H ·
M(U l′

mn,Q(∗))

whence there is a map [m−1] as indicated. Denote by a subscript l the maximal quotient of H ·
M(U l′

n ,Q(∗))
on which [m−1] is multiplication by m−l, for every m≥ 1. (In fact it suffices to consider only one m> 1.)

(4.7) Theorem. The restriction from X l
n to U l′

n induces an isomorphism

H ·
M(X l

n,Q(∗))sgnl+1

∼
−→H ·

M(U l′
n ,Q(∗))sgnl+1,(Z/n)2l,l.

Applying this to the elements (4.6.1) projected to the right hand group gives a map

(4.7.1)
⊗l+1O∗(Un)⊗Q→H l+1

M (X l
n,Q(l+1))sgnl+1

.

(4.8) Lemma. The divisor map O∗(Un)⊗Q→Q[(Z/n)2]0 is surjective.

Proof. Let s : Mn → Xn be a section of order dividing n, and let e : Mn → Xn be the unit section.
We have to show that O(s− e) is torsion in PicXn. It certainly is torsion in the relative Picard group

Pic(Xn/Mn), so for some N ≥ 1 and some line bundle L on Mn we have O(s − e)⊗N ≃ π∗L. Hence

L= e∗π∗L≃ e∗O(s−e)⊗N = e∗O(−e)⊗N =N⊗N
e where Ne is the normal bundle of the unit section. Hence

L≃ω
⊗(−N)
Xn/Mn

, and ω⊗12 is trivial (a nowhere-vanishing section being the discriminant ∆).

We now have a diagram:

⊗l+1
Q[(Z/n)2]0

sgnl+1,(Z/n)2l −
−
−
→

Div
←−−−−

⊗l+1O∗(Un)
x≀ ϑ

y

Q[(Z/n)2]0 −−−−→
El

M

H l+1
M (X l

n,Q(l+1))sgnl+1
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It is not hard to show that the map (4.7.1) factors through the dotted arrow as shown. The isomorphism ϑ

is given by

β 7→β⊗α⊗·· ·⊗α, α=n2(0)−
∑

x∈(Z/n)2
(x).

This defines a composite map El
M as indicated, which is “almost” the Eisenstein symbol.

(4.9) At this point we want to describe the composite of the map El
M just constructed with the regulator

map. Let us restrict attention to the component of Mn(C) containing the cusp at infinity, and write τ for the

variable on the complex upper half-plane. The corresponding component of X l
n(C) then can be described

as the quotient

Γ(n)\H×Cl/Z2l

where the actions of Γ(n) and Z2l are given by:

(
a b
c d

)
: (τ,z1, . . . ,zl) 7→

(aτ+b

cτ+d
,

z1
cτ+d

, . . . ,
zl

cτ+d

)

(u1,v1, . . . ,ul,vl) : (τ,z1, . . . ,zl) 7→ (τ,z1 +u1τ+v1, . . . ,zl +ulτ+vl).

Let β ∈ Q[(Z/n)2]0. In terms of the description (2.5.1) of Deligne cohomology by differential forms,

rDE
l
M(β)∈H l+1

D (X l
n/R,R(l+1)) is represented by

(4.9.1)
φ=

l∑
j=0

∑′

c1,c2∈Z

ψβ(c1, c2)Im(τ)

(c1τ+c2)j+1(c1τ+c2)l−j+1
(dz̄1∧·· ·

· · ·∧dz̄j ∧dzj+1∧·· ·∧dzl)sgnl
+(dτ , dτ̄ term)

where for c=(c1, c2)∈ (Z/n)2

ψβ(c)=
∑

d∈(Z/n)2
β(d)e2πi(c1d2−c2d1)/n.

(The omitted terms in (4.9.1) involving dτ , dτ̄ vanish in the applications of §§5, 6.) See 4.12 below for
remarks concerning the proof of this formula.

(4.10) To pass from El
M to E l

M we first recall that the set of closed points of M∞
n is canonically isomorphic

to

GL2(Z/n)/
(∗ ∗
0 ±1

)
.

The definition of the residue map (4.3.2) involves choosing for each s∈M∞
n an isomorphism of the fibre of

X̂ at s with Gm (see 4.1 above), and the two such isomorphisms are interchanged by −1∈GL2(Z/n). If we

replace H0
M(M∞

n ,Q(0)) by the (non-canonically) isomorphic space V (−)l

defined as

V ± =
{
f :GL2(Z/n)→Q

∣∣ f
(
g
(∗ ∗
0 1

))
= f(g)=±f(−g)

}

then the map Resl
M becomes GL2(Z/n)-equivariant.

(4.11) Now consider the family of maps

λl
n :Q[(Z/n)2]0→V (−)l

(λl
nφ)(g)=

n−1∑
x,y=0

φ(g.t(x,y))Bl+2

( y
n

)
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(where Bl+2 are Bernoulli polynomials). It is fairly elementary to prove that λl
n is surjective. (These maps

are the finite level analogues of the horospherical map τ of [Be2], paragraph following 3.1.6.) One now
proves that (up to a non-zero constant factor) the diagram

(4.11.1)

−−−−−−−−−→

Q[(Z/n)2]0

El
M

yλl
n

H l+1
M (X l

n,Q(l+1))sgnl+1
−−−−→
Resl

M

V (−)l

is commutative, and that El
M factors through λl

n. Thus there is a map

E l
M:V (−)l

−→H l+1
M (X l

n,Q((l+1))sgnl+1

satisfying

E l
M ◦λ

l
n =El

M and Resl
M ◦E

l
M = id.

This proves Theorem 4.4.

(4.12) We finally say some words about the commutativity of (4.11.1), on which the theorem rests. Beilin-

son’s original proof uses the fact (from Borel’s theorem) that the regulator map

rD:H0
M(M∞

n ,Q(0))−→H0
D(M∞

n /R,R(0))

is injective. From this we see that one need only check the commutativity of the analogue of (4.11.1) in

Deligne cohomology. To do this Beilinson explicitly calculates rD◦E
l
M, by integrating along the fibres of the

projection X l
n(C)→Mn(C)—see [Be2] §3.3 for details. (The resulting formula we gave as (4.9.1) above.)

An alternative proof [SS2] is by direct computation of Resl
M ◦E

l
M using the Néron model of X l

n. In

this approach, the formula (4.9.1) is obtained as a consequence of the commutativity of (4.11.1). In fact, the
analogue of Resl

M in Deligne cohomology is an isomorphism

H l+1
D (X l

n/R,R(l+1))sgnl+1

∼
−→H0

D(M∞
n /R,R(0))

(by consideration of the Hodge numbers) whose inverse is given by real analytic Eisenstein series.
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5. L-functions of modular forms.

In this section we sketch how, mildly generalising the results of Beilinson, the Eisenstein symbol can be used

to exhibit a relation between special values of L-functions of cusp forms of weight ≥ 2 and higher regulators.

5.1 Let k≥ 0 be an integer, and f a classical cusp form of weight k+2, which we assume to be a newform
on some Γ0(N) with character χf . For simplicity we shall assume that the field generated by the Fourier

coefficients of f is Q.

As is well known [De1], attached to f is a strictly compatible system of ℓ-adic representations {Vℓ(f)},
whose associated L-function is the Hecke L-series L(f, s). Moreover Vℓ(f) is a subspace of the parabolic
cohomology

(5.1.1) H1
ét(Mn⊗Q,φ∗SymkR1π∗Qℓ)

for suitable n. (Recall that φ denotes the inclusion Mn →֒Mn.) In Lemma 7 of [De1] a canonical resolution

of singularities of Xk
n is constructed, which we denote by Xk

n, and it is shown that Vℓ(f) is a constituent of

Hk+1
ét (Xk

n⊗Q,Qℓ).

5.2 Theorem [Sc1]. There exists a projector Πf in the ring of algebraic correspondences on Xk
n modulo

homological equivalence such that for every prime ℓ

Vℓ(f)=Πf

[
Hk+1

ét (Xk
n⊗Q,Qℓ)

]
.

Remarks. (1) In fact Πf annihilates Hi for i 6= k+1.

(2) The pair V (f) =
[
Xk

n,Πf

]
is a motive in the sense of Grothendieck (cf. 3.3 above); by the above

remark and the theorem, the ℓ-adic representations of V (f) are {Vℓ(f)}. The Betti realisation of V (f) is

given by the singular parabolic cohomology groups (Eichler-Shimura). It has Hodge type (k+1,0)+(0,k+1)

and the (k+1,0) part is spanned by the differential form on Xk
n

ωf =2πif(τ)dτ ∧dz1∧·· ·∧dzk.

(3) A construction of V (f) as a motive defined by absolute Hodge cycles was given by Jannsen ([Ja2],

§1; see also [Scha], V.1.1).

(4) For the purposes of testing Beilinson’s conjectures, one would like V (f) to be a Chow motive (3.3).
In general this seems rather difficult to establish. However, one can consider in place of Vℓ(f) the whole

parabolic cohomology group (5.1.1) of level n. There is then a Chow motive with this group for its ℓ-adic

realisation. (See step (i) below.)

(5) One may also consider, for p prime to the level of f , the p-adic realisation Vp(f), which is a

crystalline representation of Gal(Qp/Qp) [Fa,FM]. A consequence of 5.2 is that the characteristic polynomial
of Frobenius on the associated filtered module is the Hecke polynomial t2−apt+χf (p)pk+1.

(5.3) Sketch of the construction. For k=0 the theorem amounts to the decomposition of the Jacobian
of Mn under the action of the Hecke algebra, and is classical. In this case the problem (4) does not arise. In

the case k > 0 there are two steps:

(i) The use of automorphisms: acting on Xk
n one has the following groups of automorphisms and

characters:

—(Z/n)2k, the translations by sections of finite order;

—µµµk
2 , inversions in the components of the fibres;

—Sk, the symmetric group.
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These generate a group Γ of automorphisms of Xk
n, and this extends to a group of automorphisms of Xk

n.

There is a unique character of Γ which restricts to the trivial character on (Z/n)2k, the product character

on µµµk
2 , and the sign character of Sk. This defines a projector Π in the group algebra Q[AutXk

n]. By explicit

calculation of the cohomology of the boundary of Xk
n one shows that Π cuts out the parabolic cohomology

(5.1.1).

(ii) To pass to the individual V (f)’s one projects using an idempotent in the Hecke algebra (which is
semisimple as an algebra of correspondences modulo homological equivalence).

(5.4) The integers s=1, . . . ,k+1 are critical for L(f,s). At these points the Beilinson conjectures reduce to

the conjunction of Deligne’s conjecture (already proved in [De2]) and the vanishing of Π
[
Hk+2

M (Xk
n,Q(r))Z

]

for 1 ≤ r ≤ k + 1, r 6= k/2 (for which there is at present no evidence). At s = −l ≤ 0 the L-function

has a simple zero, and the conjectures predict a relation between L′(f,−l) and a regulator coming from

Hk+2
M (Xk

n,Q(k+ l+2)).

The target for this regulator is the Deligne cohomology group

Hk+2
D (Xk

n/R,R(k+ l+2))=Hk+1
B (Xk

n,R(k+ l+1))+

and its Πf -component is the space (HB(V (f))⊗QR(k+ l+1))
+
, which is one-dimensional.

(5.5) Theorem. There is a subspace Pn⊂H
k+2
M (Xk

n,Q(k+ l+2)) such that

Πf [rD(Pn)]=L′(f,−l).(HB(V (f))⊗Q(k+ l+1))
+
.

(5.6) Remarks. (1) For k = 0 (the case of modular curves) this was proved by Beilinson [Be1,Be2,SS1].

The main ideas for the general case can already be found there. The case k=1, l=0 was also considered by

Ramakrishnan (unpublished). Full details for the general case will appear in [Sc3].

(2) Recall that for the correct formalism of Beilinson’s conjecture it is necessary to consider “motivic coho-

mology over Z” (cf. 1.7 above). Although in general we cannot prove that Pn ⊂H
k+2
M (Xk

n,Q(k+ l+2))Z,

we have the following:

(i) Standard conjectures on the K-theory of varieties over finite fields would imply that Hk+2
M (Xk

n,Q(k+

l+2))Z =Hk+2
M (Xk

n,Q(k+ l+2)) except in the case k= l=0.

(ii) For curves these conjectures are known [Ha1]. Thus for k = 0 the only obstruction to integrality

occurs when l=0; in this case it is known (see [SS1], §7) that Pn⊂H
2
M(Mn,Q(2))Z.

(iii) For k > 0 one can at least show that Pn contains enough elements which are integral away from
primes dividing n, using a modification of a trick of Soulé [So1].

(5.7) Construction of Pn. Consider the diagram

Xk
n

p
←−−−− Xk+l

n
q

−−−−→ X l
nyr

S=SpecQ(ζn)

where p, q are the projections onto the first k and last l factors of the fibre product, respectively. We define

two subspaces
Un, Vn⊂H

k+2
M (Xk

n,Q(k+ l+2))(Π)

(where the projector Π is as in (5.3.1) above) as follows:

Un = p∗
(
q∗H l+1

M (X l
n,Q(l+1))∪Hk+l+1

M (Xk+l
n ,Q(k+ l+1))

)

Vn = r∗H1
M(S,Q(l+1))∪Hk+1

M (Xk
n,Q(k+1)).
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(Note that the Eisenstein symbol and Borel’s theorem give a plentiful supply of elements of Un and Vn.) Let

σ be the restriction

Hk+2
M (Xk

n,Q(k+ l+2))(Π)
σ
−→Hk+2

M (Xk
n,Q(k+ l+2))(Π)

(which is in fact an inclusion) and write

Qn =σ−1(Un +Vn).

We then define (cf. 4.10 above)

Pn =
⋃

n|n′

ρl
n,n′∗ (Qn′) .

(5.8) Calculation of the regulator. At this point we should observe that the assumption that the Fourier
coefficients of f are rational simplifies the calculation somewhat; in particular, we need not distinguish

between f and its complex conjugate. There is a nondegenerate pairing (Poincaré duality)

<, >:HB(V (f))×HB(V (f))→Q(−k−1)

and one has to prove that

(5.8.1) <rD(Pn),ωf >=L′(f,−l).c+(V (f)(k+ l+1)) ·Q.

Here c+ is Deligne’s period [De2]. To calculate the left hand side we pull back to Xk+l
n′ for suitable n′, and

use the description (2.5) of the cup-product in Deligne cohomology. One obtains an integral of the form

(5.8.2)
1

(2πi)k+l

∫

Xk+l

n′

Ek+l
D ∧q∗El+2∧p

∗ωf .

In this expression Ek+l
D is the image of an Eisenstein symbol in Deligne cohomology, and El+2 is a (variable)

weight k+2 holomorphic Eisenstein series. This is a standard Rankin-Selberg integral and can be calculated

explicitly. The Eisenstein series El+2 is a linear combination of Eisenstein series Eχ, for various Dirichlet
characters χ with χ(−1) = (−1)l, and the integral becomes a linear combination of terms which, up to a

finite number of Euler factors, are of the form

L(f,k+ l+2).L(f⊗χ,k+1).L(χ.χf ,k+ l+2)−1.

At this stage one applies Shimura’s algebraicity results on the twisted L-functions L(f ⊗ χ,k+ 1) (which
are critical values) and the functional equation for L(f,s). In this way it can be shown that the left hand

side of (5.8.1) is contained in the right hand side. The final step is to prove the equality—that is, to find

suitable Eisenstein symbols for which the integral (5.8.2) is non-zero. For this one has to analyse the bad
Euler factors carefully, and it is essential to work adelically. See [Be2], §4 or [SS1], §§2,4,5,6 for further

details.
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6. L-functions of algebraic Hecke characters

In this section we describe a construction involving the Eisenstein symbol which will give us elements in
the motivic cohomology of motives attached to Hecke characters of imaginary quadratic number fields. The

regulators of these elements have the expected relation to special values of Hecke L-series. As a corollary one

obtains results on Beilinson’s conjectures for CM elliptic curves of Shimura type and for Dirichlet characters
of Q and of imaginary number field. Full details are contained in [Den1,2].

(6.1) Consider an algebraic Hecke character ǫ : IK/K
∗→C∗ of weight w of an imaginary quadratic field

K. We wish to understand the special values L(ǫ,n) for n> w
2 +1 of the corresponding L-series in terms of

Beilinson’s conjectures. In fact one can treat the L-values of all conjugates of ǫ simultaneously. Thus it is

better to take a slightly different point of view and to look at the associated CM character

φ : IK −→T ∗.

Here T/K is a number field and there exist integers a, b with a+b=w such that

φ(x)=xax̄b for all x in K∗⊂ IK .

From φ we obtain an L-series taking values in T ⊗C=CHom(T,C) by setting L(φ,s) = (L(φσ,s))σ where φσ

is the Hecke character associated to φ via the embedding σ of T .

For critical n Beilinson’s conjectures reduce to the Deligne conjecture, which for L(φ,n) is proved in

[GS1,2] and in much greater generality in [Bla].

For non-critical n we first have to find a Chow motive (3.3) with coefficients in T whose L-series equals

L(φ, s). Note that if φ is a Dirichlet character χ of K—i.e. if a = b = 0—we can take the motive Mχ

constructed in (3.3). For the general case one needs the theory of CM elliptic curves of Shimura type [GS1].

These are elliptic curves E with CM by OK which are defined over an abelian extension F of K such that

the extension F (Etors)/K is abelian as well. One checks that e0 = [E×0], e2 = [0×E] and e1 = 1−e0−e2
are pairwise orthogonal projectors of the motive QE in M+

F (Q). The motive h1(E) = e1(QE) in M+
F (Q),

viewed as a motive in M+
K(Q), will be called M .

(6.2) Proposition. For w≥ 1 and possibly after enlarging the field T there exists an elliptic curve as above
such that M⊗w contains a direct factor Mφ with End(Mφ)=T and L(Hw(Mφ),s)=L(φ,s).

In the last equation Mφ is viewed as a motive in M+
K(T ) via [De2] 2.1.

Note that it is sufficient to treat Hecke characters of positive weight since multiplication of φ by the

norm just results in a shift by one of s in the L-series. For the same reason we may assume that a, b≥ 0.

(6.3) Theorem. Assume that w ≥ 1, n > w
2 + 1 and in addition that n is non-critical for Mφ, i.e. n >

Max(a,b). Then the L-series L(φ̄, s) has a first order zero for s=−l :=w+1−n and there is an element ξ

in Hw+1
M (Mφ,Q(n)) such that

rD(ξ)≡L′(φ̄,−l)η mod T ∗

in the free rank one T ⊗R-module

Hw+1
D (MφR,R(n))=Hw

B (MφR,R(n−1)).

Here η is a T -generator of Hw
B (MφR,Q(n−1)).

Remarks. (1) In general the conjectures involve the motivic cohomology of an integral model. However

since E→SpecK has potential good reduction one can show that

Hw+1
M (Mφ,Q(n))=Hw+1

M (Mφ,Q(n))Z
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for n 6= w
2 +1, using [So1] 3.1.3, Corollary 2.

(2) In [Den1] a refined version of (6.3) is proved for w=1 where one considers motivic cohomology with
almost integral coefficients. This was possible by a careful reexamination of the entire (slightly modified)

construction of Beilinson’s Eisenstein symbol specialised to a constant elliptic curve.

(6.4) Construction of ξ and calculation of rD(ξ). For simplicity we shall assume that l≥ 0. For the

finitely many negative l in the theorem a slightly different construction is required. Set k =w+2l > 0 and

fix some integer N ≥ 1. For a choice of a square root of the discriminant dK of K consider the map

δ=(id,
√
dK) :E−→E2 =E×F E

and let pr : El+w = El×F E
w → Ew be the projection. Choose a Galois extension F ′ of F such that the

N -torsion points of E′ =E⊗F F
′ are rational over F ′. The choice of a level N structure α : (Z/N)2 ∼−→E′

N

on E′ determines a commutative diagram

E′ iα−−−−→ XNy
y

SpecF ′ −−−−→ MN

Using (1.3)(6) we find a canonical map EM independent of α which makes the following diagram commute:

Q[(Z/N)2]0
Ek

M−−−−→ Hk+1
M (Xk

N ,Q(k+1))sgnk+1∥∥∥
yi∗α

Q[E′
N ]0 Hk+1

M (E′k,Q(k+1))sgnk+1x
x

Q[EN ]0
EM−−−−→ Hk+1

M (Ek,Q(k+1))sgnk+1

Now consider the following composition KM of maps:

Hk+1
M (Ek,Q(k+1))sgnk+1

(δl×id)∗

−−−−−→ Hk+1
M (El+w,Q(k+1))

ypr∗

Hw+1
M (Ew,Q(n))

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|↓

KM

y

Hw+1
M (h1(E)⊗w,Q(n))

y

Hw+1
M (Mφ,Q(n)) ←−−−− Hw+1

M (M⊗w,Q(n))

For l < 0 the map KM is defined differently [Den2] §2. The required element ξ is obtained in the form
ξ = KMEM(β) for suitable N and divisor β in Q[EN ]0. To prove that it has the right properties we must

first of all calculate explicitly the analogous maps ED and KD in Deligne cohomology. For KD this is easy.

For ED we can use formula (4.9.1) for Ek
D specialised to the value of τ corresponding to our elliptic curve E.

Note that in order to derive (4.9.1) Beilinson makes essential use of the compactification MN of MN—see

[Be2], §3.3. In [Den1] a different method for the calculation of ED is described which only uses analysis on

E itself.

Looking at (4.9.1) we see that ED(β) is a certain linear combination of Eisenstein-Kronecker series.
Hence it comes as no surprise that for suitable β the element KDED(β) is related to L′(φ̄,−l) as specified in

the theorem.
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(6.5) Corollary. (1) Let E/F be a CM elliptic curve of Shimura type as above. Then for n≥ 2 the weak

Beilinson conjecture (3.2) holds for L(H1(E),n).

(2) Assume that F is Galois over Q and let F+ be a real subfield of F , i.e. F+ = F σ ∩R for some

embedding σ of F into C. Then for any elliptic curve E+/F+ whose base change to F is of Shimura type

the analogue of (1) holds.

Remark. (2) generalises the case of CM elliptic curves over Q at n=2 treated by Bloch [Bl1] and Beilinson

[Be1]; see also [DW].

(6.6) Dirichlet characters. Given a character

χ :GK −→T ∗

we can attach to it the motive Mχ of (3.3) and the twist Mφ(1) of a motive Mφ as in (6.2) for φ=χNK⊗R/R.

Possibly after extension of scalars both motives have the same L-function and should in fact be equal. The

Beilinson conjectures for Mφ(1) follow from the theorem. For Mχ one can prove them directly using the
map

KMEM :Q[EN ]0−→H1
M(Mχ,Q(l+1)), l > 0

where E is a CM elliptic curve of Shimura type over an abelian extension of K trivialising χ and KM is

defined by composition:

H2l+1
M (E2l,Q(2l+1))sgnl+1

(δl)∗

−−−−→ H2l+1
M (El,Q(2l+1))

yKM

ypr∗

H1
M(Mχ,Q(l+1))

eχ

←−−−− H1
M(SpecF,Q(l+1)).

By a very simple argument [Den2] (3.6) one can use the theory over K to prove the Beilinson conjectures

for Dirichlet characters of Q as well. The complete results are these:

(6.7) Theorem. For k=Q or K consider a character

χ :Gk −→T ∗

and let L(χ,s)=
(
L(σχ,s)

)
σ

be its T ⊗C-valued L-series. For l > 0 the map

rD⊗R :H1
M(Mχ,Q(l+1))Z⊗R−→H1

D(MχR,R(l+1))

is an isomorphism of free T ⊗R-modules. For k = Q and χ(c) = (−1)l or k =K their rank equals one. In

this case we have

cMχ
≡L′(χ,−l) mod T ∗

where cMχ
∈ (T ⊗R)∗/T ∗ denotes the regulator.

Remarks. (1) That rD⊗R is an isomorphism follows from the work of Borel [Bo1] and Beilinson [Be1],

app. to §2; see also [Rap].

(2) For k=Q a different proof of the theorem is given in [Be1] §7, see also [N,E].
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Appendix: motivic cohomology and extensions

In this appendix, we outline without proof the construction of extensions of motives attached to elements of

motivic cohomology. Details should appear in a future paper by the second author. The underlying idea is

certainly not new, aand is implicit in the constructions of [Bl2]. To motivate it, we consider first the case of
ordinary Chow theory (i.e., H2q

M(X,Q(q))). The corresponding extensions appear first in a paper of Deligne

([De2], 4.3). So let X be smooth and projective over Q, and let y be a cycle of codimension q, homologous

to zero. Write Y for the support of y. Then there is an exact sequence of mixed motives (in the sense of

[Ja2], Chap.1):

0→h2q−1(X)→h2q−1(X−Y )→h2q
Y (X)

γ
−→h2q(X) · · · .

The cycle class gives a map cl(y) : Q(−q)→ h2q
Y (X), and by hypothesis γ ◦cl(y) = 0. Hence by pullback we

obtain an extension

0→h2q−1(X)→Ey→Q(−q)→ 0.

Theorem [Ja2]. The class of the extension Ey depends only on the rational equivalence class of y. The

following diagram commutes:

ker{CHq(X)→H2q(X,Qℓ(q))}
y 7→Ey

−−−−→ Ext1MMQ
(Q(−q),h2q−1(X))

ycycle

yℓ-adic realisation

ker{H2q(X,Qℓ(q))→H2q(X,Qℓ(q))}
H−S
−−−−→ H1(Q/Q,H2q−1(X,Qℓ(q)))

Here H−S denotes the edge homomorphism in the Hochschild-Serre spectral sequence (in continuous

étale cohomology [Ja1])

Eab
2 =Ha(Q/Q,Hb(X,Qℓ)(q))⇒Ha+b(X,Qℓ(q)).

There is a similar statement for Deligne cohomology (cf. 2.9 above).

We now imitate this construction for higher cycles. In an attempt to make the notation tidier we write

∆n
X for ∆n×X, and ∂∆n

X for the union of the codimension one faces of ∆n
X . By the normalisation theorem,

any element of H2q−n
M (X,Q(q))=CHq(X,n)⊗Q may be represented by a cycle y ∈ zq(X,n) with ∂∗i (y)= 0

for 0 ≤ i ≤ n. Choosing such a representative y, write Y = supp(y), ∂Y = Y ∩ ∂∆n
X , U = ∆n

X − Y , and
∂U =U ∩∂∆n

X . We consider the motive h2q−1(U,∂U) which fits into a long exact sequence

(A.1) h2q−2(U)→h2q−2(∂U)→h2q−1(U,∂U)→h2q−1(U)→h2q−1(∂U).

By purity we have h2q−2(U) = h2q−2(∆n
X) ≡ h2q−2(X). It is also easy to deduce that h2p−2(∂U) =

h2p−2(∂∆n
X) by considering the spectral sequence expressing the cohomology of ∂∆n

X in terms of that of its
faces.

Lemma. There is a decomposition

(A.2) hi(∂∆n
X)

∼
−→hi(X)⊕hi−n+1(X).

(In fact this decomposition is given by the 1- and sgn-eigenspaces for the action of the symmetric group

of degree n.) Thus the sequence (A.1) becomes

0→h2q−n−1(X)→h2q−1(U,∂U)→h2q−1(U)→h2q−1(∂U).
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This fits into a bigger diagram:

0
y

h2q−n−1(X)
y

0 h2q−1(U,∂U) −−−−→ kerβ
y

y
y

0 −−−−→ h2q−1(∆n
X) −−−−→ h2q−1(U) −−−−→ h2q

Y (∆n
X)0 −−−−→ 0

y
y

yβ

0 −−−−→ h2q−1(∂∆n
X) −−−−→ h2q−1(∂U) −−−−→ h2q

∂Y (∂∆n
X)0 −−−−→ 0

Here we have written

h2q
Y (∆n

X)0 =ker{h2q
Y (∆n

X)→h2q(∆n
X)}

h2q
∂Y (∂∆n

X)0 =ker{h2q
∂Y (∂∆n

X)→h2q(∂∆n
X)}.

The cycle class of y gives a map Q(−q)→ kerβ. From the snake lemma and (A.2) we have a long exact

sequence

(A.3) 0→h2q−n−1(X)→h2q−1(U,∂U)→ kerβ→h2q−n(X).

Since n> 0 the composite map Q(−q)→ kerβ→h2q−n(X) is zero (by weights), hence by pullback we obtain

an extension

0→h2q−n−1(X)→Ey→Q(−q)→ 0.

Theorem. The class of the extension Ey depends only on the class of y in H2q−n
M (X,Q(q)). The following

diagram commutes:

H2q−n
M (X,Q(q))

y 7→Ey

−−−−→ Ext1MMQ
(Q(−q),h2q−n−1(X))

ycycle

yℓ-adic realisation

H2q−n(X,Qℓ(q))
Hochschild-Serre
−−−−−−−−−−→ H1(Q/Q,H2q−n−1(X,Qℓ(q)))

The analogous statement 2.9 for Deligne cohomology also holds.

Remark. In this construction, we have in the interest of clarity freely used “relative” and “local” motives

hi
•(–), hi(–,•). Lest this trouble the reader, we point out that the extension Ey really belongs to the category
MMQ of mixed motives generated by hi(V ) for quasi-projective varieties V/Q (see [Ja2], Appendix C2).

Indeed, the “relative” motive h2q−1(U,∂U) can be constructed as part of the motive of a suitable singular

variety (a mapping cylinder) and the motive kerβ is simply the Tate twist of an Artin motive. Therefore the
objects in the exact sequence (A.3) are all motives in MMQ. To construct the arrows we need only work in

the various realisations, and there the relative and local cohomology groups are available.
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Séminaire Delange-Pisot-Poitou 1969/ 70, exposé 19
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