

1. Prove that for every $a > 0$ there exists $c > 0$ with the following property. Whenever A_1, \dots, A_m is a collection of subsets of $\{1, 2, \dots, n\}$ such that $||A_i| - n/2| \leq cn$ for every i and $||A_i \cap A_j| - n/4| \leq cn$ for all but at most cm^2 pairs (i, j) then it is also the case that $||A_i \cap A_j \cap A_k| - n/8| \leq an$ for all but at most am^3 triples (i, j, k) . [You may quote results from the course if that helps.]

2. Prove that for every $a > 0$ there exists $c > 0$ with the following property. Let X and Y be sets of sizes m and n , respectively. Let $f : X \times Y \rightarrow [-1, 1]$ be a function such that $\sum_x \left(\sum_y f(x, y) \right)^2 \leq cmn^2$ and $\sum_y \left(\sum_x f(x, y) \right)^2 \leq cm^2n$. Then for any functions $u, v : X \times Y \rightarrow [-1, 1]$ we have the inequality

$$\left| \sum_{x, x' \in X} \sum_{y, y' \in Y} u(x, y) f(x, y') v(x', y) \right| \leq am^2n^2.$$

Explain why this result can be used to shorten the proof in the notes that if a bipartite graph G has few 4-cycles then the “sum over rectangles” of the corresponding function f is small.

3. Let G be a graph with vertex set X of size n and with $p\binom{n}{2}$ edges. Prove that the following two statements are equivalent, in the sense of the lectures.

(i) For any two sets $A, B \subset X$ the number of pairs $(x, y) \in A \times B$ such that xy is an edge of G differs from $p|A||B|$ by at most cn^2 .

(ii) For any set $A \subset X$ the number of edges spanned by the set A differs from $p\binom{|A|}{2}$ by at most $c'n^2$.

4. Let u, v, w and x be vectors in \mathbb{R}^n . Write out a concise expression for the composition of the linear maps (or product of the matrices) $u \otimes v$ and $w \otimes x$.

5. Let $A(x, y)$ be a real symmetric $n \times n$ matrix. Prove that if u is a unit vector that maximizes the sum $\sum_{x, y} A(x, y)u(x)u(y)$ then u is an eigenvector with the largest possible eigenvalue.

6. Let $A(x, y)$ be a real matrix, but not necessarily symmetric this time. Suppose that u and v are unit vectors such that $\sum_{x, y} A(x, y)u(x)v(y)$ is maximized. Show that $Av = \lambda u$ for some constant λ . Let $B(x, y) = A(x, y) - \lambda u(x)v(y)$. Prove that $\langle Bw, v \rangle = 0$ for every vector w . By using these facts, or otherwise, show that A can be written as a sum $\sum_{i=1}^n \lambda_i u_i(x)v_i(y)$, with both the u_i and v_i forming orthonormal bases. Prove that the

u_i and v_j are eigenvectors of the matrices $A^T A$ and AA^T , respectively. What are the corresponding eigenvalues? [Warning: I could have made mistakes in the details of this question, but if any of the statements are false then find modified statements that are true and prove them. To a lesser extent, this applies to the whole sheet.]

7. In lectures we proved the homomorphisms version of the counting lemma. Prove the version that deals with isomorphic embeddings.

8. Prove that there is a function $f : \{1, 2, \dots, n\}^2 \rightarrow \{-1, 1\}$ such that $\sum_{x,x'} \sum_{y,y'} f(x, y)f(x, y')f(x', y)f(x', y') \leq Cn^3$ for some absolute constant C . [Hint: choose f randomly.]

9. Let p be a prime of the form $4n + 3$ and let \mathbb{Z}_p stand for the set of integers mod p . Define a function $f : \mathbb{Z}_p^2 \rightarrow \{-1, 1\}$ by setting $f(x, y) = 1$ if $y - x$ is a quadratic residue, and $f(x, y) = -1$ otherwise. Prove that $\sum_{x,x'} \sum_{y,y'} f(x, y)f(x, y')f(x', y)f(x', y') \leq Cn^3$ for some absolute constant C . [NB: the hint in the previous question was compulsory!]

10. Let $f : \{1, 2, \dots, n\}^2 \rightarrow \{-1, 1\}$ be any function. Prove that $\sum_{x,x'} \sum_{y,y'} f(x, y)f(x, y')f(x', y)f(x', y') \geq n^3$.

11. Let H be a graph with k vertices, which we think of as fixed and small. Prove that for every $a > 0$ there exists $c > 0$ such that if at most cn^k functions from $V(H)$ to $V(G)$ are homomorphisms, then it is possible to remove at most an^2 edges from G in such a way that G no longer contains any copies of H .

12. (A proof of the Erdős-Stone theorem.) Let H be a fixed graph, as above. Write $ex(n, H)$ for the largest density of any graph with n vertices that does not contain any copy of H . Turán's theorem implies that if H is the complete graph on k vertices (and if n is a multiple of $k - 1$) then $ex(n, H) = 1 - 1/(k - 1)$. Suppose now that the chromatic number of H is r . Prove that the limit of $ex(n, H)$ as n tends to ∞ is $1 - 1/(r - 1)$. [Hint: Let G be an extremal graph. Remove a few edges from G in such a way that if the resulting graph contains a K_r then it also contains several copies of H . Most of the work is contained in the previous question.]

13. Let A be a subset of $\{1, 2, \dots, n\}^2$ of cardinality at least δn^2 . Prove that there exists some pair $(u, v) \in \mathbb{N}^2$ such that $A \cap ((u, v) - A) = \{(a, b) \in A : (u - a, v - b) \in A\}$ has cardinality at least $c\delta n^2$ for some absolute constant $c > 0$. Deduce that the theorem about corners can be strengthened so that it guarantees that A contains a triple $(x, y), (x, y + d), (x + d, y)$ with $d > 0$.

14. Let A be a subset of \mathbb{Z}_N and define a graph $G(A)$ with vertex set \mathbb{Z}_N by joining x to y if and only if $x + y \in A$. By considering 4-cycles in G , prove that G is c -quasirandom if and only if A is c -uniform. It follows that the sum of the fourth powers of the eigenvalues of G is the sum of the fourth powers of the Fourier coefficients of A . Can you prove this more directly?

15. Let A, B, C, D be four subsets of \mathbb{Z} of size N . Suppose that there are αN^3 quadruples $(a, b, c, d) \in A \times B \times C \times D$ such that $a + b = c + d$. Prove that there are at least αN^3 quadruples $(a, b, c, d) \in A^4$ with $a + b = c + d$.

16. Suppose that A has size N and contains at least αN^2 arithmetic progressions of length 3. Prove that there are at least αN^3 quadruples $(a, b, c, d) \in A^4$ with $a + b = c + d$.

17. Let A be a subset of \mathbb{Z}_N of size at most $(1/20) \log N$. Prove that there exists $r \neq 0$ such that $|\hat{A}(r)| \geq |A|/2$.

18. Let N be a prime, let P be an arithmetic progression mod N , and let A be the set of all $x \in \mathbb{Z}_N$ such that $x^2 \in P$. Let $|P| = \delta N$.

(i) Prove that for every $r \neq 0$ the Fourier coefficient $\hat{A}(r)$ has modulus at most $C \log N \sqrt{N}$ for some absolute constant C . [Hint: $A(x) = P(x^2)$. Now split up P into a sum of trigonometric functions.]

(ii) Prove that the cardinality of A is approximately equal to δN , and give an estimate for the error. [Again, write A as above and use the alternative expression to estimate $\sum |A(x)|^2$.]

(iii) Show also that if P, Q and R are progressions mod N , then the number of pairs (x, d) such that $x^2 \in P$, $(x + d)^2 \in Q$ and $(x + 2d)^2 \in R$ is approximately $|P||Q||R|N^{-1}$, and again give an estimate for the error.

(iv) Prove that the number of progressions of length 4 in A is at least $c\delta^3 N^2$, for some absolute constant $c > 0$.

Remarks, corrections, comments to wtg10@dpmms.cam.ac.uk.