1. Prove by induction that the following two statements are true for every positive integer n.
(i) The number $2^{n+2}+3^{2 n+1}$ is a multiple of 7 .
(ii) $1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$.
2. Suppose that you have a $2^{n} \times 2^{n}$ grid of squares (if $n=3$ then you have a chessboard) and you remove one square. Prove that, wherever the removed square is, the remaining squares can be tiled with L-shaped tiles - that is, tiles consisting of three squares that form a 2×2 grid with one square removed.
3. By considering the equation $(1-1)^{n}=0$, give another proof that exactly half the subsets of $\{1,2, \ldots, n\}$ have even size.
4. Prove that

$$
\binom{k}{k}+\binom{k+1}{k}+\ldots+\binom{n+k-1}{k}=\binom{n+k}{k+1}
$$

for any $n>k$. [Hint: for each set of size $k+1$ consider its largest element.]
5. Prove that

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

[Hint: $\binom{n}{k}=\binom{n}{n-k}$.]
6. There are four primes between 0 and 10 and four between 10 and 20. Does it ever happen again that there are four primes between two consecutive multiples of 10 ?
7. Is $n^{2}+n+41$ prime for all positive integers n ?
8. Does there exist a block of 100 consecutive positive integers, none of which is prime?
9. Is there a power of 2 that begins with a 7 ?
10. Write down carefully (while not looking at your notes) a proof that there are infinitely many primes. By considering numbers of the form $4 p_{1} p_{2} \ldots p_{k}-1$, prove that there are
infinitely many primes of the form $4 n-1$. What would go wrong if we tried a similar proof to show that there are infinitely many primes of the form $4 n+1$?
11. Translate the following sentence into a short English one, and write down its negation in symbolic form. (For this question the letters m, n, a, b should be understood as ranging over all positive integers - for instance, $\forall m$ really means $\forall m \in \mathbb{N}$.)

$$
\forall m \exists n \forall a \forall b(n \geq m) \wedge[(a=1) \vee(b=1) \vee((a b \neq n) \wedge(a b+2 \neq n))]
$$

12. Find the highest common factor of 12345 and 54321 .
13. Find integers x and y with $76 x+45 y=1$. Do there exist integers x and y with $1992 x+1752 y=12$?
14. Prove that if a is coprime to b and also to c then it is coprime to $b c$. Give two proofs: one based on Bezout's theorem and one based on prime factorisation.
15. Is it true that for all positive integers a, b, c, d we have $(a, b)(c, d)=(a c, b d)$?
16. Show that a positive integer n is a multiple of 9 if and only if the sum of its digits is a multiple of 9 . Find a rule for when a number is a multiple of 11 and prove that your rule works.
17. The Fibonacci numbers $F_{1}, F_{2}, F_{3}, \ldots$ are defined by: $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+$ F_{n-2} for all $n>2$ (so eg. $F_{3}=2, F_{4}=3, F_{5}=5$). Is F_{2004} even or odd? Is it a multiple of 3 ?
18. Suppose that we have some positive integers (not necessarily distinct) whose sum is 100. How large can their product be?
19. We are given a binary operation $*$ on the positive integers, satisfying
(i) $1 * n=n+1$ for all n
(ii) $m * 1=(m-1) * 2$ for all $m>1$
(iii) $m * n=(m-1) *(m *(n-1))$ for all $m, n>1$.

Find the value of $5 * 5$.
20. The repeat of a positive integer is obtained by writing it twice in a row (so for example the repeat of 254 is 254254). Is there a positive integer whose repeat is a perfect square?

