
Introductory Course: Fourier Analysis and its many uses

Solutions - Exercises 16.1-16.5, 16.9, 16.12, 16.13, 16.15, 16.16, 16.17, 16.20,
16.21, 16.23 from “A First Look at Fourier Analysis” by T.W. Körner

(prepared by Mihai Stoiciu)

Exercise 16.1. i) Take P (t) = f (n)(0)
n !

tn + f (n−1)(0)
(n−1) !

tn−1 + · · ·+ f(0).

ii) Note first that g(0) = g′(0) = · · · = g(n)(0) = 0. Since g(0) = g(t) = 0 it follows
from Rolle’s theorem that there exists a c1 ∈ (0, t) such that g′(c1) = 0. Observe now
that g′(0) = g′(c1) = 0 so Rolle’s theorem implies that there exists a c2 ∈ (0, c1) such that
g′′(c2) = 0. Repeating this procedure (n + 1) times we get that there exists c = cn+1 ∈
(0, t) such that g(n+1)(c) = 0. This immediately implies f(t) = P (t) + f (n+1)(c)

(n+1)!
tn+1.

Exercise 16.2. A polynomial P of degree at most (2n + 1) with prescribed val-
ues for P (0), P ′(0), ... P (n)(0), P (1), P ′(1), ... P (n)(1) can be obtained by taking a linear
combination of the polynomials 1

k!
xk(x−1)n+1, 0 ≤ k ≤ n and 1

k!
xn+1(x−1)k, 0 ≤ k ≤ n.

We prove now that P is unique. Let Q be a polynomial of degree at most (2n +
1) such that P (0) = Q(0), P ′(0) = Q′(0), ...P (n)(0) = Q(n)(0), P (1) = Q(1), P ′(1) =
Q′(1), ... P (n)(1) = Q(n)(1). R = P − Q is a polynomial of degree at most 2n + 1 and
R(0) = R′(0) = · · · = R(n)(0) = R(1) = R′(1) = · · · = R(n)(1) = 0. Therefore the
polynomials Xn+1 and (X − 1)n+1 divide R and since degR ≤ 2n+ 1 we obtain R = 0.

Let P be the unique polynomial of degree at most (2n + 1) such that P (0) =
f(0), P ′(0) = f ′(0), ... P (n)(0) = f (n)(0), P (1) = f(1), P ′(1) = f ′(1), ... P (n)(1) = f (n)(1).
For a fixed y ∈ (0, 1) let

g(x) = f(x)− P (x)− f(y)− P (y)

yn+1(y − 1)n+1
xn+1(x− 1)n+1

Let’s observe that g(0) = g′(0) = · · · = g(n)(0) = 0 and g(1) = g′(1) = · · · = g(n)(1) =
0. Furthermore g(0) = g(y) = g(1) = 0. Therefore, from Rolle’s theorem it follows
that there exists two points c1

1 ∈ (0, y) and c1
2 ∈ (y, 1) such that g′(c1

1) = g′(c1
2) = 0.

Since g′(0) = g′(1) = 0 we can apply Rolle’s theorem again and we get three points
c2
1 ∈ (0, c1

1), c2
2 ∈ (c1

1, c
1
2) and c2

3 ∈ (c1
2, 1) such that g′′(c2

1) = g′′(c2
2) = g′′(c2

3) = 0.
Repeating this procedure (n + 1) times we get (n + 2) points cn+1

1 , cn+1
2 , ... cn+1

n+2 ∈ (0, 1)
such that g(n+1)(cn+1

1 ) = g(n+1)(cn+1
2 ) = · · · = g(n+1)(cn+1

n+2) = 0.
Now we can apply Rolle’s theorem again and we get (n+ 1) points

cn+2
1 ∈ (cn+1

1 , cn+1
2 ), cn+2

2 ∈ (cn+1
2 , cn+1

3 ), ... cn+2
n+1 ∈ (cn+1

n+1, c
n+1
n+2)
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such that g(n+2)(cn+2
1 ) = g(n+2)(cn+2

2 ) = · · · = g(n+2)(cn+2
n+1) = 0. Repeating this procedure

(n+ 1) times we get that there exists a point c = c2n+2
1 ∈ (0, 1) such that g(2n+2)(c) = 0.

Since g(2n+2)(x) = f (2n+2)(x)− f(y)−P (y)
yn+1(y−1)n+1 (2n+ 2) ! we immediately get

E(y) = f(y)− P (y) =
f (2n+2)(c)

(2n+ 2) !
yn+1(y − 1)n+1

Exercise 16.3. Taking imaginary parts in the de Moivre formula it is easy to see
that

Un(t) =

bn
2
c∑

k=0

(
n+ 1
2k + 1

)
(t2 − 1)k tn−2k

Taking ∂
∂θ

in Tn(cos θ) = cosnθ we get T ′n(cos θ) sin θ = n(sinnθ) which implies that
T ′n(x) = nUn−1(x).

Exercise 16.4. For any t ∈ R with |t| < 1 and for any θ ∈ R we have |teiθ| < 1 so

∞∑

n=0

tneinθ =
1

1− teiθ

Since Re
[
tneinθ

]
= tn cos(nθ) and Re

[
1

1−teiθ

]
= 1−t cos θ

1−2t cos θ+t2
we get that 1−t cos θ

1−2t cos θ+t2
=∑∞

n=0 Tn(cos θ) tn for any |t| < 1 and any θ ∈ R, which implies

1− tx

1− 2tx+ t2
=

∞∑

n=0

Tn(x) tn

for any |t| < 1 and |x| ≤ 1.

Exercise 16.5. Let’s observe first that for any r ∈ (0, 1) we have Pr(f, θ) = (f∗Pr)(θ)
where Pr : [−π, π] → R, Pr(t) =

∑∞
n=−∞ r|n|eint = 1−r2

1+r2−2r cos t
. Furthermore Pr(t) > 0

for any t ∈ [−π, π] and:

1

2π

∫ π

−π

Pr(t) dt =
1

2π

∞∑

n=−∞

∫ π

−π

r|n|eintdt = 1

Let ε > 0. For any r ∈ (0, 1) we have:

|Pr(f, θ)− f(θ)| =
∣∣∣∣(f ∗ Pr)(θ)− f(θ)

1

2π

∫ π

−π

Pr(t) dt

∣∣∣∣ =
∣∣∣∣
1

2π

∫ π

−π

[f(θ − t)− f(θ)]Pr(t) dt

∣∣∣∣
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≤ 1

2π

∫

|t|<δ

|f(θ − t)− f(θ)|Pr(t) dt+
1

2π

∫

|t|≥δ

|f(θ − t)− f(θ)|Pr(t) dt

Since f ∈ C(T) it follows that f is bounded and uniformly continuous. Let M > 0
such that |f(s)| < M for any s ∈ [−π, π] and let δε > 0 such that |t − t′| < δε implies
|f(t)− f(t′)| < ε

2
.

For any t with |t| > δε we have
1−r2

1+r2−2r cos t
< 1−r2

1+r2−2r cos δε
< 1−r2

1−(cos δε)2
and therefore

∫

|t|≥δε

Pr(t) dt <
1− r2

1− (cos δε)2

Let rε > 0 such that r ∈ (rε, 1) implies 1−r2

1−(cos δε)2
< 2πε

4M
. For any r ∈ (rε, 1) we have:

1

2π

∫

|t|<δε

|f(θ − t)− f(θ)|Pr(t) dt <
ε

2

and
1

2π

∫

|t|≥δε

|f(θ − t)− f(θ)|Pr(t) dt <
1

2π
2M

2πε

4M
=

ε

2

We can conclude now that |Pr(f, θ)−f(θ)| < ε for any r ∈ (rε, 1) and any θ ∈ [−π, π].
Therefore Pr(f, ·)→ f uniformly as r → 1, r < 1.

Exercise 16.9. i) Let ε > 0. Since f has real values it follows from Theorem 8.1 ii)
that there exists a real trigonometric polynomial

Q(t) =
N∑

n=0

(an sinnt+ bn cosnt)

such that ‖f − Q‖∞ < ε. Let Q1(t) = Q(−t). Since f(t) = f(−t) it follows that
‖f − Q1‖∞ < ε. For R(t) = 1

2
(Q(t) + Q1(t)) we have ‖f − R‖∞ < ε. Furthermore a

straightforward computation shows that:

R(t) =
N∑

n=0

bn cosnt

ii) Let g : [−π, π] → R defined by g(t) = F (| cos t|). Let ε > 0. Since g ∈ C(T)
and is real valued it follows from i) that there exists a real trigonometric polynomial
R(t) =

∑N
n=0 cn cosnt such that ‖f −R‖∞ < ε. Let’s observe now that

R(t) =
N∑

n=0

cn cosnt =
N∑

n=0

cn Tn(cos t) = Q(cos t)
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where Tn is the n-th Chebyshev polynomial of the first kind and Q ∈ R[X].
Therefore |g(t)− R(t)| = |F (| cos t|)−Q(cos t)| < ε for any t ∈ [−π, π] which imme-

diately implies ‖F −Q‖∞ < ε.

iii) Since
∫ 1

0
g(t) tn dt = 0 for any n it follows that

∫ 1

0
g(t)P (t) dt = 0 for any poly-

nomial P ∈ R[X]. Let Pn be a sequence of polynomials such that Pn → g uniformly.
Since

lim
n→∞

∫ 1

0

g(t)Pn(t)dt =

∫ 1

0

g(t) g(x) dt

it follows that
∫ 1

0
g(t) g(x) dt =

∫ 1

0
|g(t)|2 dt = 0 so g = 0.

Exercise 16.12. i) Since f is continuous it follows immediately that
∫ π

−π
|f(t)|2dt <

∞ and Theorem 8.2. implies that
∑∞

n=−∞ |f̂(n)|2 < ∞. We get limn→∞ f̂(n) = 0 and

limn→−∞ f̂(n) = 0.
ii) We can write sin t = 1

2i
(eit − e−it) and therefore f1(t) =

1
2i
(g1(t)e

it − g1(t)e
−it).

This implies f̂1(j) =
1
2i
(ĝ1(j − 1)− ĝ1(j + 1)) so for any n ≥ 1

Sn(f1, 0) =
n∑

j=−n

f̂1(j) = f̂1(n) + f̂1(n+ 1)− f̂1(−n)− f̂1(−n− 1)

Using part i) we get limn→∞ Sn(f1, 0) = 0.
iii) For any t 6= nπ we have g2(t) =

1
sin t

f2(t). We must prove that 1
sin t

f2(t), t 6= nπ
can be extended to a continuous function on T. For any t ∈ (−π, π), t 6= 0

1

sin t
f2(t) =

t

sin t

f2(t)

t
=

t

sin t

f2(t)− f2(0)

t− 0

Therefore limt→0
1

sin t
f2(t) = f ′2(0), so the function

1
sin t

f2(t) can be extended by conti-
nuity at t = 0. Similarly

lim
t→π

1

sin t
f2(t) = lim

t→π

1

sin(π − t)
f2(t) = lim

t→π

t− π

sin(π − t)

f2(t)− f2(π)

t− π
= −f ′2(π)

lim
t→−π

1

sin t
f2(t) = lim

t→−π

−1
sin(π + t)

f2(t) = lim
t→−π

−(t+ π)

sin(π + t)

f2(t)− f2(−π)

t+ π
= −f ′2(π)

so the function 1
sin t

f2(t) can be extended to a continuous function g2 : T → C. Using ii)
we get limn→∞ Sn(f2, 0) = 0.
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iv) It is easy to see that f4 is continuous and differentiable at 0. Furthermore for any
j = 2n, n ∈ Z we have:

f̂4(j) = f̂4(2n) =
1

2π

∫ π

−π

f3(2t) e−2intdt =
1

4π

∫ 2π

−2π

f3(s) e−insds = f̂3(n)

¿From part iii) we get that there exists a function g ∈ C(T) such that f4(t) = g(t) sin t

and from ii) we get that f̂4(2n) =
1
2i
(ĝ(2n− 1)− ĝ(2n+ 1)). We can now conclude that

SN(f3, 0) =
N∑

n=−N

f̂3(n) =
N∑

n=−N

f̂4(2n) =
1

2i
(ĝ(−2n− 1)− ĝ(2n+ 1))

Therefore limN→∞ SN(f3, 0) = 0.
v) Suppose f is continuous and differentiable at x0 ∈ [−π, π]. Let g : [−π, π] →

C, g(x) = f(x + x0) − f(x0). Clearly g(0) = 0 and g is differentiable at 0. Using part
iv) we get limN→∞ SN(g, 0) = 0. But

SN(g, 0) =
n=N∑

n=−N

ĝ(n) = ĝ(0) +
n=N∑

n=−N n6=0

ĝ(n) = −f(x0) +
N∑

n=−N

1

2π

∫ π

−π

f(x+ x0)e
−inxdx

= −f(x0) +
N∑

n=−N

einx0
1

2π

∫ π

−π

f(x+ x0)e
−in(x+x0)dx = −f(x0) +

N∑

n=−N

einx0 f̂(n)

= −f(x0) + SN(f, x0)

which implies limN→∞ SN(f, x0) = f(x0).

Exercise 16.13. - Reformulated
i) Prove that for any ε > 0 and any K > 0 we can find a continuous function f ∈ C(T)

and an integer M > 0 such that ‖f‖∞ < ε and |SM(f, 0)| > K.

ii) Prove that the function f from part i) can be chosen to be a trigonometric poly-
nomial.

iii) Prove that for any ε > 0, any K > 0 and any positive integer m > 0 we can find

a trigonometric polynomial P and a positive integer M such that ‖P‖∞ < ε, P̂ (r) = 0
for any integer |r| ≤ m and |SM(P, 0)| > K.

iv) For any nonzero trigonometric polynomial P (t) =
∑N

n=−N ane
int we denote by

degP = max {n, n nonnegative integer s.t. an 6= 0 or a−n 6= 0}. Prove that we can find a
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sequence of trigonometric polynomials {Pn}n≥1 such that the sequence m(n) = deg(Pn−1)
is increasing and:

a) ‖Pn‖∞ < 2−n

b) P̂n(r) = 0 if |r| ≤ m(n) or |r| > m(n+ 1)
c) |SdegPn(Pn, 0)| ≥ 2n +

∑n−1
k=1 |SdegPk(Pk, 0)|

v) Prove that
∑∞

n=1 Pn is uniformly convergent to some continuous function f and
that for any n and for any integer r such that m(n) + 1 ≤ r ≤ m(n + 1) we have

f̂(r) = P̂n(r).

vi) Deduce that |Sm(n+1)(f, 0)| ≥ 2n for any n and therefore {SN(f, 0)} diverges.
Solution i) Let M large enough so that εB logM > K. From Lemma 6.5. there

exists a function g ∈ C(T) such that ‖g‖∞ < 1 and |SM(g, 0)| ≥ B logM > K
ε
. Let

f = εg. We have ‖f‖∞ < ε and |SM(f, 0)| = ε|SM(g, 0)| > K.
ii) Using part i) we can find a function f ∈ C(T) and a positive integer M such that

‖f‖∞ < ε
2
and |SM(f, 0)| > (K + 1). Since the trigonometric polynomials are dense in

C(T) we can find a trigonometric polynomial P such that ‖P − f‖∞ < min{ 1
2M+1

, ε
2
}.

Clearly ‖P‖∞ < ε. Furthermore:

|SM(f, 0)− SM(P, 0)| = |SM(f − P, 0)| ≤
M∑

n=−M

1

2π

∣∣∣∣
∫ π

−π

(f − P )(t)e−intdt

∣∣∣∣ < 1

which shows that |SM(P, 0)| > K.
iii) For any nonzero trigonometric polynomial P (t) =

∑N
n=−N ane

int we denote by
degP = max {n nonnegative integer s.t. an 6= 0 or a−n 6= 0}. Let Q be a trigonometric
polynomial such that ‖Q‖∞ < ε and |SdegQ(Q, 0)| > K. Let P (t) = e(degQ+m+1)itQ(t).

Clearly ‖P‖∞ < ε and P̂ (r) = 0 for any integer r ≤ m. Let M = 2degP +m+ 1. Then
SM(P, 0) = SdegQ(Q, 0) so |SM(P, 0)| > K.

iv) We will repeatedly use iii) to get the sequence of trigonometric polynomials {Pn}.
Let P1 be a trigonometric polynomial such that ‖P1‖∞ ≤ 2−1 and |SdegP1(P1, 0)| ≥ 2.
Let m(2) = degP2. Let now P2 be a trigonometric polynomial such that ‖P2‖∞ ≤ 2−2,

|SdegP2(P2, 0)| ≥ 22 + |SdegP1(P1, 0)| and P̂2(r) = 0 for all integers r, −m(2) ≤ r ≤
m(2). Let m(3) = degP2. Repeating this procedure we get a sequence of trigonometric
polynomials {Pn} and an increasing sequence of integers {m(n)}, m(n) = degPn−1 for
any n ≥ 2, such that ‖Pn‖∞ ≤ 2−n, |SdegPn(Pn, 0)| ≥ 2n +

∑n−1
k=1 |SdegPk(Pk, 0)| and

P̂n(r) = 0 for any r, |r| ≤ m(n) or |r| > m(n+ 1).
v) Since ‖Pn‖∞ < 2−n and the series

∑∞
n=1 2

−n is convergent it follows that
∑∞

n=1 Pn

converges uniformly to a continuous function f . For any integer r, m(n) + 1 ≤ |r| ≤
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m(n+ 1)

f̂(r) =
1

2π

∫ π

−π

f(t)eirtdt =
1

2π

∫ π

−π

( ∞∑

n=1

Pn(t)

)
eirtdt

=
1

2π

∞∑

n=1

∫ π

−π

Pn(t)e
irtdt =

∞∑

k=1

P̂k(r) = P̂n(r)

Therefore for any integer n we have that

Sm(n+1)(f, 0) =

m(n+1)∑

k=−m(n+1)

f̂(k) =

m(2)∑

k=−m(2)

f̂(k) +
n∑

l=2


 ∑

m(l)+1≤|k|≤m(l+1)

f̂(k)




=

m(2)∑

k=−m(2)

P̂1(k) +
n∑

l=2


 ∑

m(l)+1≤|k|≤m(l+1)

P̂l(k)


 = Sm(2)(P1, 0) +

n∑

l=2

Sm(l+1)(Pl, 0)

= SdegPn(Pn, 0) +
n−1∑

l=1

SdegPl(Pl, 0)

Since |SdegPn(Pn, 0)| ≥ 2n +
∑n−1

k=1 |SdegPk(Pk, 0)| we get |Sm(n+1)(f, 0)| ≥ 2n for any

positive integer n which shows that limN→∞|SN(f, 0)| =∞, so SN(f, 0) 9 f(0).
The function f constructed before has complex values. Since for any positive in-

teger N we have SN(f, 0) = SN(Re(f), 0) + iSN(Im(f), 0) it follows that at least one
of limN→∞|SN(Re(f), 0)| and limN→∞|SN(Im(f), 0)| is ∞ so at least one of Re(f) and
Im(f) is a real valued continuous function for which the Fourier series diverges at 0.

Exercise 16.15. Let’s observe that 〈log10 n〉 ∈ [0, 1/2] if and only if there exists a
p ∈ N such that 10p ≤ n ≤ 10p+1/2. Let

aN =
card{1 ≤ n ≤ N, 〈log10 n〉 ∈ [0, 1/2]}

N

Let S(k) = 10k − 1 and T (k) = 3 · 10k. Since 101/2 < 4 we clearly have

lim sup
k→∞

aS(k) < 4/10

Also

lim inf
k→∞

aT (k) > lim
k→∞

1

3 · 10k (3 · 10
k − 10k) = 2/3
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which shows that {aN} does not have a limit as N →∞. In particular 〈log10 n〉 are not
equidistributed in [0, 1].

For ε > 0, x ∈ [0, 1] and n ∈ N n > 0 , |〈log10 n〉 − x| < ε if and only if there exists
a p ∈ N such that n ∈ [10p+x−ε, 10p+x+ε]. Since limp→∞(10

p+x+ε − 10p+x−ε) =∞ we can
pick a p ∈ N large enough such that the set M = [10p+x−ε, 10p+x+ε]

⋂
N is not empty.

Any n ∈M will satisfy |〈log10 n〉 − x| < ε.

Exercise 16.16. i) This is a different proof for the ‘Riemann-Lebesgue’ lemma.

Obviously if f is a trigonometric polynomial then f̂(n) = 0 if |n| is large enough.
Let ε > 0 and f ∈ C(T). Let P (t) =

∑N
k=−N ake

ikt be a trigonometric polynomial
such that ‖f − P‖∞ < ε. Then for any n ∈ Z such that |n| > N , we have

f̂(n) =
1

2π

∫ π

−π

(f(s)− P (s)) einsds =
1

2π

∫ π

−π

(f(s)− P (s)) einsds+
1

2π

∫ π

−π

P (s) einsds

so

|f̂(n)| ≤ 1

2π

∫ π

−π

∣∣(f(s)− P (s)) eins
∣∣ ds < ε

which shows that limn→∞ f̂(n) = 0 and limn→−∞ f̂(n) = 0.
Let f(t) = 1. Then

∫ 2π

0

| sinnt| dt = 1

n

∫ 2nπ

0

| sin u| du =
1

n

n−1∑

k=0

∫ 2kπ+2π

2kπ

| sin u| du =
1

n
4n = 4

=
4

2π

∫ 2π

0

1 dt

Let now f(t) = eimt,m ∈ Z,m 6= 0 and n > m. Then, integrating by parts twice, we
get:

Im,n =

∫ 2π

0

eimt| sinnt| dt =
2n−1∑

k=0

(−1)k
∫ (k+1)π

n

kπ
n

eimx sinnx dx

=
2n−1∑

k=0

(−1)k
∫ (k+1)π

n

kπ
n

(
eimx

im

)′
sinnx dx =

n

im

2n−1∑

k=0

(−1)k+1

∫ (k+1)π
n

kπ
n

eimx cosnx dx

=
n

(im)2

2n−1∑

k=0

(−1)k+1

[
(
eimx cosnx

) ∣∣∣
x=

(k+1)π
n

x= kπ
n

+ n

∫ 2π

0

eimx sinnx dx

]

=
n

(im)2

2n−1∑

k=0

(
eim

(k+1)π
n + eim

kπ
n

)
+

n2

(im)2

2n−1∑

k=0

(−1)k+1

∫ (k+1)π
n

kπ
n

eimx sinnx dx
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=
n

(im)2
(eim

π
n + 1)

2n−1∑

k=0

(
e
imπ
n

)k

+
n2

m2
Im,n =

n2

m2
Im,n

Therefore (1− n2

m2 )Im,n = 0 so Im,n = 0. Since
∫ 2π

0
eimxdx = 0 for any m 6= 0 we can

conclude now that

lim
n→∞

∫ 2π

0

P (t)| sinnt| dt = 4

2π

∫ 2π

0

P (t) dt

for any trigonometric polynomial P (t) =
∑N

n=−N ane
int.

We can now finish the proof. Let f : T → R continuous and let ε > 0. Let P (t) =∑N
n=−N ane

int be a trigonometric polynomial such that ‖f − P‖∞ < ε
6π
. Let n0 large

enough such that for any n ≥ n0 we have

∣∣∣∣
∫ 2π

0

P (t)| sinnt| dt− 4

2π

∫ 2π

0

P (t) dt

∣∣∣∣ <
ε

3

Then for any n ≥ n0 we have

∣∣∣∣
∫ 2π

0

f(t) | sinnt| dt− 4

2π

∫ 2π

0

f(t) dt

∣∣∣∣ <

∫ 2π

0

|f(t)− P (t)| | sinnt| dt

+

∣∣∣∣
∫ 2π

0

P (t) | sinnt| dt− 4

2π

∫ 2π

0

P (t) dt

∣∣∣∣+
4

2π

∫ 2π

0

|f(t)− P (t)| dt < ε

and therefore

lim
n→∞

∫ 2π

0

f(t) | sinnt| dt = 4

2π

∫ 2π

0

f(t) dt

Exercise 16.17. A simple computation shows that
∫ β

α
e2πitdt = 0 if and only if

(α − β) ∈ Z. Without loss of generality we can assume that R = [0, a] × [0, b]. For any
integer j, 1 ≤ j ≤ k we have R(j) = [xj, xj + aj]× [yj, yj + bj]. Furthermore:

∫ ∫

Rj

e2πi(x+y) dx dy =

(∫ xj+aj

xj

e2πix dx

)(∫ yj+bj

yj

e2πiy dy

)
= 0

since at least one of aj and bj is an integer. Therefore

(∫ a

0

e2πix dx

)(∫ b

0

e2πiy dy

)
=

∫ ∫

R

e2πi(x+y) dx dy =
k∑

j=1

∫ ∫

Rj

e2πi(x+y) dx dy = 0

9



which shows that at least one of a and b is an integer.

Exercise 16.20. i) This is the Cauchy Schwarz inequality for a = (a−N , a−N+1, ...aN−1, aN)
and b = (b−N , b−N+1, ...bN−1, bN) in C

2N+1.
ii) For any N ≥ 0

N∑

j=−N

|ajbj| ≤
(

N∑

j=−N

|aj|2
)1/2( N∑

j=−N

|bj|2
)1/2

≤
( ∞∑

j=−∞
|aj|2

)1/2( ∞∑

j=−∞
|bj|2

)1/2

which implies that {∑N
j=−N |ajbj|}N∈N converges and

∞∑

j=−∞
|ajbj| ≤

( ∞∑

j=−∞
|aj|2

)1/2( ∞∑

j=−∞
|bj|2

)1/2

iii) For any f ∈ C(T) and any j ∈ Z we get, using integration by parts:

f̂ ′(j) =
1

2π

∫ π

−π

f ′(t) e−ijt dt = ij
1

2π

∫ π

−π

f(t) e−ijt dt = ij f̂(j)

Since by Plancherel theorem (Theorem 8.2. (i)) we have:

∞∑

j=−∞
|f̂ ′(j)|2 = 1

2π

∫ π

−π

f ′(t)dt

we immediately get
∞∑

j=−∞
j2|f̂(j)|2 = 1

2π

∫

T

|f ′(t)|2dt

iv) Using ii) we get

∞∑

j=−∞
|f̂(j)| = |f̂(0)|+

∑

|j|≥1

|f̂(j)| j 1
j
≤ |f̂(0)|+


∑

|j|≥1

|f̂(j)|2 j2




1/2
∑

|j|≥1

1

j2




1/2

≤ |f̂(0)|+
(

1

2π

∫ π

−π

|f ′(t)|2 dt
)1/2(

π2

3

)1/2

which shows that
∑∞

j=−∞ |f̂(j)| converges. Therefore
∑∞

j=−∞ f̂(j) eijt converges uni-

formly to a continuous function g. It remains to show that g = f . But ĝ(j) = f̂(j) for
any j ∈ Z. Therefore, from Theorem 7.4 we get g = f .
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Exercise 16.21. (Wirtinger’s inequality) i) Since by hypothesis 1
2π

∫
T
u(t) dt = 0,

we have û(0) = 0. From Plancherel’s theorem and part iii) of the previous problem we
have:

1

2π

∫ π

−π

(u(t))2 dt =
∞∑

j=−∞
|û(j)|2 =

∑

|j|≥1

|û(j)|2 ≤
∑

|j|≥1

j2|û(j)|2 = 1

2π

∫ π

−π

(u′(t))2dt

Note that in the previous relation we have equality if and only if û(j) = 0 for any
|j| ≥ 2. Therefore u(t) = û(1)eit + û(−1)e−it. Since u is real valued we must have
u(t) = a cos(t) + b sin(t), a, b ∈ R. If C2 = a2 + b2 6= 0 we have

u(t) =
√
a2 + b2

(
a√

a2 + b2
cos t+

b√
a2 + b2

sin t

)
= C cos(t+ ϕ)

where ϕ ∈ [0, 2π) is chosen such that sinϕ = − b√
a2+b2

and cosϕ = a√
a2+b2

.

ii) Let v ∈ C1([0, π
2
]) be a real valued function with v(0) = 0 and v′(π

2
) = 0. Let

f : [−π, π]→ R defined by:

f(t) =





v(t) if t ∈
[
0, π

2

)

v(π − t) if t ∈
[
π
2
, π
)

−v(−t) if t ∈
[
−π

2
, 0
)

−v(π + t) if t ∈
[
−π,−π

2

)

It is easy to see that f ∈ C(T). For any x0 ∈ T let’s denote by f ′−(x0) the left-
hand derivative of f at x0 and by f ′+(x0) the right-hand derivative of f at x0. Simple
computations show that f ′+(0) = f ′−(0) = v′(0), f ′+(

π
2
) = f ′−(

π
2
) = 0, f ′−(π) = f ′+(−π) =

−v′(0) and f ′+(−π
2
) = f ′−(−π

2
) = 0. Therefore f ∈ C1(T). From part i) we get

∫ π

−π

(f(t))2 dt ≤
∫ π

−π

(f ′(t))2 dt

Since
∫ π

−π
(f(t))2dt = 4

∫ π
2

0
(v(t))2dt and

∫ π

−π
(f ′(t))2dt = 4

∫ π
2

0
(v′(t))2dt we get

∫ π
2

0

(v(t))2 dt ≤
∫ π

2

0

(v′(t))2 dt

for any v ∈ C1(T).
The previous inequality becomes equality if and only if there exist C ∈ R and ϕ ∈

[0, 2π) such that f(t) = C cos(t + ϕ). When C 6= 0, since f(0) = f ′(π
2
) = 0, it follows
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that cosϕ = 0 and sin(π
2
+ ϕ) = 0. Therefore ϕ = π

2
or ϕ = 3π

2
. In both cases we can

conclude that f(t) = C1 sin t , so v(t) = C1 sin t for a constant C1 ∈ R.
iii) Let w ∈ C1([0, π

2
]) with w(0) = 0. Let M > 0 such that |w(t)| < M and

|w′(t)| < M for any t ∈ [0, π
2
].

Let ε > 0, ε < 7M 2 and let t0 =
π
2
− ε

7M2 . Define v : [0, π
2
]→ R by

v(t) =

{
w(t) if t ∈ [0, t0]

w(t0) +
1
2
w′(t0)

(
π
2
− t0

)
− 1

2
w′(t0)

(
π
2
− t
)2 (π

2
− t0

)−1
if t ∈ (t0,

π
2
]

It is easy to see that v ∈ C1([0, π
2
]), v(0) = w(0) = 0 and v′(π

2
) = 0. Therefore, from

part ii) we get: ∫ π
2

0

(v(t))2 dt ≤
∫ π

2

0

(v′(t))2 dt (1)

It is also easy to see that ‖v‖∞ < 2M and ‖v′‖∞ < M . Therefore

∣∣∣∣∣

∫ π
2

0

(v(t))2 dt−
∫ π

2

0

(w(t))2 dt

∣∣∣∣∣ =
∣∣∣∣∣

∫ π
2

t0

(v(t))2 dt−
∫ π

2

t0

(w(t))2 dt

∣∣∣∣∣

≤
∫ π

2

t0

(v(t))2 dt+

∫ π
2

t0

(w(t))2 dt ≤ 5M 2 ε

7M2
=

5 ε

7
(2)

and
∣∣∣∣∣

∫ π
2

0

(v′(t))2 dt−
∫ π

2

0

(w′(t))2 dt

∣∣∣∣∣ =
∣∣∣∣∣

∫ π
2

t0

(v′(t))2 dt−
∫ π

2

t0

(w′(t))2 dt

∣∣∣∣∣

≤
∫ π

2

t0

(v′(t))2 dt+

∫ π
2

t0

(w′(t))2 dt < 2M 2 ε

7M2
=

2 ε

7
(3)

Using (1), (2) and (3) we obtain

∫ π
2

0

(w(t))2 dt ≤
∫ π

2

0

(w′(t))2 dt + ε

Since ε is arbitrarily small we can conclude that

∫ π
2

0

(w(t))2 dt ≤
∫ π

2

0

(w′(t))2 dt
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Exercise 16.23. - (The Gibbs Phenomenon) i) Let λ = 1
2π
(f+(0) − f−(0)) and

g : [−π, π]→ R defined by

g(t) =

{
f(t)− λF (t) if t 6= 0
1
2
(f+(0) + f−(0)) if t = 0

It is easy to see that g−(0) = g+(0) =
1
2
(f+(0)+ f−(0)) and therefore g ∈ C(T). Further-

more, g is continuously differentiable on T\{0}. We clearly have f = g + λF .
ii) For r ∈ Z, r 6= 0 we have

F̂ (r) =
1

2π

∫ π

−π

F (t) e−irt dt =
1

2π

∫ 0

−π

(−π − t) e−irt dt+
1

2π

∫ π

0

(π − t) e−irt dt

=
1

2ir

∫ 0

−π

(e−irt)′ dt− 1

2ir

∫ π

0

(e−irt)′ dt+
1

2πir

∫ π

−π

t(e−irt)′ dt

=
1

2ir
(−2(cos rπ) + 2) +

1

2πir
2π cos rπ =

1

ir

Since obviously F̂ (0) = 0 we have

Sn(F, t) =
n∑

r=−n

F̂ (r) eirt =
n∑

r=1

(
− 1

ir
e−irt +

1

ir
eirt
)
= 2

n∑

r=1

sin rt

r

iii) For any τ > 0 we have that Pn = {r τ
n
, 1 ≤ r ≤ n} is a partition of [0, τ ] in n

intervals of length τ
n
. Therefore

Sn(F,
τ

n
) = 2

τ

n

n∑

r=1

1
rτ
n

sin
rτ

n

is the Riemann sum associated to the function ϕ : [0, τ ]→ R, ϕ(x) = 2 sinx
x
, the partition

Pn of [0, τ ] and the set of intermediate points obtained by taking the right-hand endpoint
from each interval [ r−1

n
, r
n
]. Since the function ϕ is Riemann integrable on [0, τ ] we get

lim
n→∞

Sn(F,
τ

n
) = 2

∫ τ

0

sin x

x
dx

iv) The graph of the function G(τ) =
∫ τ

0
sinx
x

dx is
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1.525

1.55

1.575
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1.625

1.65

This suggest that limτ→∞
∫ τ

0
sinx
x

dx exists. (Actually limτ→∞
∫ τ

0
sinx
x

dx = π
2
)

v) When τ is small and n is large we have that t = τ/n is small. The graph of
S50(F, t) is

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

We can observe the two “bumps” near the origin which give a point of maximum to
the right of 0 and a point of minimum to the left of 0.
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Let’s also observe that the graph of the function h : (0,∞)→ R defined by

h(t) = Sn(F, t)− F (t)

is (for n = 50)

0.5 1 1.5 2 2.5 3

-0.1

-0.05

0.05

0.1

We can see that this graph is similar to the graph of the function G from part iv).
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