Introductory Course: Fourier Analysis and its many uses

Solutions - Exercises 16.1-16.5, 16.9, 16.12, 16.13, 16.15, 16.16, 16.17, 16.20,
16.21, 16.23 from “A First Look at Fourier Analysis” by T.W. Korner

(prepared by Mihai Stoiciu)

Exercise 16.1. i) Take P(t) = i )( O 4 4 f; ))(0) "t 4 £(0).

ii) Note first that g(0) = ¢’(0) = --- = ¢g™(0) = 0. Since g(O) = g(t) = 0 it follows
from Rolle’s theorem that there exists a ¢; € (0,¢) such that ¢'(c;) = 0. Observe now
that ¢’(0) = ¢’(¢1) = 0 so Rolle’s theorem implies that there exists a ¢o € (0, ¢;) such that
g"(c2) = 0. Repeating this procedure (n + 1) times we get that there exists ¢ = ¢,41 €

(0,t) such that g+ (¢) = 0. This immediately implies f(t) = P(t) + f((:;:)(c) UL

Exercise 16.2. A polynomial P of degree at most (2n + 1) with prescribed val-
ues for P(0), P'(0), ... P™(0), P(1), P'(1), ... P®™ (1) can be obtained by taking a linear
combination of the polynomials %xk(x— )" 0 <k <nand %x”“(w— D*0<k<n.

We prove now that P is unique. Let @) be a polynomial of degree at most (2n +
1) such that P(0) = Q(0), P'(0) = Q'(0),...P™(0) = Q™(0),P(1) = Q(1),P'(1) =
Q'(1),...P™(1) = QM™(1). R = P — Q is a polynomial of degree at most 2n + 1 and
R(0) = R'(0) = --- = R™(0) = R(1) = R'(1) = --- = R™(1) = 0. Therefore the
polynomials X" and (X — 1)"*! divide R and since deg R < 2n + 1 we obtain R = 0.

Let P be the unique polynomial of degree at most (2n + 1) such that P(0) =
£(0), P'(0) = £1(0), ... PO(0) = £M(0), P(1) = £(1), P'(1) = f(1),... PO)(1) = fIn(1).
For a fixed y € (0,1) let

fy) —Ply) . n
o(x) = f(x) = Plx) - fl()y _ 1<)n)+1 2 (g — 1)
Let’s observe that g(0) = ¢'(0) = --- = g™ (0) = 0and g(1) = ¢'(1) = --- = g™ (1) =
0. Furthermore ¢(0) = g(y ) = g(1 ) = 0. Therefore, from Rolle’s theorem it follows
that there exists two points ¢i € (0,y) and ¢} € (y,1) such that ¢'(c{) = ¢'(c}) = 0.
Since ¢'(0) = ¢’(1) = 0 we can apply Rolle’s theorem again and we get three points
2 € (0,c]), 2 € (cl,cd) and ¢ € (c},1) such that ¢"(c?) = ¢"(c3) = ¢"(3) = 0.

Repeating this procedure (n + 1) times we get (n + 2) points cf™', 3t ... cMf) € (0,1)
such that g(n+1)(c711+1) — g(n+1)( n+1) — g(n+1)( n+1) 0.
Now we can apply Rolle’s theorem again and we get (n + 1) points
G e (), e (g, . il € (k)



such that g2 (c}t?) = gD (3 +?) = - - = g2 ("17) = 0. Repeating this procedure
(n+ 1) times we get that there exists a pomt c= cf”” € (0, 1) such that ¢g>"*2(c) = 0.
Since g2t (z) = ft2)(g) — LW=LW_(9n L 9)| we immediately get

(=1

f(2n+2) c
( ? y

n+1 -1 n+1
oo Y Wb

E(y) = fly) — P(y) =

Exercise 16.3. Taking imaginary parts in the de Moivre formula it is easy to see

that
[5]

n+1 e
Un(t) = (% L 1) (t* — 1)k ¢n2k
k=0

Taking & in T,,(cos ) = cosnf we get T (cos6) sinf = n(sinnd) which implies that
T!(z) = nU,—1(x).
Exercise 16.4. For any t € R with [t| < 1 and for any 6 € R we have |te??| < 1 so

Z t"e inf _ - teze

: n,inf| _ in _ 1—tcosé 1—tcosf _
Since Re [t e } = t" cos(nf) and Re [1 tew} = Toreesg We get that —- %", =

Yoo o Tn(cos @) t" for any |t| < 1 and any 6 € R, which implies

1—tx >
1—2tx—|—t2 ;

for any [t| < 1 and |z| < 1.

Exercise 16.5. Let’s observe first that for any r € (0, 1) we have P,.(f,0) = (f*P.)(0)
where P, : [, 7] — R, P.(t) = >0 _ rlnleint = Wg—;cost Furthermore P,.(t) > 0

for any t € [— 7r,7r] and:

1 [T 1 = [ }
— | P@)dt = — nleint gy = 1
5 | B0 %n;m/ﬂr e

Let £ > 0. For any r € (0, 1) we have:

PO - 50 = |70 - 1005 [ Rt a| -

2 J_,

L / O — 1) — F0)) Pty dt

2 J_,
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<2 ye-v-reBwdr~ [ 156-0- @) P

2T [t|<6 27 [t|>6
Since f € C(T) it follows that f is bounded and uniformly continuous. Let M > 0
such that |f(s)] < M for any s € [—m, 7| and let §. > 0 such that |t — /| < J. implies

[F(t) = F(E)] < 5.

For any ¢ with [t| > . we have 5 +r21__§fcos s <7 +r21__2:2cos 5 < 1_(1;);28)2 and therefore
1—r?
P.t)dt < —
/|t>5 ©) 1 — (cosd.)?
Let r. > 0 such that r € (r., 1) implies W < 2% For any r € (r.,1) we have:
1 €
Dy [f(0 =) = fO) Pr(t)dt < 5
T Jjtl<se
and 1 1. ome
€
— 0—t)— f(O)| P(t)dt < —2M oo =
o L 10— = SO P0ar < 2 T =

We can conclude now that |P,(f,0)— f(0)| < ¢ for any r € (r.,1) and any 6 € [—7, 7.
Therefore P,(f,-) — f uniformly as r — 1, r < 1.

Exercise 16.9. i) Let ¢ > 0. Since f has real values it follows from Theorem 8.1 ii)
that there exists a real trigonometric polynomial

N
= Z a, sinnt + b, cosnt)
n=0

such that ||f — Q|lec < €. Let Q1(t) = Q(—t). Since f(t) = f(—t) it follows that
1f — Qillc < e. For R(t) = 1(Q(t) + Q:1(t)) we have ||f — Rl < e. Furthermore a
straightforward computation shows that:

N
= Z b, cosnt
n=0

ii) Let g : [-m, 7] — R defined by g(t) = F(|cost|). Let ¢ > 0. Since g € C(T)
and is real valued it follows from i) that there exists a real trigonometric polynomial
R(t) = >0 gcncosnt such that ||f — Rl <. Let’s observe now that

N N
R(t) = Z Cp cosnt = Z cn Tn(cost) = Q(cost)
n=0 n=0
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where T;, is the n-th Chebyshev polynomial of the first kind and @ € R[X].

Therefore |g(t) — R(t)| = |F(| cost|) — Q(cost)| < e for any ¢t € [—7, w| which imme-
diately implies ||F' — Q|| < €.

iii) Since fol g(t)t"dt = 0 for any n it follows that f01 g(t) P(t)dt = 0 for any poly-
nomial P € R[X]. Let P, be a sequence of polynomials such that P, — g uniformly.
Since

lim g(t)P,(t)dt = /0 g(t) g(x) dt

n—oo 0

it follows that fol g(t) fo lg(t)]* dt =0 so g=0.

Exercise 16.12. ) Since f is continuous it follows immediately that f f())Pdt <
oo and Theorem 8.2. implies that Y°° | f(n)[2 < co. We get lim, o f(n ) = 0 and

lim,, f(n) = 0.

ii) We can write sint = - (¢ — e™) and therefore fi(t) = 5 (g1(t)e — gi(t)e™™).

This implies f,(j) = 5 (G —1)—qi(j + 1)) so for any n > 1

Sul(f1.0) Zﬁ n)+ filn+1) = fi(=n) = fi(=n—1)

j=—n

Using part i) we get lim,, .., S,(f1,0) =0
iii) For any ¢ # nm we have go(t) = - fo(t). We must prove that — fo(t),t # nw
can be extended to a continuous function on T. For any ¢t € (—m, 7),t # 0

1 ot follt) t o falt) = f2(0)
'—f2<t)_sint t  sint t—0

sint
Therefore lim;_.o = f2(t) = f5(0), so the function —- f»(¢) can be extended by conti-
nuity at ¢ = 0. Similarly

t—m  falt) = fo(m) )

1 . .
}me@h( )—}51;17 sin(m — t) J2(1) :}me sin(m — t) t—m = —f2m)
i 4 o (t4m A -Hm
tEmw sint fa(t) = tLHEr sin(m + t) f(t) = tLHPw sin(m + t) t+m = —fa(7)

so the function —L- fo(¢) can be extended to a continuous function g, : T — C. Using ii)
we get lim, .. S, (f2,0) =



iv) It is easy to see that f; is continuous and differentiable at 0. Furthermore for any
7 =2n,n € Z we have:

A = R = o= [ et = [ ) s =
—2m
(From part iii) we get that there exists a function g € C(T) such that f4(t) = g(t) sint
and from ii) we get that f4(2n) = 2-(g(2n — 1) — g(2n + 1)). We can now conclude that

V(f3.0) ng = 3" Fu2n) = 5 (G(-20— 1) = G2 + 1)

Therefore limy ... Sy(f3,0) = 0.

v) Suppose [ is continuous and differentiable at zo € [—m,7|. Let g : [-m, 7] —
C, g(x) = f(x + x9) — f(xp). Clearly g(0) = 0 and g is differentiable at 0. Using part
iv) we get limy_ Sn(g,0) = 0. But

Sn(g,0) = i g(n) = g(0) + i g(n) = —f(xg) + Z 1 Fla + zo)e M dx
2w
n=—N =—N n#0 n=—N -n

N

f(ao) Z / Fla + a0)e ™0z = — (o) + Y ¢ F(n)
n=—N
= —f(wo) + SN(fv o)

which implies limy_.oc Sn(f, z0) = f(x0).

Exercise 16.13. - Reformulated
i) Prove that for any € > 0 and any K > 0 we can find a continuous function f € C(T)
and an integer M > 0 such that ||f||. < & and |Sy(f,0)] > K.

ii) Prove that the function f from part i) can be chosen to be a trigonometric poly-
nomial.

iii) Prove that for any € > 0, any K > 0 and any positive integer m > 0 we can find
a trigonometric polynomial P and a positive integer M such that ||P||o < &, P(r) =0
for any integer |r| < m and |Sy(P,0)| > K.

iv) For any nonzero trigonometric polynomial P(t) = Zng ~ n€™ we denote by

deg P = max {n, n nonnegative integer s.t. a,, # 0 or a_,, # 0}. Prove that we can find a



sequence of trigonometric polynomials { P, },,>1 such that the sequence m(n) = deg(P,_1)
is increasing and:

a) W\D"HOO <27

b) P,(r) =0 if |r| <m(n)or |r| > m(n+1)

C) ’Sdegpn(an 0)’ > 2"+ Zz;i |Sdegpk<Pk> 0)|

v) Prove that ) >°, P, is uniformly convergent to some continuous function f and
that for any n and for any integer r such that m(n) +1 < r < m(n + 1) we have

F(r) = Pu(r).
vi) Deduce that [Sp,pmi1)(f,0)] > 2" for any n and therefore {Sn(f,0)} diverges.

Solution i) Let M large enough so that eBlogM > K. From Lemma 6.5. there
exists a function g € C(T) such that ||g|| < 1 and [Sy(g,0)] > BlogM > £. Let
f=¢eg. We have || f|lo <€ and |Sy(f,0)] =¢|Sm(g,0)] > K.

ii) Using part i) we can find a function f € C(T) and a positive integer M such that
| fllso < 5 and |Sa(f,0)] > (K 4 1). Since the trigonometric polynomials are dense in
C(T) we can find a trigonometric polynomial P such that [|[P — f|le < min{5z—,5}.
Clearly ||P||c < €. Furthermore:

1Su(F.0) = Su(P.0)| = [Su(f ~ PO < > o ‘/ (f = P)(B)emdt| <1
n=—M T

which shows that |Sy/(P,0)| > K.

iii) For any nonzero trigonometric polynomial P(t) = fo:, ~ an€™ we denote by
deg P = max {n nonnegative integer s.t. a, # 0 or a_, # 0}. Let @ be a trigonometric
polynomial such that ||Q|ls < & and |Sgego(Q,0)| > K. Let P(t) = eldes@tmtit(¢),
Clearly ||P|o < & and P(r) = 0 for any integer r < m. Let M = 2deg P+ m+ 1. Then
Sy (P,0) = Saeg (@, 0) so [Sy(P,0)] > K.

iv) We will repeatedly use iii) to get the sequence of trigonometric polynomials { P, }.
Let P be a trigonometric polynomial such that || Pi]jec < 27! and [Sgegp, (P1,0)] > 2.
Let m(2) = deg P». Let now P, be a trigonometric polynomial such that || Pl|e < 272,
|Saeg Py (P2,0)] > 2% + |Saeg £, (P1,0)| and Py(r) = 0 for all integers r, —m(2) < r <
m(2). Let m(3) = deg P,. Repeating this procedure we get a sequence of trigonometric
polynomials {P,} and an increasing sequence of integers {m(n)}, m(n) = deg P,_; for
any n > 2, such that ||P,|lcc < 27", |Sdegp, (Pn,0)] > 2" + ZZ;; | Sdeg P, (Pr, 0)| and
I/D\n(r) =0 for any r, |r| < m(n) or |r| > m(n +1).

v) Since ||P,||oo < 27" and the series Y~ , 27" is convergent it follows that >~ P,
converges uniformly to a continuous function f. For any integer r, m(n) + 1 < |r| <
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m(n+1)

zzi/ F(t)etdt = —/ <ZP )emdt
Z / Je'mdt = gﬁ;m:A

Therefore for any integer n we have that

m(n+1) m(2) n
Smein(£00 = > flky= > flk)+ > [k
k=—m(n+1) k=—m(2) =2 [ m()+1<|k|<m(i+1)
= > P+, Py(k) | = Sm@)(P1,0) + > Sumasn) (P, 0)
k=—m(2) =2 | mO)+1<|k|<m(I+1) 1=2

n—1

= Saeg P, (P, 0) + ZSdeng(Plao)

Since |Seg (P, 0)] > 2" + 3171 |Sueg £ (Pry 0)] We get [Sppminy(f,0)] > 2" for any
positive integer n which shows that limy_.|Sy(f,0)| = 0o, so Sy (f,0) = £(0).

The function f constructed before has complex values. Since for any positive in-
teger N we have Sy(f,0) = Sy(Re(f),0) + iSn(Im(f),0) it follows that at least one
of limy_o0|Sy(Re(f),0)| and limy_o|Sx(Im(f),0)| is 0o so at least one of Re(f) and
Im(f) is a real valued continuous function for which the Fourier series diverges at 0.

Exercise 16.15. Let’s observe that (log,,n) € [0,1/2] if and only if there exists a
p € N such that 107 < n < 10°11/2. Let

card{1 < n < N, (log,,n) € [0,1/2]}
any = N

Let S(k) = 10¥ — 1 and T'(k) = 3 - 10*. Since 10"/2 < 4 we clearly have

limsup agg) < 4/10

k—o0

Also

(3-10F — 10%) =2/3

1
li f > l
1m1n ar(r) im 0 ook

7



which shows that {ay} does not have a limit as N — oco. In particular (log,,n) are not
equidistributed in [0, 1].

Fore >0,z €[0,1] and n € Nn > 0, [(log,yn) — 2| < € if and only if there exists
a p € N such that n € [10P7*7¢ 10PT**<]. Since lim, o (10771 — 10P1%7¢) = 0o we can
pick a p € N large enough such that the set M = [10PT*7¢ 10P"**<] (N is not empty.
Any n € M will satisfy |(log,,n) — x| < e.

Exercise 16.16. i) This is a different proof for the ‘Riemann-Lebesgue’ lemma.

Obviously if f is a trigonometric polynomial then f(n) = 0 if |n| is large enough.
Let ¢ > 0 and f € C(T). Let P(t) = ZkN:_N are** be a trigonometric polynomial
such that ||f — P||oc < &. Then for any n € Z such that |n| > N, we have

f(n) - % /7r (f(s) = P(s)) e™ds = % /Tr(f(s) — P(s)) e ds + % /” P(s)e™ds

—T

SO

T

Fol < 5 [ 106 = P elas <

T 2m ).

~ ~

which shows that lim, . f(n) =0 and lim,,_,_~, f(n) = 0.
Let f(t) = 1. Then

2T 1 2nm 1 n—1 2km+2m 1
/ |sinnt|dt:—/ |sinu|du:—2/ |sinu|du = —4n =4
0 nJo N Y2 n

km

4 2w
= — 1dt
21 Jo

Let now f(t) = ¢™ m € Z,m # 0 and n > m. Then, integrating by parts twice, we
get:

or on—1 (k+1)7
L = / e | sinnt| dt = E (—1)k/ "™ sinnx dx
km
0 k=0 "
2n—1 @ eimm / n 2n—1 (ktzl)ﬂ .
= (—1)k , sinnrdr = — g (—1)k+1 e cos nx dx
kn m mn kn
k=0 n k=0 n
n 2n—1 ' o= (DT 2t ‘
=7 E (_1)k+1 (emm cos TW) +n e™* sinnx dx
(1m) o=k 0
k=0 n
n 2n—1 ( , n2 2n—1 (k+1)m
. k+1)m . km n . X
= — E (ezmin + M ) + — 5 (_1)k+1 "M gin nr dr
k=0 k=0 n



2

Therefore (1 — 25)1,,, = 0 50 Iy, , = 0. Since fozw ey = () for any m # 0 we can

conclude now that )
T

4 2w
im [ P()|sinnt|df — — / P(t) dt
n—oo 0 27T 0
for any trigonometric polynomial P(t) = 27]:[:7 N an€™.
We can now finish the proof. Let f : T — R continuous and let ¢ > 0. Let P(t) =

£

Z'r]:f:—N ane™ be a trigonometric polynomial such that ||f — Pl < &. Let ng large

enough such that for any n > ng we have

2T 4 2T c
/ P(t)] sinnt| dt — —/ P(t)dt| < <
0 2m J, 3

Then for any n > ng we have

2w 21

f(t) |sinnt|dt — 4 f(t) dt’ < /27T |f(t) — P(t)| | sinnt|dt
d 0

0 2 0

2 4 27 4 27
P(t)|si S Ny = _P
/0 (t) |sinnt|dt 27T/0 (t) dt’ + 27?/0 |f (%) (t)] dt < e

+

and therefore
27 27

im [ f(t)|sinntldt = — [ f(t)dt

n—oo 0 27T 0

Exercise 16.17. A simple computation shows that [ aﬁ e?™dt = 0 if and only if
(a — B) € Z. Without loss of generality we can assume that R = [0, a] x [0,b]. For any
integer j, 1 < j <k we have R(j) = [z;,z; + a;] X [y;,y; + b;]. Furthermore:

) xj+a; ) yi+b; )
// 627rz(x+y) dr dy — / 627rz:v dr / 627rzy dy =0
R; zj Yj

J

since at least one of a; and b; is an integer. Therefore

a b i
(/ p2mit d?[f) (/ o2y dy) _ // 2mi(@+Y) g, dy = Z // e2mi@+Y) g4 dy =0
0 0 R j=1 B;



which shows that at least one of a and b is an integer.

Exercise 16.20. i) This is the Cauchy Schwarz inequality for a = (a_y,a_n+1,...an—1,an)
and b = (b,N, b,NJrl, ...bel, bN> in C2N+1.
ii) For any N >0

N N 12 , N 1/2 - 12/ o 1/2
D labi| < <Z |aj|2> (Z ’%’\2) < <Z |aj!2> (Z |bj|2)
p— =N =N

j=—o00 j=—00

which implies that {Zjvz_ ~ la;bi|} nen converges and

j:—oo j:—oo j:—OO

iii) For any f € C(T) and any j € Z we get, using integration by parts:
~ 1 4 . 1 4 . ~
F) = 50 [ £Oeta =i [ e i =i )

Since by Plancherel theorem (Theorem 8.2. (i)) we have:

we immediately get

> ARG = 5 [ 1w

iv) Using ii) we get
1/2 1/2
o0 R N R 1 R R 1
S IFG)I = |f(0)|+Z!f(j>|j; < FO)+ | DI Zj—2
Jj=—00 l71>1 l71>1 l71>1

<\fol+ (57 [ rere) - (%>/

~ ~

which shows that 37 |f(j)| converges. Therefore 3 _ f(j)e”* converges uni-

formly to a continuous function g. It remains to show that g = f. But g(j) = f( j) for
any j € Z. Therefore, from Theorem 7.4 we get g = f.

10



Exercise 16.21. (Wirtinger’s inequality) i) Since by hypothes1s > Jpu(t)dt =0,
we have u(0) = 0. From Plancherel’s theorem and part iii) of the previous problem we
have:

[ wpda= Y @GP = Y RGP < Y 6P = 5- / (o)

j=—00 l71=1 l71=1

Note that in the previous relation we have equality if and only if u(j) = 0 for any
|7 > 2. Therefore u(t) = u(1)e" + u(—1)e . Since u is real valued we must have
u(t) = acos(t) + bsin(t), a,b € R. If C? = a® + b* # 0 we have

u(t>_\/m(\/7(30$t+\/781nt)—CCOS(t—i—go)

where ¢ € [0, 27) is chosen such that sing = —ﬁ and cosp = ==

ii) Let v € C'([0,5]) be a real valued function with v(0) = 0 and v'(3) = 0. Let
f:[=m, 7] — R defined by:

u(t) if tel0,3)
)l —1t) if tel[z,m)
16 = —v(—t) if te[-Z,0)
—u(m +t) if tel[-m—3)

It is easy to see that f € C(T). For any zp € T let’s denote by f’ (z¢) the left-
hand derivative of f at xy and by f’ (zo) the right-hand derivative of f at xy. Simple

computations show that f’ (0) = f(0) =v'(0), fi.(5)=f.(5)=0, f.(n)=fl(—7)=
—0'(0) and f,(=%) = f (%) = 0. Therefore f € C'(T). From part i) we get

/ﬁ<f(t))2dt < / (f' ()% dt

—T —T

Since [" (f(t))%dt = 4f0 t))%dt and [T _(f'(t))%dt = 4f0 t))%dt we get

/0 )t < / (1) dt
for any v € C!(T).

The previous inequality becomes equality if and only if there exist C' € R and ¢ €
[0,27) such that f(t) = Ccos(t + ¢). When C # 0, since f(0) = f'(5) = 0, it follows

11



that cos p = 0 and sin(§ + ¢) = 0. Therefore ¢ = 7 or ¢ = 37“ In both cases we can

conclude that f(t) = Cysint , so v(t) = Cysint for a constant C; € R.
iii) Let w € C'([0,%]) with w(0) = 0. Let M > 0 such that |w(t)] < M and
[w'(t)] < M for any t € [0, F].

Let € >0, e < 7TM? and let t) = § — —7. Define v : [0, 5] — R by

2

o(0) = {w(t) if ¢ [0,t]
wlte) + L' (to) (5 —to) — L' (te) (5 —1)° (Z —to) ™" it te(to, T

It is easy to see that v € C''([0,5]),v(0) = w(0) = 0 and v'(5) = 0. Therefore, from
part ii) we get:

/ Cw(t)?dt < / “word (1)

0 0
It is also easy to see that ||[v||e < 2M and [|v'||c < M. Therefore

/ (o) dr - / " (w(t))?dt

0 0

/ C(o(0) dr / * w(t))?de

to to

s s

< [(eopas [Cwore < e -3 )

and

-/ W) d - / w0 de

to to

/ SO d - / " w0 de

0 0

g/t: (v’(t))zdt+/t05(w’(t))2dt < 2M27;/[2 :2_75 (3)

Using (1), (2) and (3) we obtain

/ () dr < / S+ e

0 0
Since ¢ is arbitrarily small we can conclude that

/O * (w(t))?di < / (w0 e

0

12



= 5=(f+(0) = f-(0)) and

(The Gibbs Phenomenon) i) Let A =

if 40

Exercise 16.23.
— AF(t)
ift=20

g : [—m, 7] — R defined by
0 {f(t)

3 (f+(0) + £-(0))
(f+(0) + f-(0)) and therefore g € C(T). Further-

It is easy to see that g_(0) = g, (0)
more, ¢ is continuously differentiable on T\{0}. We clearly have f = g + AF

ii) For r € Z,r # 0 we have
o 1 " —irt 1 0 —irt 1 " —irt
F(r)=— Fit)edt=— [ (—m—t)e"dt+— [ (m—t dt
2m 2 ) . 2m Jo
I IR 1 [, I
- —irtN g~ —irt /dt t —irt /dt
2ar _W(e ) 2r (™) dt + 2mr (™)
L (Cofcosrm) +2) + ——2
= COSTT ——2TCoS T = —
2ir 2mir ur
Since obviously F (0) = 0 we have
= = - 1 " sinrt
Sn Ft) = ”"t = —ZTt i 7 2 I 9
1 <r < n}is a partition of [0,7] in n

iii) For any 7 > 0 we have that P, = {rZ

intervals of length ». Therefore

Sl

1n—

SI\\
3|~|||—t

p

is the Riemann sum associated to the function ¢ : [0, 7] — R, ¢(z) = 2 222 the partition
P,, of [0, 7] and the set of intermediate points obtained by taking the right-hand endpoint
]. Since the function ¢ is Riemann integrable on [0, 7] we get

71):2/Tsina:d$
0 T

T sinx :
Jo L dx is

from each interval [
lim S, (F

n—oo

3

) The graph of the function G(7)
13



T

This suggest that lim,_ fo Si%d:r exists. (Actually lim, fOT Si%d:r =7)
v) When 7 is small and n is large we have that ¢ = 7/n is small. The graph of
S50(F, t) is

We can observe the two “bumps” near the origin which give a point of maximum to
the right of 0 and a point of minimum to the left of 0.
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Let’s also observe that the graph of the function A : (0, 00) — R defined by

h(t) = So(F.t) — F(t)

is (for n = 50)

/\/\/\M/\M/\/\M/\MMMM
| vvvvvvvvvvvvvvvwvvvvv

We can see that this graph is similar to the graph of the function G from part iv).
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