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Small print This is just a first draft for the course. The content of the course will
be what I say, not what these notes say. Experience shows that skeleton notes (at
least when I write them) are very error prone so use these notes with care. I should
very much appreciate being told of any corrections or possible improvements and might
even part with a small reward to the first finder of particular errors. This document
is written in LATEX2e and available in tex, dvi, ps and pdf form from my home page
http://www.dpmms.cam.ac.uk/~twk/. My e-mail address is twk@dpmms.cam.ac.uk.

In the middle of the 20th century it was realised that classical Fourier Analysis could
be extended to locally compact Hausdorff Abelian groups. The object of this course
(which may not be completely achieved) is to show how this is done. (Specifically we wish
to get as far as the first two chapters of the book of Rudin [6].) The main topics will
thus be topological groups in general, Haar measure, Fourier Analysis on locally compact
Hausdorff Abelian groups, Pontryagin duality and the principal structure theorem.

Although we will not need deep results, we will use elementary functional analysis,
measure theory and the elementary theory of commutative Banach algebras. (If you know
two out of three you should have no problems, if only one out of three then the course is
probably a bridge too far.) Preliminary reading is not expected but the book by Deitmar [1]
is a good introduction.
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1 Prelude

We start with the following observations1.

Lemma 1.1. Consider R, T = R/Z, S1 = {λ ∈ C : |λ| = 1} and Z with
their usual (Euclidean) metrics. Then R, T and Z are Abelian groups under
addition and S1 is a group under multiplication.

(i) The continuous homomorphisms χ : R → S1 are precisely the maps
χa(t) = exp(iat) [t ∈ R] with a ∈ R.

(ii) The continuous homomorphisms χ : T → S1 are precisely the maps
χa(t) = exp(2πiat) [t ∈ T] with a ∈ Z.

(iii) The continuous homomorphisms χ : Z → S1 are precisely the maps
χa(t) = exp(2πiat) [t ∈ Z] with a ∈ T.

Exercise 1.2. We use the notation of Lemma 1.1.
(i) Show that the non-zero Borel measures µ on R such that

∫

R

f(x− y) dµ(x) =

∫

R

f(x) dµ(x)

for all continuous functions f : R → R of compact support and all y ∈ R are
precisely the non-zero multiples of m the Lebesgue measure on R. In other

1I shall assume a lot of notation and results, not because I assume that my audience
will know it all but because I assume they will know much of it. If something seems strange
just ask.
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words
∫

R

f(x) dµ(x) = A

∫

R

f(x) dx

for all continuous functions f : R → C of compact support and some constant
A 6= 0.

(ii) Show that the unique measure µ on T such that
∫

T

f(x− y) dµ(x) =

∫

T

f(x) dµ(x)

for all continuous functions f : T → R and all y ∈ T and such that
∫

T

1 dµ(x) = 1

is (2π)−1m where m is the Lebesgue measure on T. In other words
∫

T

f(x) dµ(x) =
1

2π

∫

T

f(x) dx

for all continuous functions f : T → C.
(iii) Show that the unique measure µ on Z such that

∫

Z

f(x− y) dµ(x) =

∫

Z

f(x) dµ(x)

for all continuous functions f : Z → C of compact support and all y ∈ Z and
such that

∫

Z

I{0}(x) dµ(x) = 1

(where I{0}(0) = 1 and I{0}(x) = 0 when x 6= 0) is the counting measure. In
other words

∫

Z

f(x) dµ(x) =
∑

x∈Z

f(x)

for all continuous functions f : Z → C.

Exercise 1.3. We continue with the notation and ideas of Lemma 1.1 and
Exercise 1.2. We write χa(t) = 〈t, a〉. We let µR = (2π)−1/2m where m is
Lebesgue measure on R, µT = (2π)−1m where m is Lebesgue measure on T
and µZ be the counting measure on Z. Let (G,H) be one of the pairs (R,R),
(T,Z) or (Z,T). Then

(i) If f ∈ L1(G,µG), then

f̂(a) =

∫

G

f(t)〈−t, a〉 dµG(t)
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is well defined for all a ∈ H.
(ii) If f, g ∈ L1(G,µG), then the convolution

f ∗ g(s) =

∫

G

f(s− t)g(t)dµG(t)

is defined µG almost everywhere and f ∗ g ∈ L1(G,µG).
(iii) If f, g ∈ L1(G,µG), then

f̂ ∗ g(a) = f̂(a)ĝ(a)

for all a ∈ H.

(Part (ii) uses Fubini’s theorem to establish the existence of f ∗ g. It is
not necessary to know the results of Exercise 1.3 in the generality given but
you ought to know some version of these results.)

Theorem 1.4. We continue with the notation and ideas of Lemma 1.1 and
Exercises 1.2 and 1.3. If f ∈ L1(G,µG) is sufficiently well behaved, then

f(x) =

∫

H

f̂(a)〈x, a〉 dµH(a).

Exercise 1.5. Show that Theorem 1.4 is true for (G,H) = (Z,T) without
any extra conditions on f (beyond that f ∈ L1(G,µG)).

As it stands Theorem 1.4 is more of an aspiration than a theorem. It is
only useful if the ‘sufficiently well behaved functions’ form a ‘sufficiently large
class’. For example, if (G,H) = (T,Z) any twice continuously differentiable
function is sufficiently well behaved and if (G,H) = (R,R), then any twice
differentiable function f with x−2f(x), x−2f ′(x), x−2f ′′(x) → 0 as |x| → ∞
is sufficiently well behaved. (We can do much better but it is well known
that, in both cases, the result is not true for all continuous f .)

The object of this course is to illustrate the group theoretic content of
classical Fourier analysis by extending the ideas and results of this section to
the general context of locally compact groups.

Exercise 1.6. (i) Go through the results of this section with R2, T2 and Z2

in place of R, T and Z making the appropriate changes.
(ii) Go through the results of this section with the finite cyclic group Cn.

4



2 Topological groups

The following method of marrying algebraic and topological structures will
be routine for many readers and should strike the rest as natural.

Definition 2.1. We say that (G,×, τ) is a topological group if (G,×) is
a group and (G, τ) a topological space such that, writing M(x, y) = x × y
and Jx = x−1 the multiplication map M : G2 → G and the inversion map
J : G→ G are continuous.

Exercise 2.2. Show that (G,×, τ) is a topological group if (G,×) is a group
and (G, τ) a topological space such that the map K : G2 → G given by
K(x, y) = xy−1 is continuous.

The systems R, S1, T and Z discussed in Section 1 are readily seen to be
examples of topological groups. Any group G becomes a topological group
when equipped with the discrete or the indiscrete topology. (Note that this
shows that the mere fact that something is a topological group tells us little
unless we know more about the topology.)

Exercise 2.3. Verify the statements just made.

There is a natural definition of isomorphism.

Definition 2.4. If (G,×G, τG) and (H,×H , τH) are topological groups we
say that θ : G → H is an isomorphism if it is a group isomorphism and a
topological homeomorphism.

Exercise 2.5. Show that T and S1 are isomorphic as topological groups.
Find all the isomorphisms.

The next result gives us a source of interesting non-commutative topo-
logical groups.

Lemma 2.6. Let F be R or C. The multiplicative group GLn(F) of invertible
n × n matrices with the topology induced by the usual norm is a topological
group.

Exercise 2.7. Prove the following generalisation of Lemma 2.6. Let U be
a Banach space. If we give the multiplicative group GL(U) of continuous
linear maps T : U → U with continuous inverses the topology induced by the
operator norm then we obtain a topological group.

It is, perhaps, worth noting that we can not replace joint continuity of
multiplication by left and right continuity (this contrasts with the Banach
algebra case).

5



Exercise 2.8. Let τ be the usual topology on R and let τ1 be the set of U ∈ τ
such that there exists a K > 0 such that

U ⊇ R \ (−K,K)

together with the empty set.
Then τ1 is a topology on R such that the map x 7→ −x and the map

x 7→ x + a are continuous (as maps (R, τ1) → (R, τ1)) for all a ∈ R but the
map (x, y) 7→ x+ y is not continuous (as a map (R2, τ 2

1 ) → (R, τ1)).

Similarly, joint continuity of multiplication does not imply continuity of
the inverse.

Exercise 2.9. Let τ be the usual topology on R and let τ2 be the set of U ∈ τ
such that there exists a K such that

U ⊇ (K,∞)

together with the empty set.
Then τ2 is a topology on R such that the map (x, y) 7→ x+y is continuous

(as a map (R2, τ 2
1 ) → (R, τ1)) but the map x → −x is not continuous (as a

map (R, τ1) → (R, τ1)).

Returning to more central matters we make the following simple but basic
observations.

Lemma 2.10. Let (G,×, τ) be a topological group. Then
(i) xU = {xu : u ∈ U} is open if and only if U is.
(ii) V is a neighbourhood of x if and only if x−1V is a neighbourhood of

e.

(Here and elsewhere we will use e to denote the unit of a multiplicative
group and 0 to denote the unit of an additive one.)

Lemma 2.11. Suppose that (G,×) is a group and Ne is a collection of sets
N with e ∈ N ⊆ G. Then there exists a topology τ on G having Ne as a
neighbourhood basis of e and making (G,×, τ) into a topological group if and
only if

(1) If N, M ∈ Ne, then there exists a P ∈ Ne with P ⊆ N ∩M .
(2) If N ∈ Ne, then there exists an M ∈ Ne with M2 ⊆ N .
(3) If N ∈ Ne, then there exists an M ∈ Ne with M ⊆ N−1.
(4) If N ∈ Ne and a ∈ G, then there exists an M ∈ Ne with M ⊆ aNa−1.
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Exercise 2.12. Suppose that (G,×) is a group and (G, τ) a topological space.
Then (G,×, τ) is a topological group if and only if, writing Na for the set of
open neighbourhoods of a, we have

(1) Let a ∈ G. Then N ∈ Ne if and only if aN ∈ Na.
(2) If N ∈ Ne, then there exists an M ∈ Ne with M2 ⊆ N .
(3) If N ∈ Ne, then there exists an M ∈ Ne with M ⊆ N−1.
(4) If N ∈ Ne and a ∈ G, then there exists an M ∈ Ne with M ⊆ aNa−1.

From time to time it is useful to have neighbourhood bases with further
properties.

Lemma 2.13. If (G,×, τ) is a topological group we can find a neighbourhood
basis Ne for e consisting of open sets N with N−1 = N .

The following example shows that we can not choose M in condition (4)
of Lemma 2.11 and Exercise 2.12 independently of a.

Example 2.14. Given any ǫ > 0 and any K > 0 we can find A, B ∈ GL2(R)
such that ‖I −B‖ < ǫ but ‖I − ABA−1‖ > K.

In some sense a topological group is an object were the the statement
‘the neighbourhood of every point looks the same’ is (a) meaningful and (b)
true. (There is a more general notion of a uniform topology.)

Exercise 2.15. Let (G,×, τ) be a topological group. What ought it to mean
to say that f : G→ C is right (or left) uniform continuous. If (G,×, τ) is a
compact topological group, show that any continuous function f : G → C is
right uniformly continuous.

3 Subgroups and quotients

It is easy to define topological subgroups and quotient groups along the lines
given in the next lemma.

Lemma 3.1. If (G,×, τ) is a topological group and H is a subgroup of G,
then H equipped with the standard subspace topology is a topological group.

If H is a normal subgroup of G then G/H equipped with the standard
quotient space topology (formally, the finest topology on G/H which makes
the map G→ G/H given by x 7→ xH continuous) is a topological group.

However, it is important to realise that, without further conditions quo-
tient topological groups may not behave well.
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Exercise 3.2. Consider (R,+, τ) with the usual Euclidean topology τ . Show
that Q is a normal subgroup and R/Q is uncountable but has the indiscrete
topology.

Let us look a little closer at how a subgroup can sit in a topological group.

Lemma 3.3. Let (G,×, τ) be a topological group and H a subgroup of G.
(i) The (topological) closure H̄ of H is a subgroup.
(ii) If H is normal, so is H̄.
(iii) If H contains an open set, then H is open.
(iv) If H is open, then H is closed.
(v) If H is closed and of finite index in G, then H is open.

Lemma 3.4. Let (G,×, τ) be a topological group. The connected component
L containing e is an open normal subgroup.

Any open subgroup of G contains L.

Lemma 3.5. If (G,×, τ) is a topological group then I = {e} is a closed
normal subgroup.

Lemma 3.6. Let (G,×, τ) is a topological group. The following conditions
are equivalent.

(i) {e} is closed.
(ii) G is Hausdorff.
(iii) G is T0.

(Part (iii) is just an observation. Note that the spaces in Exercises 2.8
and 2.9 are T1 but not Hausdorff.)

Lemma 3.7. Let (G,×, τ) be a topological group. If H is a closed normal
subgroup, then G/H is Hausdorff.

Lemma 3.8. Let (G,×, τ) be a topological group. Then G/{e} is Hausdorff.

If G is a topological group, then any continuous function f : G → F
must be constant on any coset x+ {e} so it is clear that, if we are interested
in continuous functions, nothing is lost by confining ourselves to Hausdorff
topological groups. Rudin defines a topological group to be what we would
call a Hausdorff topological group and Bourbaki defines a compact space to
be what we would call a Hausdorff compact space. Unless we explicitly state
otherwise all our topological groups will be Hausdorff topological groups and
we will only quotient by closed normal subgroups.
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4 Products

We shall be interested in two different kinds of products for topological
groups.

Definition 4.1. Suppose A is non-empty and (Gα,×α, τα) is a topological
group for each α ∈ A. Their complete direct product is G =

∏

αGα

equipped with the usual product topology τG and with multiplication given by
(x ×G y)α = xα ×α yα.

Definition 4.2. Suppose A is non-empty and (Gα,×α) is a group for each
α ∈ A. Their direct product is the subgroup of the group G =

∏

αGα with
multiplication given by (x×G y)α = xα ×α yα consisting of those x ∈ G such
that xα = e for all but finitely many α ∈ A

Our definition of direct product does not involve topology but we shall
usually give the direct product the discrete topology.

Exercise 4.3. (i) Verify that the complete direct product of topological groups
is indeed a topological group.

(ii) Verify that the direct product of topological groups is indeed a group.
(iii) Show that the complete direct product of Abelian topological groups

is Abelian.
(iv) Show that the direct product of Abelian groups is Abelian.
(v) Show that the complete direct product of Hausdorff topological groups

is Hausdorff.
(vi) Explain why the complete direct product of compact topological groups

is compact.

We illustrate these ideas by looking at D∞ the complete direct product of
G1, G2, . . . where each Gi is a copy of D2 the additive group of two elements
0 and 1 and D∞

0 the direct product of H1, H2, . . . , where each Hi is a copy
of C2 the multiplicative group of two elements −1 and 1, equipped with the
discrete topology. (Of course, D2 and C2 are isomorphic as groups.)

Lemma 4.4. D∞ is homeomorphic as a topological space to the Cantor set.
It is compact, Hausdorff, totally disconnected and has no isolated points.

Lemma 4.5. (i) The continuous homomorphisms χ : D∞ → S1 are precisely
the maps χa(t) =

∏∞
j=1 a

tj
j [t ∈ D∞] with a ∈ D∞

0 .

(ii) The continuous homomorphisms χ : D∞
0 → S1 are precisely the maps

χt(a) =
∏∞

j=1 a
tj
j [a ∈ D∞

0 ] with t ∈ D∞.
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Exercise 4.6. There is a unique Borel measure µ on D∞ such that

∫

D∞

f(x − y) dµ(x) =

∫

D∞

f(x) dµ(x)

for all continuous functions f : D∞ → R and all y ∈ D∞ and
∫

D∞
1 dµ(x) =

1.
If we write Km = {x ∈ D∞ : x1 = x2 = · · · = xm = 1}, then µ(Km) =

2−m.

Exercise 4.7. We continue with the notation of this section. We write
〈t, a〉 =

∏∞
j=1 a

tj
j when t ∈ D∞ with a ∈ D∞

0 . We let µ be the measure of
Exercise 4.6 and µ0 be the counting measure on D∞

0 . Then
(i) If f ∈ L1(D∞, µ), then

f̂(a) =

∫

D∞

f(t)〈−t, a〉 dµ(t)

is well defined for all a ∈ D∞
0 .

(ii) If f, g ∈ L1(D∞, µ), then the convolution

f ∗ g(s) =

∫

D∞

f(s − t)g(t)dµ(t)

is defined µ almost everywhere and f ∗ g ∈ L1(D∞, µ).
(iii) If f, g ∈ L1(D∞, µ), then

f̂ ∗ g(a) = f̂(a)ĝ(a)

for all a ∈ D∞
0 .

Theorem 4.8. (Inversion theorem for D∞) We continue with the nota-
tion of this section. If f : D∞ → C has the form

f =
M

∑

m=1

amIxm+Kn(m)

(that is, f is a step function constant on cosets of subgroups of the type Km

described in Exercise 4.6), then

f(x) =

∫

D∞

0

f̂(a)〈x, a〉 dµ0(a).
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Theorem 4.8 asserts that an inversion theorem is true for functions of a
certain well behaved type. At first sight the reader might feel that the class
involved is too small to be useful but the next result shows that this is not
the case.

Theorem 4.9. (A Plancherel theorem for D∞) If f ∈ L2(D∞, µ), then
f̂ ∈ L2(D∞

0 , µ0) and

∫

D∞

0

|f̂(a)|2dµ0(a) =

∫

D∞

|f(x)|2dµ(x).

Exercise 4.10. (Parseval’s theorem for D∞.) If f, g ∈ L2(D∞, µ), then
fg∗ ∈ L1(D∞, µ), f̂(ĝ)∗ ∈ L1(D∞

0 , µ0) and

∫

D∞

0

(f̂)(a)(ĝ)(a)∗dµ0(a) =

∫

D∞

f(x)g(x)∗dµ(x).

In many ways D∞ is the simplest non-trivial Hausdorff compact topo-
logical group and, if a result is hard for T it may well be easier to prove or
understand for D∞.

Exercise 4.11. If f ∈ L1(D∞
0 , µ0) ∩ L

2(D∞
0 , µ0), then f̂ ∈ L2(D∞, µ) and

∫

D∞

|f̂(a)|2dµ(a) =

∫

D∞

0

|f(x)|2dµ0(x).

(This is not very deep. Essentially we repeat the the easy proof of exercise 1.5
but remember that L2(D∞

0 , µ0) is not a subset of L1(D∞
0 , µ0).)

The reader is probably familiar with the classical version of the next step.

Theorem 4.12. There exists a linear isometry F : L2(D∞
0 , µ0) → L2(D∞, µ)

such that F(f) = f̂ whenever f ∈ L1(D∞
0 , µ0) ∩ L

2(D∞
0 , µ0).

Exercise 4.13. (Parseval’s theorem for D∞
0 .) If f, g ∈ L2(D∞

0 , µ0), then
fg∗ ∈ L1(D∞

0 , µ0), FfFg
∗ ∈ L1(D∞, µ) and

∫

D∞

(Ff)(a)(Fg)(a)∗dµ(a) =

∫

D∞

0

f(x)g(x)∗dµ0(x).
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5 Metrisability

The following easy result is well known.

Exercise 5.1. If (X, d) is a metric space and τ is the topology derived from
the metric, then (X, τ) is Hausdorff and given any x ∈ X we can find open
neighbourhoods Nj of x such that

⋂∞
j=1Nj = {x}.

The converse is false.

Example 5.2. We work in R. Let us set

Nx = {(x− δ, x+ δ) ∩ Q : δ > 0} if x ∈ Q,

Nx = {(x− δ, x+ δ) : δ > 0} otherwise.

Then there is a unique topology τ on R with the Nx as neighbourhood bases.
The topology τ is Hausdorff and given any x ∈ R we can find open neigh-
bourhoods Nj of x such that

⋂∞
j=1Nj = {x}. However there is no metric on

R which will induce the topology.

The homogeneity imposed by the group structure means that the neces-
sary condition introduced in Exercise 5.1 is actually sufficient. Indeed, we
have an even stronger result.

Theorem 5.3. Let (G,×, τ) be a topological group. If we can find a base
of neighbourhoods of Nj of e such that

⋂∞
j=1Nj = {e}, then there exists a

metric d on G which induces τ . Moreover, we can take d left invariant, that
is to say d(gx, gy) = d(x, y) for all x, y, g ∈ G.

The method of proof is illustrated by the following exercise.

Exercise 5.4. We work on R.
(i) Suppose that |x| > 2−k for some integer k ≥ 0. Show, by induction on

N , or otherwise, that if

x =
N

∑

j=1

xj with |xj| ≤ 4−n(j) for some integer n(j) ≥ 0 [1 ≤ j ≤ N ],

then
∑N

j=1 2−n(j) ≥ 2−k.
(ii) Show that

d(x, y) = inf{
N

∑

j=1

2−n(j) : x− y =
N

∑

j=1

xj with |xj| ≤ 4−n(j)

for some integer n(j) ≥ 0 [1 ≤ j ≤ N ]}
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defines a metric on R such that d(x+ a, y + a) = d(x, y) for all x, y, a ∈ R.
(iii) Show that we can find a constant K > 1 such that

K|x− y|1/2 ≥ d(x, y) ≥ K−1|x− y|1/2

for all x, y ∈ R.
(iv) Sketch the graph of the function x 7→ d(0, x).

We make the following remarks (recall Example 2.14).

Exercise 5.5. (i) There exist topological groups with a topology induced by
a left invariant metric where the topology is not induced by a left and right
invariant metric. (Briefly, a metrisable topological group may not have a
metric which is both left and right invariant.)

(ii) The metric of Theorem 5.3 is not unique (unless G is the trivial group
{e}).

Exercise 5.6. Let A be uncountable and, for each α ∈ A let Gα be a copy
of D2 (the additive group of two elements 0 and 1) equipped with the discrete
topology. Then the complete direct product of the Gα is a non-metrisable
compact Abelian group.

In the rest of this section we introduce a simple but useful definition.

Definition 5.7. (i) A topological space (X, τ) is locally compact if every
point of X has a compact neighbourhood.

(ii) A topological space (X, τ) is σ-compact if it is the countable union of
compact sets.

Lemma 5.8. Suppose that (X, τ) is locally compact and Hausdorff. If we
consider X ∪ {∞} with a topology τ∞ in which the open sets are the open
sets of τ together with the sets {∞} ∪ (X \ K) with K compact in τ then
(X∪{∞}, τ∞) (the ‘one point compactification’ of X) is a compact Hausdorff
space.

Combined with Urysohn’s lemma which we quote without proof as The-
orem 5.9 this gives us a plentiful supply of continuous functions.

Theorem 5.9. (Urysohn’s lemma.) If (X, τ) is a compact Hausdorff space
and E1 and E2 are disjoint closed sets we can find a continuous function
f : X → R such that 1 ≥ f(x) ≥ 0 for all x ∈ X, f(e) = 1 for all e ∈ E1

and f(e) = 0 for all e ∈ E0.

Lemma 5.10. Every point in a locally compact space has a basis of compact
neighbourhoods.
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Since the discrete topology is locally compact, locally compact groups
can be very big indeed. However for many purposes we can restrict ourselves
to σ-compact topological groups.

Lemma 5.11. Let (G,×, τ) be a locally compact Hausdorff topological group.
If Kj is a compact subset of G for j ≥ 1, then there exists an open (so closed)
subgroup H of G which is σ-compact and such that H ⊇

⋃∞
j=1Kj.

We may also be able to restrict ourselves to metrisable locally compact
groups.

Lemma 5.12. Let (G,×, τ) be a σ-compact Hausdorff topological group. If
Nj is an open neighbourhood of e for j ≥ 1, then we can find a closed normal
subgroup H of G with H ⊆

⋂∞
j=1Nj and G/H metrisable and σ-compact.

6 The Haar integral

The natural (certainly, a natural) requirement for a topology for which we
wish to develop a theory of continuous functions and integrals is that it
should be Hausdorff and locally compact.

Definition 6.1. Let (G,×, τ) be a Hausdorff locally compact group. Write
C00(G) for the collection of continuous functions f : G → R with compact
support and C+

00(G) for the set of f ∈ C00(G) such that f(x) ≥ 0 for all
x ∈ G. If f ∈ C00(G) and y ∈ G we write fy(x) = f(y−1x) for all x ∈ G.
A non-zero linear map I : C00(G) → R such that If ≥ 0 when f ∈ C+

00(G)
and Ify = If for all y ∈ G and f ∈ C00(G) is called a left invariant Haar
integral.

Measure theory gives us much more powerful weapons than those devel-
oped in the next exercise but for the moment we do not need them.

Exercise 6.2. Let (G,×, τ) be a Hausdorff locally compact group and let
I, J : C00(G) → R be non-zero linear maps such that If ≥ 0 and Jf ≥ 0
when f ∈ C+

00(G).
(i) Given any compact set K we can find a constant γ(K) such that

If ≤ γ(K)‖f‖∞ for all f ∈ C+
00(G) with support in K.

(ii)2 Suppose that K is a compact set in G and H is a compact neigh-
bourhood of e. If F : G × G → R is a continuous function with support in

2In the course I proved a slightly harder result, but this is all we need for (iii) and (iv).
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K ×K, then given ǫ > 0 we can find uj, vj ∈ C00(G) with support in KH
such that

|F (x, y) −
N

∑

j=1

uj(x)vj(y)| ≤ ǫ

for all x, y ∈ G.
(iii) If F : G×G→ R is a continuous function with compact support and

y ∈ G, then (using dummy variable notation) x 7→ JyF (x, y) is a continuous
function of compact support. Thus IxJyF (xy) exists.

(iv) F : G×G→ R is a continuous function with compact support, then

IxJyF (x, y) = JyIxF (x, y)

(v) If I is a Haar measure g ∈ C+
00(G) and Ig = 0 then g = 0.

Theorem 6.3. If a left invariant Haar integral exists it is unique up to
multiplication by a strictly positive constant.

Here are some examples. (Note that if G is Abelian a left invariant Haar
integral must be right invariant.)

Exercise 6.4. (i) Show that the set G of all matrices of the form
(

x y
0 x

)

with x and y real and x > 0 with the usual norm gives rise to a locally
compact metrisable Abelian group.

By informal but reasonably coherent arguments show that a Haar integral
must be a multiple of

∫

G

f dµ =

∫ ∞

−∞

∫ ∞

0

f

(

x y
0 x

)

1

x2
dx dy.

Verify that this is indeed a Haar integral.
(ii) Show that the set G of all matrices of the form

(

x y
0 1

)

with x and y real and x > 0 gives rise to a locally compact metrisable non-
Abelian group.

By informal but reasonably coherent arguments show that the left invari-
ant Haar integral must be a multiple of

∫

G

f dµ =

∫ ∞

−∞

∫ ∞

0

f

(

x y
0 1

)

1

x2
dx dy.
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Verify that this is indeed a left invariant Haar integral.
By informal but reasonably coherent arguments show that the right invari-

ant Haar integral must be a multiple of

∫

G

f dµ =

∫ ∞

−∞

∫ ∞

0

f

(

x y
0 1

)

1

x
dx dy.

Verify that this is indeed a right invariant Haar integral.

Once the ideas of Exercise 6.4 have been understood it is fairly easy to
extend them to more complicated situations.

Exercise 6.5. (i) Show that GL(Rn) is a locally compact group which is
non-Abelian if n ≥ 2.

If we identify GL(Rn) as a subset of Rn2
in the usual manner and let

m be Lebesgue measure on Rn2
show by informal but reasonably coherent

arguments that a left invariant Haar integral must be a multiple of

∫

G

f(A) dµ =

∫

Rn2
f(A)| detA|−ndm

where we define f(A) = 0 when A /∈ GL(Rn). Verify that this is both a left
and a right invariant Haar integral.

(ii) Consider the set GA(Rn) of invertible affine transformations x →
t + Ax with t ∈ Rn and A ∈ GL(Rn).

If we identify GA(Rn) as a subset of Rn+n2
in the usual manner and let

m be Lebesgue measure on Rn+n2
show by informal but reasonably coherent

arguments that the left invariant Haar integral must be a multiple of

∫

G

f(A) dµL =

∫

Rn+n2
f(t, A)| detA|−ndm

and the right invariant Haar integral must be a multiple of

∫

G

f(A) dµR =

∫

Rn+n2
f(A)| detA|−n−1dm

(with natural conventions). Verify that we have indeed left invariant and
right invariant Haar integrals.

The following remarks range from the obvious to the fairly obvious.

Lemma 6.6. (i) Let (G,×, τ) be a Hausdorff locally compact group. If G
has a left invariant Haar integral it has a right invariant Haar integral.

16



(ii) Suppose I is a left invariant Haar integral for G. If t ∈ G there exists
a ∆(t) > 0 such that

Ixf(xt) = ∆(t)Ixf(x)

for all f ∈ C00(G).
(iii) The function ∆ : G → (0,∞) depends only on G (and not on the

particular choice of I).

The function ∆ is called the modular function. (Although we discuss it
briefly, we do not use it.)

The statement that ∆ = 1 is equivalent to the statement that left in-
variant Haar integrals are right invariant and vice versa. A group with this
property is called unimodular.

Exercise 6.7. Let (G,×, τ) be a Hausdorff locally compact group with a left
invariant Haar measure.

(i) Give (0,∞) its standard multiplicative structure and topology. The
map ∆ : G→ (0,∞) is a continuous homomorphism.

(ii) If G is Abelian or compact or discrete, then it is unimodular.
(iii) If I is a left invariant Haar integral for G, then

Ix(f(x−1)∆(x−1)) = Ixf(x).

Exercise 6.8. Calculate the modular function for the groups of Exercises 6.4
and 6.5.

7 Existence of the Haar integral

The main business of this section is the proof of the following theorem.

Theorem 7.1. Any metrisable σ-compact topological group (G,×, τ) has a
left invariant Haar integral.

We need a preliminary result.

Lemma 7.2. (i) Any σ-compact metric space has a countable dense subset.
(ii) If G is a σ-compact metric group then we can find a countable collec-

tion of compactly supported, everywhere non-negative, continuous functions
gi : X → R with the following property. If ǫ > 0, H is a compact neighbour-
hood of e and g : X → R is a non-negative continuous function vanishing
outside a compact set K we can find i ≥ 1 such that gi vanishes outside KH
and

|g(x) − gi(x)| < ǫ

for all x ∈ X
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From now on until the completion of the proof of Theorem 7.1, (G,×, τ)
will be a σ-compact topological group with topology derived from a metric
d. If u : G→ R we write (Tyu)(x) = u(xy) for x, y ∈ G.

Although the discovery of the Haar integral appears to have been unex-
pected, much of the construction follows very natural lines. If f and φ are
members of C+

00(G) and φ is non zero we define

(f ;φ) = inf{
n

∑

j=1

cj :
n

∑

j=1

cjφ(yjx) ≥ f(x) for all x ∈ G, cj ≥ 0, yj ∈ G, in ≥ 1}.

The following results are routine.

Lemma 7.3. Let f, f1, f2 be members of C+
00(G) and let φ, ψ be non zero

members of C+
00(G). Let y ∈ G and λ > 0. Then

(i) (f ;φ) is well defined.
(ii) (f1 + f2;φ) ≤ (f1;φ) + (f2;φ).
(iii) (λf ;φ) = λ(f ;φ).
(iv) If f1(x) ≤ f2(x) for all x ∈ G then (f1;φ) ≤ (f2;φ).
(v) (Tyf ;φ) = (f ;φ).
(vi) (f ;ψ) ≤ (f ;φ)(φ;ψ).
(vii) (f ;φ) ≥ ‖f‖∞/‖φ‖∞.

We need to normalise the ‘upper approximation’ (f ;φ). To do this, fix,
once and for all, f0 as a particular non-zero element of C+

00(G) and set

Iφf =
(f ;φ)

(f0;φ)

Exercise 7.4. Interpret the results of Lemma 7.3 in terms of Iφ and Iψ. In
particular note that

1

(f0, f)
≤ Iφf ≤ (f ; f0)

whenever f is non-zero.

As might be hoped the ‘quality’ of the ‘upper approximation’ is improved
by taking φ of small support. (Note, however, that the approximation is not
uniform.)

Lemma 7.5. Given f1, f2 ∈ C+
00(G) and ǫ > 0, we can find a neighbourhood

V of e such that if φ ∈ C+
00(G) is non-zero and suppφ ⊆ V then

Iφf1 + Iφf2 ≤ Iφ(f1 + f2) + ǫ.
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A sequential compactness argument now gives Theorem 7.1 (the existence
of a left invariant Haar integral on a σ-compact metrisable group).

Using Lemmas 5.12 and 5.11 we obtain first Lemma 7.6 and then the
general Theorem 7.7

Lemma 7.6. Any σ-compact Hausdorff topological group (G,×, τ) has a left
invariant Haar integral.

Theorem 7.7. Any locally compact Hausdorff topological group (G,×, τ) has
a left invariant Haar integral.

Note: The standard argument for obtaining the Haar integral on a general
Hausdorff locally compact group from Lemma 7.5 uses Tychonoff’s theorem
and so the axiom of choice (see [5]). Our treatment uses countable choice.
Cartan produced a proof which avoids any use of the axiom of choice (see [5]
again).

The reader probably does not need to be told how remarkable and useful
Theorem 7.7 is. The absence of such a result makes possible the following
phenomenon.

Example 7.8. If G is the group freely generated by two generators then we
can find a function f : G→ R such that 1 ≥ f(x) ≥ 0 for all x ∈ G, together
with y1, y2, y3, y4 ∈ G such that

f(y1x) + f(y2x) − f(y3x) − f(y4x) ≤ −1

for all x ∈ G.

8 The space L1(G)

Once we have a Haar integral I on a locally compact Hausdorff topological
group we can develop the standard theory of integration. The quickest way
is simply to define L1(G) as the completion of the space C00(G) normed by

‖f‖1 = I(|f |).

This would cover all the integration theory that we need but does not connect
the integral with the underlying space. The natural path is to define

λ(K) = inf{If : f ∈ C00(G), f(x) ≥ 1 for x ∈ K}

whenever K is a compact set and show that λ satisfies the appropriate con-
sistency conditions which allow it to be extended to a measure µ on all Borel
sets such that

If =

∫

G

f dµ
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for all f ∈ C00(G). (For details, see for example, [3] Chapter X.)
An important consequence of Lemma 5.11 is that, although the measure

µ itself may not be a σ-finite measure, the pathologies (failure of Fubini’s
theorem etc) associated with non-σ-finite measures cannot occur. We shall
not give a specific proof of the following result.

Lemma 8.1. Let I be a left invariant Haar integral on a Hausdorff locally
compact topological group (G,×, τ). Then C00(G) is dense in (L1(G), ‖ ‖).

If f ∈ L1(G,m) then, setting fy(x) = f(yx), we have fy ∈ L1(G,m) and

∫

G

f dm =

∫

G

fy dm.

Exercise 8.2. If f ∈ L1(G,m), then the map y 7→ fy from G to L1(G) is
continuous.

Exercise 8.3.
∫

G
1 dm <∞ if and only if G is compact.

Unless specifically stated we normalise Haar measure on compact groups
to give

∫

G
1 dm = 1 and on discrete groups so that m({e}) = 1.

Lemma 8.4. If f, g ∈ L1(G,m) then

f ∗ g(x) =

∫

G

f(xy)g(y−1) dm(y)

is well defined m almost everywhere and f ∗ g ∈ L1(G,m) with ‖f ∗ g‖1 ≤
‖f‖1‖g‖1.

From now on we only deal with Hausdorff locally compact Abelian
groups (although some of the results carry over to the non-Abelian case).

Theorem 8.5. If (G,+, τ) is a locally compact Hausdorff Abelian group with
Haar measure m. then the Banach space L1(G,m) equipped with convolution
∗ as multiplication is a commutative Banach algebra.

Further, the map f 7→ f ∗ is an involution. (That is to say f ∗∗ = f ,
(f + g)∗ = f ∗ + g∗, (λf)∗ = λ∗f ∗ and (f ∗ g)∗ = f ∗ ∗ g∗.)

Exercise 8.6. If (G,+, τ) is a locally compact Hausdorff Abelian group the
map f 7→ f̃ with f̃(x) = f ∗(−x) is an involution on L1(G,m) equipped with
convolution.

Exercise 8.7. Convolution is commutative if and only if G is commutative.
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9 Characters

Recall that a character θ on a commutative Banach algebra B is non-zero
linear functional θ : B → C such that θ(ab) = θ(a)θ(b) for all a, b ∈ B. We
give the collection M the weak-* topology in which θ1 has neighbourhood
basis formed by sets of the form

{θ : |θ(aj) − θ1(aj)| < ǫj [1 ≤ j ≤ n]}.

We define â(θ) = θ(a). The Gelfand transform a 7→ â is a continuous algebra
homomorphism from B to C(M) with ‖â‖∞ = ρ(a).

How does this fit with the Banach algebra of Theorem 8.5 and the classical
Fourier analysis of section 1? Following the pattern of section 1 we make the
following definition.

Definition 9.1. If G is a Hausdorff locally compact Abelian group we say
that a continuous group homomorphism χ : G → S1 is a character of the
group. We write Ĝ for the set of such characters and 〈x, χ〉 = χ(x) for all
x ∈ G and χ ∈ Ĝ.

Theorem 9.2. If G is a Hausdorff locally compact Abelian group with Haar
measure m then if we fix χ and write

(χ)(f) =

∫

G

〈−x, χ〉f(x) dm(x),

the map L1 → C is a non-zero multiplicative linear functional. Every multi-
plicative linear functional arises in this way and distinct χ give rise to distinct
multiplicative linear functionals.

Thus if we give Ĝ the topology in which a character χ1 has neighbourhood
basis formed by sets of the form

{χ : |χ(fj) − χ1(fj)| < ǫj [1 ≤ j ≤ n]}

(with ǫj > 0, fj ∈ L1(G), 1 ≤ j ≤ n, n ≥ 1) we can identify Ĝ with M and
obtain

f̂(χ) =

∫

G

〈−x, χ〉f(x) dm(x)

satisfactorily uniting the Gelfand and the Fourier transform. Note that we
have extended the classical slogan ‘Fourier transformation is a way to convert
convolution into multiplication’ by showing that it is the only (reasonable)
way.

The nature of the Gelfand topology on Ĝ is illuminated by the following
lemma.

21



Lemma 9.3. If G is a Hausdorff locally compact Abelian group then
(i) The map G× Ĝ→ C given by (x, χ) 7→ 〈x, χ〉 is continuous.
(ii)a Sets of the form

{χ ∈ Ĝ : |〈x, χ〉 − 〈x, χ1〉| < ǫ for all x ∈ K}

with K compact in G and ǫ > 0 are open in Ĝ.
(ii)b Sets of the form

{x ∈ G : |〈x, χ〉 − 〈x1, χ〉| < ǫ for all χ ∈ K}

with K compact in Ĝ and ǫ > 0 are open in G.
(iii)a Sets of the form

{χ ∈ Ĝ : |〈x, χ〉 − 〈x, χ1〉| < ǫ for all x ∈ K}

with K compact in G and ǫ > 0 form neighbourhood bases at each χ1 ∈ Ĝ.
(iv) Ĝ is a locally compact Hausdorff Abelian group.

Note the absence (for the time being) of any part (iii)b.

Exercise 9.4. (i) If G is compact, Ĝ is discrete.
(ii)If G is discrete, Ĝ is compact.

10 Fourier transforms of measures

Although we want an inversion theorem stated in terms of Haar measures
alone, the standard treatments (see [6] which we follow closely and [2]) require
us to look at more general measures. This is not surprising since L1(G) is
not weak-* closed in the appropriate space of measures.

Definition 10.1. If X is a locally compact space then M(X) is the set of
measures µ on the Borel sets of X such that ‖µ‖ is finite and µ is regular
that is to say:-

Given any ǫ > 0 we can find a compact set K such that |µ|(X \K) < ǫ.

(If we give the group T the discrete topology and define µ(E) = 0 if E is
countable and µ(E) = 1 if T \ E is countable then µ is not regular.)

Exercise 10.2. Consider the following statements about a measure µ on a
locally compact Hausdorff group G.

(i) µ is σ-finite.
(ii) G is σ-compact.
(iii) µ is regular.
(iv) µ is finite.
What relations, if any, hold between these concepts. Show that if µ is

regular its support lies inside a σ-compact normal open subgroup of G.
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Lemma 10.3. Let (G,+, τ) be a locally compact Hausdorff Abelian group.
(i) If E is a Borel set in G then

Ẽ = {(x, y) ∈ G2 : x+ y ∈ E}

is Borel in G2.
(ii) If µ1, µ2 ∈M(G) then writing

µ1 ∗ µ2(E) = µ1 × µ2(Ẽ)

gives us µ1 ∗ µ2 ∈M(G).

Exercise 10.4. If (G,+, τ) is a locally compact Hausdorff Abelian group
then (M(G),+, ∗, ‖ ‖) is a commutative Banach algebra with unit.

If µ ∈M(G) we can define the Fourier transform

µ̂(χ) =

∫

G

〈−x, χ〉dµ(x).

Exercise 10.5. (i) If µ ∈ M(G) then µ̂ is a bounded uniformly continuous
function G→ R.

(ii) If µ1 µ2 ∈M(G) then µ̂1 ∗ µ2(χ) = µ̂1(χ)µ̂2(χ).

We can now prove our first uniqueness theorem.

Theorem 10.6. Let (G,+, τ) be a locally compact Hausdorff Abelian group.
If µ ∈M(Ĝ) and

∫

Ĝ

〈x, χ〉µ(χ) = 0

for all x ∈ G, then µ = 0.

11 Discussion of the inversion theorem

We want a theorem of the form
∫

Ĝ

〈χ, x〉f̂(χ) dmĜ(χ)
?
= Af(x), ⋆

but we know from the classical case that such a result does not hold without
restriction.

Example 11.1. (i) Consider f : R → R defined by f(x) = 1 for |x| ≤ 1,
f(x) = 0 otherwise. Then f ∈ L1 but f̂ /∈ L1.

(ii) There exists a continuous function g : R → R of compact support
such that ĝ /∈ L1.
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It is trivial that if ⋆ is to hold we must have f(x) = µ̂(x) for some
µ ∈M(Ĝ). Remarkably the converse holds.

Theorem A. If f ∈ L1(G) and f = µ̂ for some µ ∈M(Ĝ) then

∫

Ĝ

〈χ, x〉f̂(χ) dmĜχ = Af(x)

mG almost everywhere for some A independent of f .

How can recognise that f = µ̂? In general, we can not but, remarkably,
we can characterise µ̂ when µ is a positive measure in M(G). (Since every
member µ of M(Ĝ) an be written µ = µ1 − µ2 + iµ3 − iµ4 with µj ∈M+(Ĝ)

this also gives a handle on general elements of M(Ĝ).
One again we start with a near triviality.

Lemma 11.2. If µ ∈M+(Ĝ) then µ̂ is continuous and

∑

1≤j,k≤n

cjc
∗
kµ̂(xj − xk) ≥ 0

for all xj ∈ C cj ∈ C n ≥ 1.

Remarkably the converse holds (this was first observed by Herglotz for
G = Z and then by Bochner for the deeper case G = R.)

Definition 11.3. A function φ : G→ C is called positive definite if

∑

1≤j,k≤n

cjc
∗
kφ(xj − xk) ≥ 0

for all xj ∈ G cj ∈ C n ≥ 1.

Theorem B. (Bochner’s theorem.) A continuous function f : G→ C is
positive definite if and only if f = µ̂ for some µ ∈M+(Ĝ).

Although we introduced Theorems A and B in alphabetical order we shall
first prove B and then A.

As an indication of their utility we make the following observation.

Lemma 11.4. (i) If f, g ∈ L2(G) then f ∗ g is a well defined continuous
function.

(ii) If f ∈ L2(G) and we set f̃(x) = f(−x)∗, then f ∗ f̃ is positive definite.
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12 The inversion theorem

Before proving Bochner’s theorem we need some simple results on positive
definite functions.

Lemma 12.1. Suppose that (G,+, τ) is a locally compact Abelian Hausdorff
group and φ : G→ C is positive definite. Then φ(0) is real and positive and

(i) φ(−x) = φ∗(x),
(ii) |φ(x)| ≤ φ(0)
(iii) |φ(x) − φ(y)|2 ≤ 2φ(0)ℜ(φ(0) − φ(x− y))

for all x, y ∈ G.
In particular, if φ is continuous at 0, then φ is uniformly continuous.

Lemma 12.2. Suppose that (G,+, τ) is a locally compact Abelian Hausdorff
group and φ : G→ C is positive definite and continuous. Then

∫

G

∫

G

f(x)f ∗(y)φ(x− y) dmG(x) dmG(y) ≥ 0

for all f ∈ L1(G).

We now prove Bochner’s theorem.

Theorem 12.3. Suppose that (G,+, τ) is a locally compact Abelian Haus-
dorff group. Then a continuous function φ : G→ C is positive definite if and
only if φ = µ̂ for some µ ∈M+(Ĝ).

Now we can prove our main inversion theorem.

Theorem 12.4. Suppose that (G,+, τ) is a locally compact Abelian Haus-
dorff group. Let mG be a Haar measure on G.

Then there exists a Haar measure mĜ on Ĝ such that, if f ∈ L1(G) and

f = µ̂ for some µ ∈M(Ĝ), then f̂ ∈ L1(Ĝ) and
∫

Ĝ

〈χ, x〉f̂(χ) dmĜ(χ) = f(x)

mG almost everywhere.

Henceforward we shall assume that our Haar measures on G and Ĝ are
chosen so that the formula of Theorem 12.4 holds.

Exercise 12.5. Recall Exercise 9.4. Check that our new convention for
Haar measure is consistent with our previous conventions for choosing Haar
measures for discrete and compact groups at least if the groups are not both
compact and discrete.

What happens if our group is both compact and discrete?
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Theorem 12.6. (Plancherel.) Suppose that (G,+, τ) is a locally compact
Hausdorff group. If f ∈ L1(G) ∩ L2(G), then f̂ ∈ L2(Ĝ) and

∫

Ĝ

|f̂(χ)|2 dmĜ(χ) =

∫

G

|f(x)|2 dmG(x).

Theorem 12.7. Suppose that (G,+, τ) is a locally compact Hausdorff group.
There exists a linear isometry F : L2(G) → L2(G) such that F(f) = f̂
whenever f ∈ L1(G) ∩ L2(G).

Lemma 12.8. If F, G ∈ L2(Ĝ) then we can find a k ∈ L1G with f̂ = F ∗G.

13 Pontryagin duality

Using the inversion theorem we can increase the symmetry between G and
Ĝ. Our first step is to obtain the missing part (iii)b of Lemma 9.3.

Lemma 13.1. If G is a Hausdorff locally compact Abelian group then sets
of the form

{x ∈ G : |〈x, χ〉 − 〈x1, χ〉| < ǫ for all χ ∈ K}

with K compact in Ĝ and ǫ > 0 are open and form neighbourhood bases at
each x1 ∈ G.

Lemma 13.2. If γ ∈ Ĝ and K is a compact neighbourhood of γ we can find
an f ∈ L1(G)(G) with f̂(γ) > 0, f̂(χ) ≥ 0 for all χ ∈ Ĝ and f̂(χ) = 0 for
all χ /∈ K.

Theorem 13.3. (Pontryagin’s duality theorem.) If G is a Hausdorff

locally compact Abelian group, then the map Φ : G→
ˆ̂
G defined by

Φ(x)(χ) = χ(x)

for x ∈ G and χ ∈ Ĝ is an algebraic isomorphism and a topological homeo-
morphism.

Thus we can identify G with
ˆ̂
G in a natural manner.

Here are some immediate corollaries.

Lemma 13.4. Let G be a Hausdorff locally compact Abelian group.
(i) If µ ∈M(G) and µ̂(χ) = 0 for all χ ∈ Ĝ then µ = 0.
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(ii) If µ ∈M(G) and µ̂ ∈ L1(Ĝ) then there exists an f ∈ L1(G) such that
µ = fmG and

f(x) =

∫

Ĝ

µ̂(χ)〈x, χ〉 dmĜ(χ).

(iii) If G is not discrete then L1(G) has no unit. Thus L1(G) = M(G) if
and only if G is discrete.

It is worth noting that since the dual of a compact Hausdorff Abelian
group G is a discrete group Ĝ and the dual of Ĝ is G all the topological
information about G is encoded as algebraic information about Ĝ.

14 Structure theorems

We conclude by deriving a substantial amount of information about the struc-
ture of a general locally compact Hausdorff Abelian group.

Our first results are not unexpected.

Definition 14.1. Let G be a Hausdorff locally compact Abelian group and
let H be a closed subgroup of G. We write

H⊥ = {χ ∈ Ĝ : 〈x, χ〉 = 1 for all x ∈ H}

and call H⊥ the annihilator of H.

Lemma 14.2. Let G be a Hausdorff locally compact Abelian group and let
H be a closed subgroup of G.

(i) H⊥ is a closed subgroup of Ĝ.
(ii) H⊥⊥ = H.
(iii) H⊥ is isomorphic as a topological group with (G/H )̂ .
(iv) Ĝ/H⊥ is isomorphic as a topological group with Ĥ.

Theorem 14.3. Let G be a Hausdorff locally compact Abelian group and let
H be a closed subgroup of G. Then any character of H can be extended to a
character of G.

The next results are also expected. Let us write G⊕H for the direct sum
of two Abelian topological groups G and H.

Lemma 14.4. Let Gj be a Hausdorff locally compact Abelian group for each
1 ≤ j ≤ n Then

(G1 ⊕G2 ⊕G3 · · · ⊕Gn)̂ = Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3 · · · ⊕ Ĝn.
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The next exercise echos Lemma 4.5.

Exercise 14.5. The dual of the complete direct sum of a collection Gα [α ∈
A] of compact Hausdorff Abelian groups is the direct sum of the dual groups
Ĝα [α ∈ A].

We can now state the structure theorem we wish to prove.

Theorem 14.6. (Principal structure theorem.) If G is a Hausdorff
locally compact Abelian group then we can find an open (so closed) subgroup
H such that H = W ⊕ Rn with W a compact group.

The lemmas that follow are directed towards the proof of the principal
structure theorem.

Lemma 14.7. Suppose that G is a locally compact Hausdorff topological
group containing a dense cyclic group. If G is not compact then G is (topo-
logical group isomorphic to) Z.

Lemma 14.8. Suppose that G is a locally compact Hausdorff topological
group generated by a compact neighbourhood V of 0. Then G contains a closed
subgroup (topological group isomorphic to) Zn such that G/Zn is compact and
V ∩ Zn = {0}.

The next two lemmas concern groups like D∞.

Lemma 14.9. Suppose E is a compact open set in a locally compact Haus-
dorff topological group G.

(i) There exists a neighbourhood W of 0 with W = −W and E+W = E.
(ii) If 0 ∈ E then E contains a compact open subgroup of G.
(iii) E is the finite union of open cosets in G.

Recall that a totally disconnected topological space is one in which the
connected components are singletons.

Lemma 14.10. IF G is a totally disconnected locally compact Hausdorff
topological group then every neighbourhood of 0 contains a compact open sub-
group of G.

Our final preliminary lemma tells us that what looks like Rk is actually
Rk.

Lemma 14.11. Suppose G is a connected locally compact Hausdorff topo-
logical group containing no infinite compact subgroup and locally isomorphic
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to Rk in the sense that there exists a neighbourhood V of 0 and a homeomor-
phism φ from the unit ball B(0, 1) of Rk to V such that

φ(x + y) = φ(x) + φ(y)

for all x, y, x + y ∈ B(0, 1). Then G is (topological group isomorphic) to
Rk.

Lemma 14.12. If f is a continuous open map of a locally compact Hausdorff
space X onto a Hausdorff space Y and if K is a compact subset of Y then
we can find a compact subset C of X with f(C) = K.

We can now prove Theorem 14.6. Our proof is summarised in the follow-
ing two lemmas.

Lemma 14.13. If G is a Hausdorff locally compact Abelian group then we
can find an open (so closed) subgroup H such that H is compactly generated
and contains no open subgroup of infinite index.

Lemma 14.14. If H is a compactly generated Hausdorff Abelian group with
no open subgroup of infinite order then H = W ⊕ Rn with W a compact
group.

It may be helpful to run throught the proofs in the particular casesG = R,
G = R × T × Z and G = 0, 1R.

15 Final remarks

A different approach which reflects the original way in these results were
discovered is given in the book of Hewitt and Ross [4]. First one obtains a
more powerful version of the structure theorem.

Theorem 15.1. If G is a compactly generated Hausdorff topological group
then

G ∼= F ×W × Zl × Rk

where W is a compact group and F is a discrete group.

Then one establishes Pontryagin duality for compact and discrete groups
and uses this to obtain the full duality theorem. The book of Hewitt and Ross
contains proper attributions of the various theorems. (In particular, what
we call Pontryagin duality should really be called Van Kampen-Pontryagin
duality.)

As a research tool the theory presented in this course was perhaps too
successful for its own good. It shows that, for many purposes, R, T, D∞ and
their duals are typical locally compact Abelian groups and if we understand
these cases it is not hard to extend results to the general case.
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