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Professor Yotov has pointed out to me that Theorem 3.4.8 is false. I can
only plead a temporary insanity. The appropriate corrections (I hope) follow
starting on the next page. (Thanks to Greg Price and Daniel Worrall for
corrections to the correction.)

Various other corrections are given after that.
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Theorem 3.4.8 is false as may be seen by looking at the 2× 2 matrix

A =

(

1 1
0 0

)

We therefore need to rewrite the rest of Section 3.4 as follows:-

Theorem 1.3.6 may be interpreted in terms of elementary matrices.
Lemma 3.4.9 Given any n× n matrix A, we can find elementary matrices
F1, F2, . . . , Fp and G1, G2, . . . , Gq together with a diagonal matrix D such
that

FpFp−1 . . . F1AG1G2 . . . Gq = D.

A simple modification now gives the central theorem of this section.
Theorem 3.4.10Given any n×n matrix A, we can find elementary matrices
L1, L2, . . . , Lp and M1, M2, . . . , Mq together with a diagonal matrix D such
that

A = L1L2 . . . LpDM1M2 . . .Mq.

Proof. By Lemma 3.4.9, we can find elementary matrices Fr and Gs together
with a diagonal matrix D such that

FpFp−1 . . . F1AG1G2 . . . Gq = D.

Since elementary matrices are invertible and their inverses are elementary
(see Lemma 3.4.6), we can take Lr = F−1

r , Ms = G−1

q+1−s and obtain

L1L2 . . .LpDM1, M2, . . . , Mq

= F−1

1 F−1

2 . . . F−1

p Fp . . . F2F1AG1G2 . . . GqG
−1

q G−1

q−1 . . . G
−1

1 = A

as required.

There is an obvious connection with the problem of deciding when there
is an inverse matrix.
Lemma 3.4.11 Let D = (dij) be an n× n diagonal matrix.

(i) If all the diagonal entries dii of D are non-zero, D is invertible and
the inverse D−1 = E where E = (eij) is given by eii = d−1

ii and eij = 0 for
i 6= j.

(ii) If some of the diagonal entries of D are zero, then D is not invertible.
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Proof. (i) If all the diagonal entries of D are non-zero, then, taking E as
proposed, we have

DE = ED = I

by direct calculation.
(ii) If drr = 0 for some r, then, if C = (cij) is any n× n matrix, we have

n
∑

j=1

drjcjk = 0

so DC has all entries in the rth row equal to zero and, in particular DC 6=
I.

Lemma 3.4.12 Let L1, L2, . . . , Lp, M1, M2, . . . , Mq be elementary n × n
matrices and let D be an n× n diagonal matrix. Suppose that

A = L1L2 . . . LpDM1M2 . . .Mq.

(i) If all the diagonal entries dii of D are non-zero, then A is invertible.
(ii) If some of the diagonal entries of D are zero, then A is not invertible.

Proof. Since elementary matrices are invertible (Lemma 3.4.6 (v) and (vi))
and the product of invertible matrices is invertible (Lemma 3.4.3), we have
A = LDM where L and M are invertible.

If all the diagonal entries dii of D are non-zero, then D is invertible and
so, by Lemma 3.4.3, A = LDM is invertible.

If A is invertible, then D = L−1AM−1 is the product of inertible matrices,
so invertible. Thus none of the diagonal entries of D can be zero.

As a corollary we obtain a result promised at the beginning of this section.
Lemma 3.4.13 If A and B are n × n matrices such that AB = I, then A
and B are invertible with A−1 = B and B−1 = A.

Proof. Combine the results of Theorem 3.4.10 with those of Lemma 3.4.12.

Later we shall see how a more abstract treatment gives a simpler and
more transparent proof of this fact.

We are now in a position to provide the complementary result to Lemma 3.4.4.
Lemma 3.4.14 If A is an n×n square matrix such that the system of equa-
tions

n
∑

j=1

aijxj = yi [1 ≤ i ≤ n]

has a unique solution for each choice of yi, then A has an inverse.
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Proof. If we fix k, then our hypothesis tells us that the system of equations

n
∑

j=1

aijxj = δik [1 ≤ i ≤ n]

has solution. Thus, for each k with 1 ≤ k ≤ n, we can find xjk with 1 ≤ j ≤ n
such that

n
∑

j=1

aijxjk = δik [1 ≤ i ≤ n].

If we write X = (xjk) we obtain AX = I so A is invertible.
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FURTHER CORRECTIONS (Almost all due to Daniel Worral to whom
I and any prospective reader owe a debt of gratitude.)

Correction from Greg Price Last line of Exercise 11.5.25 should read:-
Show that T̂ ∈ s′ and T̂ 6= 0, but T̂b = 0 for all b ∈ c00. Deduce that

Θc00 is not surjective.

Correction from Dr Andrej Radovic. Displayed formula in Exercise 1.2.3 (i)
should be:-

aixi = bi

Page 9 Replace the paragraph after Exercise 1.2.2. by
If we repeat Exercise 1.2.2 several times, one of two things will eventually

occur. If m > n, we will arrive at a system of m − n + 1 equations in one
unknown. If n ≥ m, we will arrive at of 1 equation in n−m+ 1 unknowns.

Page 9 Theorem 1.2.4 Replace ‘m > n’ by ‘n > m’

Page 12 Very end of proof of Lemma 1.3.3 replace q ≤ i’ by ‘q 6= i’

Page 14 Theorem 1.3.8. Delete second sentence reading ‘ Then there
exists an r with 0 ≤ r ≤ p with the following property.’

Page 15 Exercise 1.3.9 (ii) Replace ‘Theorem 1.3.8’ by ‘Theorem 1.3.7’.

Page 17 Definition 1.4.6 ‘A non-empty subset of Rn’ should read ‘A non-
empty subset E of Rn’

Page 19 Exercise 1.5.6 Last line remove ‘in R’

Page 21 Lemma 2.1.2 end of statement replace ‘c = w2v1 − v2w2’ by
‘c = w2v1 − v2w1’

Page 21 Statement of Example 2.1.5, third line, replace ‘intersect a some
point’ by ‘intersect at some point’
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Page 23 Example 2.1.8 proof:

Third line of first display. replace v = γc+(1−α)c′ by v = γc+(1−γ)c′

Third display. Replace α(a− b) = (1− α)(a′ − b′) by
α(a− b) = (1− α)(b′ − a′)

Second line fourth display. Replace c′′ = λ′a+ (1− λ′)b by
c′′ = λ′a′ + (1− λ′)b′

Page 24 third line. Replace ‘Exercise 2.1.4 (ii)’ by ‘Exercise 2.1.4 (iii)’

Page 24 Exercise 2.1.9, first displayed equation should read
λa+ (1− λ)b = λ′a′ + (1− λ′)b′

Page 47 In the proofs of Lemma 3.3.8 (i) replace ckj by ckl (seven occur-
rences)

Page 49 Last sentence of paragraph after Exercise 3.3.12. to read
‘As usual, we write −A = (−1)A and A−B = A+ (−B).’

Page 51 Lemma 3.4.6

(iii) ‘the ith row is moved to the σ(i)th row’ should be ‘the σ(i)th row is
moved to the ith row’

(iv) ‘the σ(j)th column is moved to the jth column’ should be ‘the jth
column is moved to the σ(j)th column’

Page 56 Exercise 3.5.1

Add as first sentence:-

‘For the purposes of this exercise only let us extend our notion of an
elementary matrix to include diagonal matrices with at least n− 1 diagonal
elements having value 1 and all diagonal elements non-zero.’

Pages 61 and 62. Interchange diagrams for Figures 4.2 and 4.3.

Page 62 first displayed formula after Exercise 4.1.1.

Replace ‘D(a+ b,b) +D(a+ b, a)’ by ‘D(a, a+ b) +D(b, a+ a)’

Page 65 First paragraph. Last displayed formula replace area Γ′ = Γ×DA
with area Γ′ = areaΓ×DA

In the next sentence delete ‘under the transformation x 7→ Ax’
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Page 65 Paragraph before Exercise 4.2.2. Replace by:-
By Theorem 3.4.10, we know that, given any 2 × 2 matrix A, we can

find elementary matrices L1, L2, . . . , Lp and M1, M2, . . . , Mq together with
a diagonal matrix D such that

A = L1L2 . . . LpDM1M2 . . .Mq.

We now know that

DA = DL1 ×DL2 × · · ·DLp ×DD ×DM1 ×DM2 × · · ·DMp.

In the last but one exercise of this section, you are asked to calculate DE for
each of the matrices E which appear in this formula.

Page 69 Delete everything from the end of the proof of Lemma4.3.5 to
the end of the page and replace by:-

We can now exploit Theorem 3.4.10 which tells us that, given any 3×3 ma-
trix A, we can find elementary matrices L1, L2, . . . , Lp and M1, M2, . . . , Mq

together with a diagonal matrix D such that

A = L1L2 . . . LpDM1M2 . . .Mq.

Theorem 4.3.6 If A and B are 3× 3 matrices then detBA = detB detA.

Proof. We know that we can write A in the form given in the paragraph
above so

detBA = det(BL1L2 . . . LpDM1M2 . . .Mq)

= det
(

BL1L2 . . . LpDM1M2 . . .Mq−1)Mq

)

= det
(

BL1L2 . . . LpDM1M2 . . .Mq−1) detMq

...

= det(BL1L2 . . . LpD) detM1 detM2 . . .detMq

= det
(

(BL1L2 . . . Lp)D) detM1 detM2 . . .detMq

= det(BL1L2 . . . Lp) detD detM1 detM2 . . .detMq

...

= detB detL1 detL2 . . .detLp detD detM1 detM2 . . .detMq

Looking at the special case B = I, we see that

detA = detL1 detL2 . . .detLp detD detM1 detM2 . . .detMq,

and so detBA = detB detA.
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Theorem 4.3.7 If A is a 3 × 3 matrix, then A is invertible if and only if
detA 6= 0.
Proof Write A in the form

A = L1L2 . . . LpDM1M2 . . .Mq

with L1, L2, . . . , Lp, M1, M2, . . .Mq elementary andD diagonal. By Lemma 4.3.5,
we know that, if E is an elementary matrix, then | detE| = 1. Thus

| detA| = | detL1|| detL2| . . . | detLp|| detD|| detM1|| detM2| . . . | detMq| = | detD|.

Page 70 Replace the proof of Lemma 4.3.11 by:-

Proof. Parts (i) to (iv) are immediate. Since we can find elementary matrices
L1, L2, . . . , Lp and M1, M2, . . . , Mq together with a diagonal matrix D such
that

A = L1L2 . . . LpDM1M2 . . .Mq,

part (i) tells us that

detAT = det(MT
q M

T
q−1 . . .M

T
1 D

TLT
pL

T
p−1 . . . L

T
1 )

= detMT
q detMT

q−1 . . . detM
T
1 detDT detLT

p detLT
p−1 . . . detL

T
1

= detMq detMq−1 . . .detM1 detD detLp detLp−1 . . .detL1 = detA

as required.

Page 70, last sentence of Exercise 4.3.10. Replace
‘(Note that you cannot use the summation convention here.)’ by
‘(Since i, j and k have different ranges, the summation convention used

in this book can not be used here without modification.)’

Page 73 Lemma 4.4.5 (iii) first equation replace

∏

3≤r<s≤n

(

ρ(s)− ρ(r)
)

=
∏

3≤r<s≤n

(r − s),

by
∏

1≤r<s≤n

|s− r| =
∏

1≤r<s≤n

(s− r) > 0

Page 78 First part of bottom display. Replace ‘D(A)’ by ‘detA’
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Page 79 Exercise 4.5.10 (i) first line. Replace Exercise 4.5.7 by Exercise
4.5.8.

Page 79 Exercise 4.5.10 (iv) final formula replace
n
∑

j=1

aijAkj = δkj detA by

n
∑

j=1

aijAkj = δik detA

Page 80 Exercise 4.5.14 line between the two displayed equations.
Replace ‘and x is the solution of show that’
by ‘and x is the solution of Ax = b, show that’

Page 90 Example 5.2.9 (iv) last line
Replace ‘with jth term aj + bj is a vector space.’ by
‘with jth term λaj .’

Page 95 Lemma 5.4.2 Proof first line
Replace ‘We first prove the if part.’ by ‘We first prove the only if part.’

Page 95 First complete paragraph, first line
Replace ‘The only if part is even simpler.’ by ‘The if part is even simpler.’

Page 98 Sentence before Lemma 5.4.6. add words to read:-
We use a kind of ‘etherialised Gaussian elimination’ called the Steinitz

replacement lemma (or Steinitz exchange lemma).

Page 99 and 100. In the proof of Lemma 5.4.6 replace
n
∑

j=r+1

by
m
∑

j=r+1

twice

and replace
n
∑

j=r+2

by
m
∑

j=r+2

twice.

Page 104 First paragraph of proof of Theorem 5.5.4. last sentence. Re-
place ‘Theorem 5.4.7 (iv)’ by ‘Theorem 5.4.7 (v)’

Page 119 The first two displayed equations after Exercise 6.1.3 are incor-
rect
Replace (A +B)C = AB + AC by (A +B)C = AC +BC
Replace (α + β)γ = αγ + βγ
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Page 120 Last displayed formula of the proof of Theorem 6.1.4. Replace
B = Q(AP ) = QAP by B = (QA)P = QAP .

The proof of Theorem 6.2.2 is correct but perhaps a little too short.
Replace by

Proof. Observe that (using Exercises 5.3.11 and 5.5.5

λ is an eigenvalue of α

⇔ (λι− α)u = 0 has a non-trivial solution

⇔ (λι− α) is not injective

⇔ (λι− α) is not invertible

⇔ det(λι− α) = 0

as stated.

Page 126 Exercise 6.3.2 (iii) end of first paragraph replace x3 = 0 by
x1 = 0.

Page 128 last paragraph but one, last sentence replace ‘e2 and e2’ by ‘e1
and e2’

Page 132 Exercise 6.4.8, last displayed formula. Replace λ2 + bλ + a by
λ2 + aλ+ b

Page 134 second line. Insert comma after ‘Often’

Page 136 Statement of Lemma 6.6.2 replace PAP−1 by P−1AP

Page 136 proof of Lemma 6.6.2 replace the displayed equations by

Aq = (PDP−1)(PDP−1) . . . (PDP−1)

= PD(P−1P )D(P−1P ) . . . (P−1P )DP−1 = PDqP−1.

Page 142 Second displayed equation. Replace x3 = l−1

33 (y3− l31x1− l32x3)
by x3 = l−1

33 (y3 − l31x1 − l32x2)

Page 142 Statement of Theorem 6.7.4, third line delete ‘invertible’
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Page 142 Second line of proof. Replace (a)(1) = (a) by (1)(a) = (a)

Page 145 Solution of Example 6.7.8

In second and third set of displayed equations replace −y − z by y − 2z

Page 161 Proof of Lemma 7.1.3 (i) Last λj in display should be λr

Page 161 Title of Lemma 7.1.5 Replace ‘Gram–Schmidt method’ by ‘Gram–
Schmidt process’

Page 162 Proof of Lemma 7.1.5 (i) displayed equation.

Replace

k
∑

j=1

〈x, er〉〈ej , er〉 by

k
∑

j=1

〈x, ej〉〈ej, er〉

Page 162 Proof of Lemma 7.1.5 (ii)

Last sentence remove full stop from display and add ‘with x /∈ span{e1, e2, . . . , en
by linear independence.’

Page 163 Paragraph after Theorem 7.1.7. Replace B by A five times.

Page 163 Proof of Theorem 7.1.7 last displayed equation on the page.

Replace
(

〈b, ej − 〈a, ej〉
)

by
(

〈b, ej〉 − 〈a, ej〉
)

Page 165 Replace the single sentence ‘Lemma 7.2 now yields the following
result’ by

‘Notice that 〈α∗x,y〉 = 〈y, α∗x〉 = 〈αy,x = 〈x, αy〉. Lemma 7.2 yields
the following result.’

Page 169 Proof of Theorem 7.3.1 (ii) last sentence but one. Replace
‘Similarly, we can can take a = sinφ, b = cosφ for some real φ.’ by

‘Similarly, we can can take c = sinφ, d = cos φ for some real φ.’

Page 170 Proof of Theorem 7.3.1 (ii). Last sentence sin θ = b should be
replaced by sin θ = −b

Page 171 Proof of Theorem 7.3.3 (i)

Replace the given proof by

Proof (i) As in the proof of Theorem 7.3.1 (ii), the condition AAT = I tells
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us that

A =

(

cos θ sin θ
sinφ − cos φ

)

with θ − φ ≡ 0 modulo 2π. Since detA = −1, we have

−1 = − cos θ cosφ− sin θ sinφ = − cos(θ − φ),

so θ − φ ≡ 0 modulo 2π and

A =

(

cos φ sinφ
sinφ − cos φ

)

.

Page 194 Statement of Lemma 8.1.8 second display.
Replace lij = 〈ei, fj〉 with lij = 〈ej , fi〉

Page 194 last line.
Replace lir = 〈ei, fr〉 with lir = 〈er, fi〉

Page 195 second displayed equation should read

n
∑

r=1

lsrer =
n
∑

r=1

δsrfr = fs.

First line of third displayed equation should read

〈fi, fj〉 =

〈

n
∑

r=1

lirer,
n
∑

s=1

ljses

〉

Page 196 Paragraph after the proof of Lemma 8.2.3, last sentence.
Replace ‘A proof which does not use complex numbers (but requires sub-

stantial command of analysis) is given in Exercise 8.5.8.’
by
‘In Exercise 8.5.8 we give a proof which does not use complex numbers

(but requires substantial command of analysis) that α has at least one real
eigenvalue. This can be developed into a proof of Lemma 8.2.3 which does
not use complex numbers.

Page 197 Proof of Theorem 8.2.5 (i). Last paragraph second line.
Add ‘(by Exercise 7.1.10)’ so that it reads
‘e⊥1 has dimension m (by Exercise 7.1.10) so, by the inductive hypothesis,’
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Page 199 First two sentences. Replace
‘Our construction gives P ∈ O(Rn), but does not guarantee that P ∈

SO(Rn). If detP = 1, then P ∈ SO(Rn). If detP = −1, then replacing e1
by −e1 gives a new P in SO(Rn).’

by
‘Our construction so far only gives P ∈ O(Rn). However, if detP = 1,

then P ∈ SO(Rn) and if detP = −1, then replacing e1 by −e1 gives a new
P in SO(Rn). Thus we may ensure that P ∈ SO(Rn).’

Page 201 First displayed equation should be

Q = (e1|e2|e3) =





1 0 0
0 2−1/2 −2−1/2

0 2−1/2 2−1/2



 ,

Page 202 Fourth displayed formula
Replace

RART =

(

u v
v w

)

= D =

(

λ1 0
0 λ2

)

by

RART == D =

(

λ1 0
0 λ2

)

Page 209 Exercise 8.5.8 (i) first displayed equation
‖u+ δh‖ = 1 + δ2 should be ‖u+ δh‖2 = 1 + δ2

Page 276
Proof of Lemma 11.4.1
First displayed equation replace

n
∑

j=1

λj êj = 0,

by
n
∑

j=1

λj êj = 0,

Last but one displayed equation replace

u′(ek)− u′(ek) = 0
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by
u′(ek)− u′(ek) = 0

Final displayed equation replace

(

u′ −

n
∑

j=1

(

u′(ej)
)

êj

)

n
∑

k=1

xkek = 0

by
(

u′ −

n
∑

j=1

(

u′(ej)
)

êj

)

n
∑

k=1

xkek = 0

Page 277 First displayed equation replace

(

u′ −

n
∑

j=1

(

u′(ej)
)

êj

)

x = 0

by
(

u′ −

n
∑

j=1

(

u′(ej)
)

êj

)

x = 0

Page 310 Third line replace ‘note note’ with ’note’

Page 348 Second paragraph first line Gauss’ should be Gauss’s

Page 359 Definition 14.3.1
First line replace ‘M : U → R’ by ‘M : U → C’
Last line replace ‘〈z,w〉’ by ‘〉z,w〈’

Page 362 Exercise 14.3.7 First line
Replace ‘n− 1 dimensional’ by ‘(n− 1)-dimensional’
Replace ‘n dimensional’ by ‘n-dimensional’

Page 400 Paragraph after Exercise 16.1.5
Second line, replace ‘n dimensional’ by ‘n-dimensional’
Third line, replace ‘n− 1 dimensional’ by ‘(n− 1)-dimensional’
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NOTE ON HYPHENATION
Daniell Worall considers that I under-hyphenate. In particular he points

out that the modern tendency (demonstrated by Wikipedia) is to hyphenate:
finite-dimensional, one-dimensional, two-dimensional, three-dimensional, infinite-
dimensional and so on. I agree that this is more consistent.


