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1 Some notes of explanation

Since the birth of the Lebesgue integral it has been clear that it is a much
more powerful tool for studying Fourier analysis than the Riemann integral.
However I shall try to make the course accessible to those who have not
done measure theory (though they may have to take the statement of certain
results on trust). If either those who know Lebesgue integration, or those
who do not, feel that this leads to any problems they should raise them with
me.

Because of the strong number theoretic bias of this course, I will not
have the time to devote to the Fourier transform that, ideally, I would have
wished. The reader must be aware that she is seeing only a limited number of
aspects of Fourier analysis. Although I intend to reach the end of Section 13,
I am not sure that I will I have time for the final two sections.

The exercises do not form part of the course. I hope that those who
attempt them will find them reasonably easy, instructive and helpful both
in understanding the course and helping the reader towards ‘mathematical
maturity’ — but I may well be wrong.

2 Fourier series on the circle

We work on the circle T = R/2πZ (that is on the interval [0, 2π] with the
two ends 0 and 2π identified). If f : T → C is integrable1 we write

f̂(n) =
1

2π

∫

T

f(t) exp−int dt.

1That is to say Lebesgue integrable or Riemann integrable according to the reader’s
background.
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We shall see (Lemma 10) that f is uniquely determined by its Fourier coef-
ficients f̂(n). Indeed it is clear that there is a ‘natural identification’ (where
natural is deliberately used in a vague sense)

f(t) ∼
∞∑

r=−∞

f̂(r) exp irt.

However, we shall also see that, even when f is continuous,
∑∞

r=−∞ f̂(r) exp irt
may fail to converge at some points t.

Fejér discovered that, although

Sn(f, t) =
n∑

r=−n

f̂(r) exp irt

may behave badly as n→ ∞, the average

σn(f, t) = (n+ 1)−1

n∑

m=0

Sm(f, t) =
n∑

r=−n

n+ 1 − |r|
n+ 1

f̂(r) exp irt

behaves much better. (We call σn(f, t) the Fejér sum. We also write Sn(f, t) =
Sn(f)(t) and σn(f, t) = σn(f)(t).)

Exercise 1 Let a1, a2, . . . be a sequence of complex numbers.
(i) Show that, if an → a, then

a1 + a2 + · · · + an

n
→ a

as n→ ∞.
(ii) By taking an appropriate sequence of 0s and 1s or otherwise find a

sequence an such that an does not tend to a limit as n → ∞ but (a1 + a2 +
· · · + an)/n does.

(iii) By taking an appropriate sequence of 0s and 1s or otherwise find a
bounded sequence an such that (a1 + a2 + · · ·+ an)/n does not tend to a limit
as n→ ∞.

In what follows we define

f ∗ g(t) =
1

2π

∫

T

f(t− s)g(s) ds

(for appropriate f and g).
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Lemma 2 If f is integrable we have

Sn(f) = f ∗Dn

σn(f) = f ∗Kn.

where

Dn(t) =
sin((n+ 1

2
)t)

sin(1
2
t)

Kn(t) =
1

n+ 1

(
sin(n+1

2
t)

sin(1
2
t)

)2

for t 6= 0.

The key differences between the Dirichlet kernel Dn and the Fejér kernel
Kn are illustrated by the next two lemmas.

Lemma 3 (i)
1

2π

∫

T

Dn(t) dt = 1.

(ii) If t 6= π, then Dn(t) does not tend to a limit as n→ ∞.
(iii) There is a constant A > 0 such that

1

2π

∫

T

|Dn(t)| dt ≥ A log n

for n ≥ 1.

Lemma 4 (i)
1

2π

∫

T

Kn(t) dt = 1.

(ii) If η > 0, then Kn → 0 uniformly for |t| ≥ η as n→ ∞.
(iii) Kn(t) ≥ 0 for all t.

The properties set out in Lemma 4 show why Fejér sums work so well.
Theorem 5 (i) If f : T → C is integrable and f is continuous at t, then

σn(f, t) → f(t)

as n→ ∞.
(ii) If f : T → C is continuous, then

σn(f) → f

uniformly as n→ ∞.
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Exercise 6 Suppose that Ln : T → R is continuous (if you know Lebesgue
theory you merely need integrable) and

(A)
1

2π

∫

T

Ln(t) dt = 1,

(B) If η > 0, then Ln → 0 uniformly for |t| ≥ η as n→ ∞,
(C) Ln(t) ≥ 0 for all t.
(i) Show that, if f : T → C is integrable and f is continuous at t, then

Ln ∗ f(t) → f(t)

as n→ ∞.
(ii) Show that, if f : T → C is continuous, then

Ln ∗ f → f

uniformly as n→ ∞.
(iii) Show that condition (C) can be replaced by
(C’) There exists a constant A > 0 such that

1

2π

∫

T

|Ln(t)| dt ≤ A

in parts (i) and (ii). [You need only give the proof in one case and say that
the other is ‘similar’.]

Exercise 7 Suppose that Ln : T → R is continuous but that

sup
n

1

2π

∫

T

|Ln(t)| dt = ∞.

Show that we can find a sequence of continuous functions gn : T → R with
|gn(t)| ≤ 1 for all t, Ln ∗ gn(0) ≥ 0 for all n and

sup
n
Ln ∗ gn(0) = ∞.

(i) If you know some functional analysis deduce the existence of a contin-
uous function f such that

sup
n
Ln ∗ f(0) = ∞.

(ii) Even if you can obtain the result of (i) by slick functional analysis
there is some point in obtaining the result directly.

(a) Suppose that we have defined positive integers n(1) < n(2) < · · · <
n(k), a continuous function gk and a real number ǫ(k) with 2−k > ǫ(k) >
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0. Show that there is an ǫ(k + 1) with ǫ(k)/2 > ǫ(k + 1) > 0 such that
whenever g is a continuous function with ‖g − gk‖∞ < 2ǫ(k + 1) we have
|Ln(j) ∗ g(0) − Ln(j) ∗ gk(0)| ≤ 1. for 1 ≤ j ≤ k.

(b) Continuing with the notation of (a), show that there exists an n(k +
1) > n(k) and a continuous function gk+1 with ‖gk+1 − gk‖∞ ≤ ǫ(k+ 1) such
that |Ln(k+1) ∗ gk+1(0)| > 2k+1.

(c) By carrying out the appropriate induction and considering the uniform
limit of gk obtain (i).

(iii) Show that there exists a continuous function f such that Sn(f, 0)
fails to converge as n → ∞. (We shall obtain a stronger result later in
Theorem 25.)

Theorem 5 has several very useful consequences.

Theorem 8 (Density of trigonometric polynomials) The trigonomet-
ric polynomials are uniformly dense in the continuous functions on T.

Lemma 9 (Riemann-Lebesgue lemma) If f is an integrable function on
T, then f̂(n) → 0 as |n| → ∞.

Theorem 10 (Uniqueness) If f and g are integrable functions on T with
f̂(n) = ĝ(n) for all n, then f = g.

Lemma 11 If f is an integrable function on T and
∑

j |f̂(j)| converges, then

f is continuous and f(t) =
∑

j f̂(j) exp ijt.

As a preliminary to the next couple of results we need the following temporary
lemma (which will be immediately superseded by Theorem 14).

Lemma 12 (Bessel’s inequality) If f is a continuous function on T, then

∞∑

n=−∞

|f̂(n)|2 ≤ 1

2π

∫

T

|f(t)|2 dt.

Theorem 13 (Mean square convergence) If f is a continuous function
on T, then

1

2π

∫

T

|f(t) − Sn(f, t)|2 dt→ 0

as n→ ∞.
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Theorem 14 (Parseval’s Theorem) If f is a continuous function on T,
then

∞∑

n=−∞

|f̂(n)|2 =
1

2π

∫

T

|f(t)|2 dt.

More generally, if f and g are continuous

∞∑

n=−∞

f̂(n)ĝ(n)∗ =
1

2π

∫

T

f(t)g(t)∗ dt.

(The extension to all L2 functions of Theorems 13 and 14 uses easy mea-
sure theory.)

Exercise 15 If you use Lebesgue integration, state and prove Theorems 13
and 14 for (L2(T), ‖ ‖2).

If you use Riemann integration, extend and prove Theorems 13 and 14
for all Riemann integrable function.

Note the following complement to the Riemann-Lebesgue lemma.

Lemma 16 If κ(n) → ∞ as n→ ∞, then we can find a continuous function
f such that lim supn→∞ κ(n)f̂(n) = ∞.

The proof of the next result is perhaps more interesting than the result
itself.

Lemma 17 Suppose that f is an integrable function on T such that there
exists an A with |f̂(n)| ≤ A|n|−1 for all n 6= 0. If f is continuous at t, then
Sn(f, t) → f(t) as n→ ∞.

Exercise 18 Suppose that an ∈ C and there exists an A with |an| ≤ A|n|−1

for all n ≥ 1. Write

sn =
n∑

r=0

ar.

Show that, if
s0 + s1 + · · · + sn

n+ 1
→ s

as n → ∞, then sn → s as n → ∞. (Results like this are called Tauberian
theorems.)
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Exercise 19 (i) Suppose that f : [−π, π) → R is increasing and bounded.
Write f(π) = limt→0 f(π − t). Show that

∫ π

−π

f(t) exp it dt =

∫ π

0

(f(t) − f(t− π)) exp it dt

and deduce that |f̂(1)| ≤ (f(π) − f(−π))/2 ≤ (f(π) − f(−π)).
(ii) Under the assumptions of (i) show that

|f̂(n)| ≤ (f(π) − f(−π))/|n|

for all n 6= 0.
(iii) (Dirichlet’s theorem) Suppose that g = f1−f2 where fk : [−π, π) → R

is increasing and bounded [k = 1, 2]. (It can be shown that functions g of this
form are the, so called, functions of bounded variation.) Show that if g is
continuous at t, then Sn(g, t) → f(t) as n→ ∞.

Most readers will already be aware of the next fact.

Lemma 20 If f : T → C is continuously differentiable, then

(f ′)̂ (n) = inf̂(n).

This means that Lemma 17 applies, but we can do better.

Lemma 21 If f : T → C is continuously differentiable, then

∞∑

n=−∞

|f̂(n)| <∞.

Here is a beautiful application due to Weyl of Theorem 8. If x is real, let
us write 〈x〉 for the fractional part of x, that is, let us write

〈x〉 = x− [x].

Theorem 22 If α is an irrational number and 0 ≤ a ≤ b ≤ 1, then

card{1 ≤ n ≤ N | 〈nα〉 ∈ [a, b]}
N

→ b− a

as N → ∞. The result is false if α is rational.

(Of course this result may be deduced from the ergodic theorem and The-
orem 8 itself can be deduced from the Stone-Weierstrass theorem but the
techniques used can be extended in directions not covered by the more gen-
eral theorems.)

Hurwitz used Parseval’s theorem in a neat proof of the isoperimetric in-
equality.
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Theorem 23 Among all smooth closed non-self-intersecting curves of given
length, the one which encloses greatest area is the circle.

(Reasonably simple arguments show that the requirement of smoothness can
be dropped.)

3 A Theorem of Kahane and Katznelson

We need to recall (or learn) the following definition.

Definition 24 A subset E of T has (Lebesgue) measure zero if, given ǫ > 0,
we can find intervals Ij of length |Ij| such that

⋃∞
j=1 Ij ⊇ E but

∑∞
j=1 |Ij| < ǫ.

There is a deep and difficult theorem of Carleson which tells us that if
f : T → C is continuous (or even L2), then the set

E = {t ∈ T | Sn(f, t) 9 f(t) as n→ ∞}

has measure 0. (We shall neither prove nor make use of this result which is
included for information only.) Kahane and Katznelson proved a converse
which though much easier to prove is still remarkable.
Theorem 25 (Kahane and Katznelson) Given any subset E of T with
measure zero, we can find a continuous function f such that

lim sup
n→∞

|Sn(f, t)| → ∞

for all t ∈ E.

The theorem follows relatively simply from its ‘finite version’.

Lemma 26 Given any K > 0, we can find a ǫ(K) > 0 such that if J1, J2,
. . .JN is any finite collection of intervals with

∑N
r=1 |Jr| < ǫ(K) we can find

a trigonometric polynomial P such that ‖P‖∞ ≤ 1 but

sup
n

|Sn(P, t)| ≥ K

for all t ∈ ⋃N
r=1 Jr.

It is the proof of Lemma 26 which contains the key idea. This is given in
the next lemma.
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Lemma 27 Let us define log z on C \ {x ∈ R : x ≤ 0} so that log x is real
when x is real and positive. Suppose that 1 > δ > 0 and that θ1, θ2, . . . , θN ∈
R. If we set

φ(z) = log

(
N−1

N∑

n=1

1 + δ

1 + δ − ze−iθn

)
,

then φ is a well defined analytic function on {z | |z| < 1 + δ/2} such that
(i) |ℑφ(z)| < π for all |z| < 1 + δ/2,
(ii) φ(0) = 0,
(iii) |ℜφ(eiθ)| ≥ log(δ−1/4N) for all |θ − θn| ≤ δ/2 and 1 ≤ n ≤ N .

4 Many Dimensions

The extension of these ideas to higher dimensions can be either trivial or
very hard. If f : Tm → C we define

f̂(n) =
1

(2π)m

∫

T

. . .

∫

T

f(t) exp(−in.t) dt1 . . . dtm.

Very little is known about the convergence of

∑

u2+v2≤N

f̂(u, v) exp(i(ux+ vy))

as N → ∞ even when f is continuous. (Of course, under stronger conditions,
such as those in Exercise 34 below the matter becomes much easier.)

However the treatment of the sums of type

∑

|u|,|v|≤N

f̂(u, v) exp(i(ux+ vy))

is a straightforward. The following results are part of the course but will be
left as exercises. (Of course, if you have trouble with them you can ask the
lecturer to do them. If you are using Lebesgue integration work with L∞

rather than L1 functions.)

Lemma 28 If we define K̃n : Tm → R by

K̃n(t1, t2, . . . , tm) =
m∏

j=1

Kn(tj),

then we have the following results.
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(i)
1

(2π)m

∫

Tm

K̃n(t) dt = 1.

(ii) If η > 0, then

1

(2π)m

∫

|t|≥η

K̃n(t) dt → 0

as n→ ∞.
(iii) K̃n(t) ≥ 0 for all t.
(iv) K̃n is a (multidimensional) trigonometric polynomial.

Lemma 29 If f : Tm → C is integrable and P : Tm → C is a trigonometric
polynomial, then

P ∗ f(x) =
1

(2π)m

∫

Tm

P (x − t)f(t) dt

is a trigonometric polynomial in x.

Theorem 30 (Density of trigonometric polynomials) The trigonomet-
ric polynomials are uniformly dense in the continuous functions on Tm.

Lemma 31 (Riemann-Lebesgue lemma) If f is an integrable function
on Tm, then f̂(n) → 0 as |n| → ∞.

Theorem 32 (Uniqueness) If f and g are integrable functions on Tm with
f̂(n) = ĝ(n) for all n, then f = g.

Lemma 33 If f is an integrable function on T and
∑

j |f̂(j)| converges, then

f is continuous and f(t) =
∑

j f̂(j) exp ij.t.

Exercise 34 Suppose that f : Tm → C is integrable and
∑

(u,v)∈Z2 |f̂(u, v)| <
∞. Show that

∑

u2+v2≤N

f̂(u, v) exp(i(ux+ vy)) → f(x, y)

uniformly as N → ∞.

Theorem 35 (Parseval’s Theorem) If f is a continuous function on Tm,
then ∑

n∈Zm

|f̂(n)|2 =
1

(2π)m

∫

Tm

|f(t)|2 dt.

More generally, if f and g are continuous,

∑

n∈Zm

f̂(n)ĝ(n)∗ =
1

(2π)m

∫

Tm

f(t)g(t)∗ dt.
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Exercise 36 Prove the results from Lemma 28 to Theorem 35

Exercise 37 The extension of Lemma 17 to many dimensions is not re-
quired for the course but makes a nice exercise. The proof follows the one
dimensional proof but is not quite word for word.

(i) Suppose that f is a bounded integrable function on T2 such that there
exists an A with |f̂(u, v)| ≤ A(u2 + v2)−1 for all (u, v) 6= (0, 0). Show that, if
f is continuous at (s, t), then

∑

|u|,|v|≤n

f̂(u, v) exp(i(us+ vt)) → f(s, t)

as n→ ∞
(ii) (This generalises Lemma 21.) Suppose that f is a twice differentiable

function on T2 with
∂2f(x, y)

∂x∂y
continuous. Show that

∑
(u,v)∈Z2 |f̂(u, v)| <∞.

(iii) State the correct generalisations of parts (i) and (ii) to higher di-
mensions.

We immediately obtain a striking generalisation of Weyl’s theorem (The-
orem 22).

Theorem 38 Suppose that α1, α2, . . . , αM are real numbers. A necessary
and sufficient condition that

card{1 ≤ n ≤ N | (〈nα1〉, 〈nα2〉, . . . , 〈nαM〉) ∈∏M
j=1[aj, bj]}

N
→

M∏

j=1

(bj − aj)

as N → ∞ whenever 0 ≤ aj ≤ bj ≤ 1 is that

M∑

j=1

njαj /∈ Z for integer nj not all zero. ⋆

If α1, α2, . . . , αM satisfy ⋆ we say that they are independent. The multidi-
mensional version of Weyl’s theorem has an important corollary.

Theorem 39 (Kronecker’s theorem) Suppose that α1, α2, . . . , αM are
independent real numbers. Then given real numbers β1, β2, . . . , βM and
ǫ > 0 we can find integers N , m1, m2, . . . , mM such that

|Nαj − βj −mj| < ǫ

for each 1 ≤ j ≤M .
The result is false if α1, α2, . . . , αM are not independent.
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We use this to obtain a theorem of Kolmogorov.

Theorem 40 There exists a Lebesgue integrable (that is an L1) function
f : T → C such that

lim sup
n→∞

|Sn(f, t)| = ∞

for all t ∈ T.

Although this result is genuinely one of Lebesgue integration it can be ob-
tained by simple (Lebesgue measure) arguments from a result not involving
Lebesgue integration.

Lemma 41 Given any K > 0 we can find a trigonometric polynomial P
such that

(i)
1

2π

∫

T

|P (t)| dt ≤ 1,

(ii) maxn≥0 |Sn(P, t)| ≥ K for all t ∈ T.

In our discussion of Kronecker’s theorem (Theorem 39) we worked modulo
1. In what follows it is easier to work modulo 2π. The readier will readily
check that the definition and theorem that follow give the appropriate re-
statement of Kronecker’s theorem.

Definition 42 We work in T. If α1, α2, . . . , αM satisfy

M∑

j=1

njαj 6= 0 for integer nj not all zero. ⋆

we say that they are independent.

Theorem 43 (Kronecker’s theorem (alternative statement)) Suppose
that α1, α2, . . . , αM are independent points in T. Then, given complex
numbers λ1, λ2, . . . , λM with |λj| = 1 [j = 1, 2, . . . , M ] and ǫ > 0, we can
find an integer N such that

| exp(iNαj) − λj| < ǫ

for each 1 ≤ j ≤M .

Our construction requires some preliminary results.
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Lemma 44 If x1, x2, . . . , xM are independent points in T and t ∈ T and

M∑

j=1

pj(xj − t) = 0 for integer pj not all zero

M∑

j=1

qj(xj − t) = 0 for integer qj not all zero

then there exist p, q ∈ Z \ {0} such that pqj = qpj for 1 ≤ j ≤M .

Lemma 45 If x1, x2, . . . , xM are independent points in T and t ∈ T, then
one of the following must hold:-

(a) There exists a i 6= 1 such that the points xj − t with j 6= i are
independent.

(b) x1 − t is a rational multiple of 2π and the points xj − t with j 6= 1 are
independent.

Lemma 46 (i) If I is an open interval in T and x1, x2, . . . , xm are inde-
pendent we can find xm+1 ∈ I such that x1, x2, . . . , xm+1 are independent.

(ii) Given an integer M ≥ 1 we can find independent points x1, x2, . . . ,
xM in T such that

|xj − 2πj/M | ≤ 10−3M−1

Lemma 47 If M and x1, x2, . . . , xM in T are as in Lemma 46 (ii), then
setting

µ = M−1

M∑

j=1

δxj

we have the following two results.
(i) maxn≥0 |Sn(µ, t)| ≥ 100−1 logM for each t ∈ T,
(ii) There exists an N such that maxN≥n≥0 |Sn(µ, t)| ≥ 200−1 logM for

each t ∈ T.

Remark 1 If you wish you may treat Sn(µ, t) as a purely formal object.
However, it is better for later work to think what it actually is.
Remark 2 Factors like 10−3 and 100−1 in Lemmas 46 (ii) and 47 are more or
less chosen at random and are not ‘best possible’.

A simple argument using Lemma 47 now gives Lemma 41 and we are
done.

Exercise 48 Show, by considering Fejér sums or otherwise, that we cannot
find a continuous function f such that Sn(f, t) → ∞ uniformly as n→ ∞.
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5 Some simple geometry of numbers

We need the following extension of Theorem 35.

Lemma 49 If A is a well behaved set and f is the characteristic function of
A (that is f(x) = 1 if x ∈ A, f(x) = 0 otherwise), then

∑

n∈Zm

|f̂(n)|2 =
1

(2π)m

∫

Tm

|f(t)|2 dt.

If you know Lebesgue measure then this is obvious (for bounded measurable
sets, say) since a simple density argument shows that Parseval’s Theorem
(Theorem 35) holds for every f ∈ L1∩L2. If we restrict ourselves to Riemann
integration it is obvious what sort of approximation argument we should use
but the technical details are typically painful.

Exercise 50 EITHER (i) Give the detailed proof of Lemma 49 in terms of
Lebesgue measure.

OR (ii) Give the detailed proof of Lemma 49 in terms of Riemann inte-
gration in the special case when A is a sphere.

We use Parseval’s Theorem (in the form of Lemma 49) to give Siegel’s
proof of Minkowski’s theorem.

Theorem 51 (Minkowski) Let Γ be an open symmetric convex set in Rm

with volume V . If V > 2m, then Γ ∩ Zm contains at least two points.

The reader will recall that Γ is convex if

x,y ∈ Γ and 0 ≤ λ ≤ 1 ⇒ λx + (1 − λ)y ∈ Γ

and that Γ is symmetric if

x ∈ Γ ⇒ −x ∈ Γ.

It is not entirely obvious (though it is true) that every open convex set has
a (possibly infinite) volume in the sense of Riemann. Readers who wish to
use Riemann integration may add the words ‘well behaved’ to the statement
of Minkowski’s theorem.

Lemma 52 If V ≤ 2m there exists an open symmetric convex set Γ in Rm

with volume V such that Γ ∩ Zm = {0}.

To prove Minkowski’s theorem (Theorem 51) it suffices to prove an es-
sentially equivalent result.
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Theorem 53 Let Γ be a bounded open symmetric convex set in Rm with
volume V . If V > 2m(2π)m, then Γ ∩ (2πZ)m contains at least two points.

We need the following simple but crucial result.

Lemma 54 If Γ is symmetric convex set and x,x − 2y ∈ Γ, then y ∈ Γ.

By applying Parseval’s theorem to f(x) =
∑

k∈Zm IΓ/2(x − 2πk) we obtain
the following results.

Lemma 55 Let Γ be a bounded open symmetric convex set in Rm with vol-
ume V such that Γ ∩ (2πZ)m only contains 0. Then

2−m
∑

k∈Zm

∣∣∣∣
∫

Rm

IΓ(x)eik.x dx

∣∣∣∣
2

= (2π)mV. ⋆

where IΓ is the characteristic function of Γ.

Minkowski’s theorem follows at once by considering the term with k = 0 in
equation ⋆.

Here is a simple application of Minkowski’s theorem.

Lemma 56 Suppose that a, b, c, d are real numbers with ad−bc = 1. Given
l > 0 and ǫ > 0 we can find integers m and n such that

|an+ bm| ≤ (1 + ǫ)l, |cn+ dm| ≤ (1 + ǫ)l−1.

Taking c = x, a = 1, b = 0, d = −1 and thinking carefully we obtain in quick
succession.

Lemma 57 If x is real there exist n and m integers with n 6= 0 such that

∣∣∣x− m

n

∣∣∣ ≤ 1

n2
.

Lemma 58 If x is real there exist infinitely many pairs of integers n and m
with n 6= 0 such that ∣∣∣x− m

n

∣∣∣ ≤ 1

n2
.

Here is another simple consequence.

Lemma 59 (Quantitative version of Dirichlet’s theorem) If x ∈ Rm,
then, given l > 0 and ǫ > 0, we can find n, n1, n2, . . . , nm ∈ Z such that

|nxj − nj| ≤ l−1

for 1 ≤ j ≤ m and |n| ≤ lm.
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We conclude our collection of consequences with Legendre’s four squares
theorem.

Theorem 60 (Legendre) Every positive integer is the sum of at most 4
squares.

Lemma 61 We cannot reduce 4 in the statement of Legendre’s theorem
(Theorem 60).

We need an observation of Euler.

Lemma 62 If x0, x1, x2, x3, y0, y1, y2, y3 are real, then

(x2
0+x

2
1 + x2

2 + x2
3)(y

2
0 + y2

1 + y2
2 + y2

3)

=(x0y0 − x1y1 − x2y2 − x3y3)
2 + (x0y1 + x1y0 + x2y3 − x3y2)

2+

(x0y2 − x1y3 + x2y0 + x3y1)
2 + (x0y3 + x1y2 − x2y1 + x3y1)

2.

Exercise 63 In the lectures we will use quaternions to prove Lemma 62.
Prove the equality by direct verification.

Lemma 64 Legendre’s four square theorem will follow if we can show that
every odd prime is the sum of at most four squares.

We shall also need the volume of a 4 dimensional sphere. A simple argu-
ment gives the volume of a unit sphere in any dimension.

Lemma 65 Let Vn be the (n-dimensional) volume of an n dimensional unit
sphere.

(i) If f : [0,∞) → R is a continuous function with tn+2f(t) → 0 as
t→ ∞, then ∫

Rn

f(‖x‖) dV (x) = Vn

∫ ∞

0

f(t)ntn−1 dt.

(ii) V2k =
πk

k!
, V2k+1 =

k!22k+1πk

(2k + 1)!
.

Finally we need the apparently more general version of Minkowski’s the-
orem obtained by applying a linear map.

Theorem 66 (Minkowski for general lattices) We work in Rm. Let Λ
be a lattice with fundamental region of volume L and let Γ be an open sym-
metric convex set with volume V . If V > 2mL, then Γ ∩ Λ contains at least
two points.
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We now turn to the proof of the fundamental lemma.

Lemma 67 Every odd prime is the sum of at most four squares.

We begin with a simple lemma.

Lemma 68 Let p be an odd prime.
(i) If we work in Zp, then the set {u2 : u ∈ Zp} has at least (p + 1)/2

elements.
(ii) We can find integers u and v such that u2 + v2 ≡ −1 mod p.

We now introduce a lattice.

Lemma 69 Let p, u and v be as in Lemma 68. If

Λ = {(n,m, a, b) ∈ Z4 : nu+mv ≡ a, mu− nv ≡ b mod p}

then Λ is a lattice with fundamental region of volume p2.
If (n,m, a, b) ∈ Λ, then n2 +m2 + a2 + b2 ≡ 0 mod p.

We can now prove Lemma 67 and with it Theorem 60.

Exercise 70 (i) Recall that if p is a prime, then the multiplicative group
(Zp \ {0},×) is cyclic. (This is the subject of Exercise 110.) Deduce that if
p = 4k+ 1, then there is an element u in (Zp \ {0},×) of order 4. Show that
u2 = −1.

(ii) If p and u are as in (i) show that

Λ = {(n,m) ∈ Z2 : m ≡ n mod p}

is a lattice and deduce that there exist n, m with n2 + m2 = p. (This is a
result of Fermat. Every prime congruent to 1 modulo 4 is the sum of two
squares.)

6 A brief look at Fourier transforms

If time permits we will look at Fourier transforms in sections 14 and 15. If
f : R → C is integrable on each finite interval [a, b] (in the Riemann or
Lebesgue sense) and

∫∞

−∞
|f(x)| dx < ∞ we2 shall say that f is appropriate.

(This is non-standard notation.) If f is appropriate define

f̂(λ) =

∫ ∞

−∞

f(t) exp(−iλt) dt.

2The majority of my auditors who know Lebesgue integration will prefer the formula-
tions ‘f ∈ L1(R)’ or ‘f measurable and

∫
∞

−∞
|f(x)| dx < ∞.
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Lemma 71 If f is appropriate, f̂ : R → C is continuous and bounded.

Our first problem is that even when f is appropriate f̂ need not be.

Example 72 If f is the indicator function of [a, b] (that is, f(x) = 1 if
x ∈ [a, b], f(x) = 0 otherwise), then

∫ ∞

−∞

|f̂(λ)| dλ = ∞.

This turns out not to matter very much but should be borne in mind.
When we try to imitate our treatment of Fourier series we find that we

need to interchange the order of integration of two infinite integrals. If we
use Lebesgue integration we can use a very powerful theorem.

Theorem 73 (Fubini’s theorem) If f : R2 → C is measurable and either
of the two integrals

∫ ∞

−∞

∫ ∞

−∞

|f(x, y)| dx dy and

∫ ∞

−∞

∫ ∞

−∞

|f(x, y)| dy dx

exists and is finite, then they both do and the integrals

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dx dy and

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dy dx.

exist and are finite and equal.

If we use Riemann integration, then we have a slogan.

Pretheorem 74 If f : R2 → C is well behaved and either of the two integrals

∫ ∞

−∞

∫ ∞

−∞

|f(x, y)| dx dy and

∫ ∞

−∞

∫ ∞

−∞

|f(x, y)| dy dx

is finite, then they both are and

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dx dy and

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dy dx.

In every case that we need the pretheorem can be turned into a theorem but
the proofs become more and more tedious as we weaken the conditions on f .
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Exercise 75 In this exercise we use Riemann integration and derive a sim-
ple Fubini type theorem.

(i) If I and J are intervals on R (so I could have the form [a, b], [a, b),
(a, b) or (a, b)) and we write II×J(x, y) = 1 if (x, y) ∈ I × J , II×J(x, y) = 0,
otherwise show that

∫ ∞

−∞

∫ ∞

−∞

II×J(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

II×J(x, y) dy dx.

(ii) Suppose that Ir and Jr are intervals on R and that λr ∈ C [1 ≤ r ≤ n].
If f =

∑n
r=1 IIr×Jr

show that

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dy dx.

(iii) Suppose that f : R2 → C is continuous and that I and J are intervals
on R. If g(x, y) = II×J(x, y)f(x, y) show using (ii) that

∫ ∞

−∞

∫ ∞

−∞

g(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) dy dx.

(iv) Suppose that f : R2 → C is continuous and that there exists a real
constant A such that

|f(x, y)| ≤ A(1 + x2)−1(1 + y2)−1. ⋆

Show, using (ii), that

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) dy dx.

Conditions like ⋆ imposing some rate of decrease at infinity play an impor-
tant role in Fourier analysis.

In section 14 (if we reach it) we shall adopt a slightly more sophisticated
approach to the Fourier transform than that given in the next exercise but the
results are sufficient for many purposes and the exercise gives an interesting
review of earlier work. We shall need the following definition.

Definition 76 We say that f is piecewise continuous if, for each R >
0, f is continuous at all but finitely many points of (−R,R) and f(t) =
limh→0+ f(t− h) for all t.

(Different authors use different definitions. They are all the same ‘in spirit’
but not ‘in logic’.)

20



Exercise 77 If f is appropriate and R > 0 we define

σR(f, t) =
1

2π

∫ R

−R

(
1 − |λ|

R

)
f̂(λ) exp(iλt) dλ.

(It will become clear that this is the analogue of the Fejér sum.)
(i) (For users of the Lebesgue integral) By adapting the proof of Theorem 5

show that if f ∈ L1 and f is continuous at t then

σR(f, t) → f(t)

as R → ∞. Is the result necessarily true if f is not continuous at t? Give
reasons.

(i’) (For users of the Riemann integral) By adapting the proof of Theo-
rem 5 show that if f is continuous and there there exists a real constant A
such that

|f(x)| ≤ A(1 + x2)−1

for all x, show that
σR(f, t) → f(t)

for all t.
Without going into detail, convince yourself that the result continues to

hold if we replace the condition ‘f continuous’ by the condition ‘f piecewise
continuous’ and the conclusion by

σR(f, t) → f(t)

at all t where f is continuous. (All we need is a slight extension of Exer-
cise 75 (iv).)

(ii) (For users of the Lebesgue integral) Suppose that f and g are piecewise
continuous L1 functions. Show that, if f̂(λ) = ĝ(λ) for all λ, then f(t) = g(t)
for all t.

(ii’) (For users of the Riemann integral) Suppose f and g are piecewise
continuous and there there exists a real constant A such that

|f(x)|, |g(x)| ≤ A(1 + x2)−1

for all x. Show that, if f̂(λ) = ĝ(λ) for all λ, then f(t) = g(t) for all t.

7 Infinite products

Our object in the next few lectures will be to prove the following remarkable
theorem of Dirichlet on primes in arithmetic progression.
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Theorem 78 (Dirichlet) If a and d are strictly positive coprime integers,
then there are infinitely many primes of the form a + nd with n a positive
integer.

(Obviously the result must fail if a and d are not coprime.)
There exist a variety of proofs of special cases when d has particular

values but, so far as I know, Dirichlet’s proof of his theorem remains, essen-
tially, the only approachable one. In particular there is no known reasonable3

elementary (in the technical sense of not using analysis) proof.
Dirichlet’s method starts from an observation of Euler.

Lemma 79 If s is real with s > 1, then

∏

p prime
p≤N

(
1 − 1

ps

)−1

→
∞∑

n=1

1

ns
.

Using this result, we get a new proof of the existence of an infinity of primes.

Theorem 80 (Euclid) There exist an infinity of primes.

This suggests that it may be worth investigating infinite products a bit
more.

Definition 81 Let aj ∈ C. If
∏N

n=1(1 + an) tends to a limit L as N → ∞,
we say that the infinite product

∏∞
n=1(1 + an) converges to a value L and

write
∞∏

n=1

(1 + an) = L.

If the infinite product
∏∞

n=1(1+|an|) converges, then we say that
∏∞

n=1(1+an)
is absolutely convergent.

The next result was removed from the first year of the Tripos a couple of
years before I took it.

Lemma 82 Let aj ∈ C.
(i)
∏∞

n=1(1 + an) is absolutely convergent if and only if
∑∞

n=1 an is.
(ii) If

∏∞
n=1(1 + an) is absolutely convergent and 1 + an 6= 0 for each n,

then the infinite product converges and

∞∏

n=1

(1 + an) 6= 0.

3In the sense that most reasonable people would call reasonable. Selberg produced a
(technically) elementary proof which may be found in his collected works.

22



Exercise 83 Find aj ∈ C such that
∏∞

n=1(1+an) is not absolutely convergent
but is convergent to a non-zero value.

We shall only make use of absolute convergent infinite products.

Exercise 84 If
∏∞

n=1(1 + an) is absolutely convergent and σ : N → N is
a bijection (that is, σ is a permutation of N) show that

∏∞
n=1(1 + aσ(n)) is

absolutely convergent and

∞∏

n=1

(1 + aσ(n)) =
∞∏

n=1

(1 + an)

Whilst this is a useful result to know, we shall make no essential use of it.
When we write

∑
p prime or

∏
p prime we mean the primes p to be taken in

order of increasing size.
Using Lemma 82 we obtain the following strengthening of Euclid’s theo-

rem.

Theorem 85 (Euler)
∑

p prime

1

p
= ∞.

Since we wish to consider infinite products of functions it is obvious that
we shall need an analogue of the Weierstrass M-test for products, obvious
what that analogue should be and obvious how to prove it.

Lemma 86 Suppose U is an open subset of C and that we have a sequence
of functions gn : U → C and a sequence of positive real numbers Mn such
that Mn ≥ |gn(z)| for all z ∈ U . If

∑∞
n=1Mn converges, then

∏N
n=1(1+gn(z))

converges uniformly on U .

Later we shall need to consider
∑
n−s with s complex. To avoid ambiguity,

we shall take n−s = exp(−s log n) where log n is the real logarithm of n.

Lemma 87 If ℜs > 1 we have

∏

p prime

(1 − p−s)−1 =
∞∑

n=1

n−s

both sides being absolutely convergent for each s and uniformly convergent
for ℜs > 1 + ǫ for each fixed ǫ > 0.

We now detour briefly from the main argument to show how infinite
products can be used to answer a very natural question. ‘Can we always find
an analytic function with specified zeros?’ (We count multiple zeros multiply
in the usual way.) Naturally we need to take account of the following fact.
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Lemma 88 If z1, z2, . . . are distinct zeros of an analytic function which is
not identically zero, then zn → ∞ as n→ ∞.

A little thought suggests the path we ought to take, though we may not
see how to reach it. A way to reach the path is provided by the Weierstrass
primary function E(z,m).

Definition 89 If m is a strictly positive integer

E(z,m) = (1 − z)ez+z2/2+z3/3+···+zm/m.

Lemma 90 The function E( ,m) : C → C is analytic with a unique zero at
1. Given ǫ > 0 we can find an M such that

|1 − E(z,m)| ≤ ǫ

for all m ≥M and |z| ≤ 1/2.

Theorem 91 (Weierstrass) If k is a positive integer and z1, z2, . . . is a
sequence of non-zero complex numbers with zn → ∞, then we can choose
n(j) → ∞ so that

F (z) = zk

∞∏

j=1

E
(
z/zj, n(j)

)

is a well defined analytic function with a zero of order k at 0, and zeros at
the zj (multiple zeros counted multiply) and no others.

Lemma 92 If f1 and f2 are analytic functions on C with the same zeros
(multiple zeros counted multiply), then there exists an analytic function g
such that

f1(z) = eg(z)f2(z).

Lemma 93 If z1, z2, . . . and w1, w2, . . . are sequences of complex numbers
with zj, wj → ∞ as j → ∞ and zj 6= wk for all j, k, then there exists a
meromorphic function with zeros at the zj and poles at the wk (observing the
usual multiplicity conventions).

Extra exercise (i) Show that we can find an A such that

|1 − E(z,m)| ≤ A|z|m+1

for |z| ≤ 1/2.
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(ii) If k is a positive integer and z1, z2, . . . is a sequence of non-zero
complex numbers with zn → ∞, then

F (z) = zk

∞∏

j=1

E(z/zj, j)

is a well defined analytic function with a zero of order k at 0, and zeros at
the zj (multiple zeros counted multiply) and no others.

Exercise 94 (It may be helpful to attack parts of this question non-rigorously
first and then tighten up the argument second.)

(i) If CN is the contour consisting of the square with vertices

±(N + 1/2) ± (N + 1/2)i

described anti-clockwise, show that there is a constant K such that

| cot πz| ≤ K

for all z ∈ CN and all integers N ≥ 1.
(ii) By integrating an appropriate function round the contour CN , or

otherwise, show that, if w /∈ Z,

n=N∑

n=−N

1

w − n
→ π cot πw.

(iii) Is it true that, if w /∈ Z,

n=N∑

n=−M

1

w − n
→ π cot πw,

as M,N → ∞? Give reasons.
(iv) Show that

P (z) = z

∞∏

n=1

(
1 − z2

n2

)

is a well defined analytic function and that there exists an analytic function
g such that

sin πz = eg(z)P (z).

(v) Find a simple expression for P ′(z)/P (z).
[Hint: If p(z) =

∏N
j=1(z − αj), what is p′(z)/p(z)?]

Find a related expression for d
dz

sin πz/ sin πz.
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(vi) Show that

sin πz = πz
∞∏

n=1

(
1 − z2

n2

)
.

(vii) Find a similar expression for cos πz. (These results are due to Eu-
ler.)

Exercise 95 (This makes use of some of the techniques of the previous ex-
ercise.) (i) Show that the infinite product

g(z) =
∞∏

n=1

ez/n
(
1 − z

n

)

exists and is analytic on the whole complex plane.
(ii) Show that

g′(z) = g(z)
∞∑

n=1

(
1

z − n
+

1

n

)
.

Explain why
∑∞

n=1(
1

z−n
+ 1

n
) is indeed a well defined analytic function on

C \ Z.
(iii) By using (ii), or otherwise, show that

g(z + 1) = −Azg(z) (∗)

for some constant A.
(iv) By considering a particular value of z, or otherwise, show that A is

real and positive and
N∑

n=1

1

n
− logN → logA

as N → ∞. Deduce the existence of Euler’s constant

γ = lim
N→∞

(
N∑

n=1

n−1 − logN

)

and rewrite (∗) as
g(z + 1) = −eγzg(z).

(v) Find a simple expression for zg(z)g(−z). Use (∗) to show that sin πz
is periodic.
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8 Fourier analysis on finite Abelian groups

One of Dirichlet’s main ideas is a clever extension of Fourier analysis from
its classical frame. Recall that classical Fourier analysis deals with formulae
like

f(t) =
∞∑

n=−∞

f̂(n)en(t)

where en(t) = exp(int). The clue to further extension lies in the following
observation.

Lemma 96 Consider the Abelian group T = R/(2πZ) and the subgroup S =
{z : |z| = 1} of (C \ {0},×). The continuous homomorphisms θ : T → S are
precisely the functions en : T → S given by en(t) = exp(int) with n ∈ Z.

Exercise 97 (i) Find (with proof) all the continuous homomorphisms

θ : (R,+) → (S,×).

What is the connection with Fourier transforms?
(ii) (Only for those who know Zorn’s lemma4.) Assuming Zorn’s lemma

show that any linearly independent set in a vector space can be extended to
a basis. If we consider R as a vector space over Q, show that there exists
a linear map T : R → R such that T (1) = 1, T (

√
2) = 0. Deduce the

existence of a function T : R → R such that T (x+ y) = T (x) + T (y) for all
x, y ∈ R which is not continuous (with respect to the usual metric). Show
that, if we accept Zorn’s lemma, there exist discontinuous homomorphisms
θ : (R,+) → (S,×).

This suggests the following definition.

Definition 98 If G is a finite Abelian group, we say that a homomorphism
χ : G→ S is a character. We write Ĝ for the collection of such characters.

In this section we shall accumulate a substantial amount of information about
Ĝ by a succession of small steps.

Lemma 99 Let G be a finite Abelian group.
(i) If x ∈ G has order m and χ ∈ Ĝ, then χ(x) is an mth root of unity.
(ii) Ĝ is a finite Abelian group under pointwise multiplication.

4And, particularly, those who only know Zorn’s lemma.
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To go further we consider, for each finite Abelian group G, the collection
C(G) of functions f : G→ C. If G has order |G|, then C(G) is a vector space
of dimension |G| which can be made into a complex inner product space by
means of the inner product

〈f, g〉 =
1

|G|
∑

x∈G

f(x)g(x)∗.

Exercise 100 Verify the statements just made.

Lemma 101 Let G be a finite Abelian group. The elements of Ĝ form an
orthonormal system in C(G).

Does Ĝ form an orthonormal basis of C(G)? The next lemma tells us how
we may hope to resolve this question.

Lemma 102 Let G be a finite Abelian group. The elements of Ĝ form an
orthonormal basis if and only if, given an element x ∈ G which is not the
identity, we can find a character χ with χ(x) 6= 1.

The way forward is now clear.

Lemma 103 Suppose that H is a subgroup of a finite Abelian group G and
that χ ∈ Ĥ. If K is a subgroup of G generated by H and an element a ∈ G,
then we can find a χ̃ ∈ K̂ such that χ̃|H = χ.

Lemma 104 Let G be a finite Abelian group and x an element of G of order
m. Then we can find a χ ∈ Ĝ with χ(x) = exp 2πi/m.

Theorem 105 If G is a finite Abelian group, then Ĝ has the same number
of elements as G and they form an orthonormal basis for C(G).

Lemma 106 If G is a finite Abelian group and f ∈ C(G), then

f =
∑

χ∈Ĝ

f̂(χ)χ

where f̂(χ) = 〈f, χ〉.

Exercise 107 Suppose that G is a finite Abelian group. Show that if we
define θx : Ĝ → C by θx(χ) = χ(x) for χ ∈ Ĝ, x ∈ G, then the map

Θ : G→ ˆ̂
G given by Θ(x) = θx is an isomorphism.

If we now identify x with θx (and, so, G with
ˆ̂
G) show that

ˆ̂
f(x) = |G|−1f(x−1)

for all f ∈ C(G) and x ∈ G.
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We have now done all that that is required to understand Dirichlet’s
motivation. However, it seems worthwhile to make a slight detour to put
‘computational’ bones on this section by exhibiting the structure of G and
Ĝ.

Lemma 108 Let (G,×) be an Abelian group.
(i) Suppose that x, y ∈ G have order r and s with r and s coprime. Then

xy has order rs.
(ii) If G contains elements of order n and m, then G contains an element

of order the least common multiple of n and m.

Lemma 109 Let (G,×) be a finite Abelian group. Then there exists an
integer N and an element k such that k has order N and, whenever x ∈ G,
we have xN = e.

Exercise 110 Let p be a prime. Use Lemma 109 together with the fact that a
polynomial of degree k can have at most k roots to show that the multiplicative
group (Zp \ {0},×) is cyclic.

Lemma 111 With the hypotheses and notation of Lemma 109, we can write
G = K × H where K is the cyclic group generated by x and H is another
subgroup of K.

As usual we write Cn for the cyclic group of order n.

Theorem 112 If G is a finite Abelian group, we can find n(1), n(2), . . .n(m)
with n(j + 1) dividing n(j) such that G is isomorphic to

Cn(1) × Cn(2) × . . . Cn(m).

Lemma 113 If we have two sequences n(1), n(2), . . .n(m) with n(j + 1)
dividing n(j) and n′(1), n′(2), . . .n′(m′) with n′(j + 1) dividing n′(j), then

Cn(1) × Cn(2) × . . . Cn(m) is isomorphic to Cn′(1) × Cn′(2) × . . . Cn′(m′)

if and only if m = m′ and n(j) = n′(j) for each 1 ≤ j ≤ m.

It is easy to identify Ĝ.

Lemma 114 Suppose that

G = Cn(1) × Cn(2) × . . . Cn(m)

with Cn(j) a cyclic group of order n(j) generated by xj. Then the elements

of Ĝ have the form χ
ω

r(1)
n(1)

,ω
r(2)
n(2)

, . . .
ω

r(m)
n(m)

with ωn(j) = exp
(
2πi/n(j)

)
and

χ
ω

r(1)
n(1)

,ω
r(2)
n(2)

, . . . ω
r(m)
n(m)(x

s(1)
1 x

s(2)
2 . . . xs(m)

m ) = ω
r(1)s(1)
n(1) ω

r(2)s(2)
n(2) . . . ω

r(m)s(m)
n(m) .
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My readers will see that Ĝ is isomorphic to G, but the more sophisticated
algebraists will also see that this is not a natural isomorphism (whereasG and
ˆ̂
G are naturally isomorphic). Fortunately such matters are of no importance
for the present course.

9 The Euler-Dirichlet formula

Dirichlet was interested in a particular group. If d is a positive integer con-
sider Z/(d) the set of equivalence classes

[m] = {r : r ≡ m mod d}

under the usual multiplication modulo d. We set

Gd = {[m] : m and d coprime}

and write φ(d) for the order of Gd (φ is called Euler’s totient function).

Lemma 115 The set Gd forms a finite Abelian group under standard mul-
tiplication.

The results of the previous section show that, if [a] ∈ Gd and we define
δa : Gd → C by

δa([a]) = 1

δa([m]) = 0 if [m] 6= [a],

then
δa = φ(d)−1

∑

χ∈Gd

χ([a])∗χ.

We now take up the proof of Dirichlet’s theorem in earnest. We shall
operate under the standing assumption that a and d are positive coprime
integers and our object is to show that the sequence

a, a+ d, a+ 2d, . . . , a+ nd, . . .

contains infinitely many primes. Following Euler’s proof that there exist
infinitely many primes we shall seek to prove this by showing that

∑

p prime
p=a+nd for some n

1

p
= ∞.
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Henceforward, at least in the number theory part of the course p will be a
prime,

∑
p will mean the sum over all primes and so on.

In order to simplify our notation it will also be convenient to modify the
definition of a character. From now on, we say that χ is a character if χ is a
map from N to C such that there exists a character (in the old sense) χ̃ ∈ Ĝd

with

χ(m) = χ̃([m]) if m and d are coprime

χ(m) = 0 otherwise.

We write
∑

χ to mean the sum over all characters and take χ0 to be the
character with χ0([m]) = 1 whenever m and d are coprime.

Lemma 116 (i) If χ is a character, then χ(m1m2) = χ(m1)χ(m2) for all
m1,m2 ≥ 0.

(ii) If χ 6= χ0, then
∑k+d

m=k+1 χ(m) = 0.
(iii) If δa(m) = φ(d)−1

∑
χ χ(a)∗χ(m) then δa(m) = 1 when m = a + nd

and δa(m) = 0 otherwise.

(iv)
∑

p=a+nd

p−s = φ(d)−1
∑

χ

χ(a)∗
∑

p

χ(p)p−s.

Lemma 117 The sum
∑

p=a+nd p
−1 diverges if

∑
p χ(p)p−s remains bounded

as s tends to 1 through real values of s > 1 for all χ 6= χ0.

We now prove a new version of Euler’s formula.

Theorem 118 (Euler-Dirichlet formula) With the notation of this sec-
tion,

∏

p

(1 − χ(p)p−s)−1 =
∞∑

n=1

χ(n)n−s,

both sides being absolutely convergent for ℜs > 1.

To link
∏

p(1−χ(p)p−s)−1 with
∑

p χ(p)p−s we use logarithms. (If you go back
to our discussion of infinite products, you will see that this is not unexpected.)
However, we must, as usual, be careful when choosing our logarithm function.
For the rest of the argument, log will be the function on

C \ {x : x real and x ≤ 0}

defined by log(reiθ) = log r + iθ [r > 0, −π < θ < π].
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Lemma 119 (i) If |z| ≤ 1/2 , then | log(1 − z) + z| ≤ |z|2.
(ii) If ǫ > 0, then

∑
p log(1−χ(p)p−s) and

∑
p χ(p)p−s converge uniformly

in ℜs ≥ 1 + ǫ, whilst

∣∣∣∣∣
∑

p

log(1 − χ(p)p−s) +
∑

p

χ(p)p−s

∣∣∣∣∣ ≤
∞∑

n=1

n−2.

We have thus shown that if
∑

p log(1 − χ(p)p−s) remains bounded as
s → 1+ , then

∑
p χ(p)p−s does. Unfortunately it is not possible to equate∑

p log(1 − χ(p)p−s) with log(
∏

p(1 − χ(p)p−s)−1).
However, we can refresh our spirits by proving Dirichlet’s theorem in some

special cases.

Example 120 There are an infinity of primes of the form 3n+ 1 and 3n+
2.equate

∑
p log(1 − χ(p)p−s) with log(

∏
p(1 − χ(p)p−s)−1).

Exercise 121 Use the same techniques to show that there are an infinity of
primes of the form 4n+ 1 and 4n+ 3.

10 Analytic continuation of the Dirichlet func-

tions

Dirichlet completed his argument withouequate
∑

p log(1 − χ(p)p−s) with

log(
∏

p(1−χ(p)p−s)−1).t having to consider
∑∞

n=1 χ(n)n−s for anything other
than real s with s > 1. However, as we have already seen,

∑∞
n=1 χ(n)n−s =

L(s, χ) is defined and well behaved in ℜs > 1. Riemann showed that it is
advantageous to extend the definition of analytic functions like L(s, χ) to
larger domains.

There are many ways of obtaining such analytic continuations. Here is
one.

Lemma 122 If f : R → C is bounded on R and locally integrable5, then

F (s) =

∫ ∞

1

f(x)x−s dx

is a well defined analytic function on the set of s with ℜs > 1.equate
∑

p log(1−
χ(p)p−s) with log(

∏
p(1 − χ(p)p−s)−1).

5Riemann or Lebesgue at the reader’s choice
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Lemma 123 (i) If χ 6= χ0 and S(x) =
∑

1≤m≤x χ(m), then S : R → C is
bounded and locally integrable. We have

N∑

n=1

χ(n)n−s → s

∫ ∞

1

S(x)x−s−1 dx

as N → ∞ for all s with ℜs > 1.
(ii) If S0(x) = 0 for x ≤ 0 and S0(x) =

∑
1≤m≤x χ0(m), then, writing

T0(x) = S0(x) − d−1φ(d)x,

we see that T0 : R → R is bounded and locally integrable. We have

N∑

n=1

χ(n)n−s → s

∫ ∞

1

T0(x)x
−s−1 dx+

φ(d)s

d(s− 1)

as N → ∞ for all s with ℜs > 1.

Lemma 124 (i) If χ 6= χ0, there exists an function L(s, χ) analytic on
{s ∈ C : ℜs > 0} such that

∑∞
n=1 χ(n)n−s converges to L(s, χ) on {s ∈ C :

ℜs > 1}.
(ii) There exists a meromorphic function L(s, χ0) analytic on {s ∈ C :

ℜs > 0} except for a simple pole, residue φ(d)/d at 1 such that
∑∞

n=1 χ0(n)n−s

converges to L(s, χ) for ℜs > 1.

Exercise 125 (i) Explain carefully why L( , χ0) is defined uniquely by the
conditions given.

(ii) Show that
∑∞

n=1 χ0(n)n−s diverges for s real and 1 ≥ s > 0.

We now take up from where we left off at the end of the previous section.

Lemma 126 (i) If ℜs > 1, then exp(−∑p log(1 − χ(p)p−s) = L(s, χ).
(ii) If ℜs > 1, then L(s, χ) 6= 0.
(iii) There exists a function LogL(s, χ) analytic on {s : ℜs > 1} such

that exp(LogL(s, χ)) = L(s, χ) for all s with ℜs > 1.
(iv) If χ 6= χ0 and L(1, χ) 6= 0, then LogL(s, χ)) tends to a finite limit

as s→ 1 through real values with s > 1.
(v) There is a fixed integer Mχ such that

LogL(s, χ) +
∑

p

log(1 − χ(p)p−s) = 2πMχ

for all ℜs > 1.
(vi) If χ 6= χ0 and L(1, χ) 6= 0, then

∑
p χ(p)p−s remains bounded as

s→ 1 through real values with s > 1.
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We mark our progress with a theorem.

Theorem 127 If L(1, χ) 6= 0 for all χ 6= χ0 then there are an infinity of
primes of the form a+ nd.

Since it is easy to find the characters χ in any given case and since it is
then easy to compute

∑N
n=1 χ(n)n−1 and to estimate the error

∑∞
n=N+1 χ(n)n−1

to sufficient accuracy to prove that L(1, χ) =
∑∞

n=1 χ(n)n−1 6= 0, it now be-
comes possible to prove Dirichlet’s theorem for any particular coprime a and
d.

Exercise 128 Choose a and d and carry out the program just suggested.

However, we still need to show that the theorem holds in all cases.

11 L(1, χ) is not zero

Our first steps are easy.

Lemma 129 (i) If s is real and s > 1, then
∏

χ

L(s, χ) = exp(−
∑

p

∑

χ

log(1 − χ(p)p−s).

(ii) If s is real and s > 1, then
∏

χ L(s, χ) is real and
∏

χ L(s, χ) ≥ 1.
(iii)

∏
χ L(s, χ) 9 0 as s→ 1.

Lemma 130 (i) There can be at most one character χ with L(1, χ) = 0.
(ii) If a character χ takes non-real values then L(1, χ) 6= 0.

We have thus reduced the proof of Dirichlet’s theorem to showing that
if χ is a character with χ 6= χ0 which only takes the values 1, −1 and 0,
then L(1, χ) 6= 0. There are several approaches to this problem, but none
are short and transparent. We use a proof of de la Vallée Poussin which is
quite short, but not, I think, transparent.

Lemma 131 Suppose that the character χ 6= χ0 and only takes the values
1, −1 and 0. Set

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
.

(i) The function ψ is well defined and meromorphic for ℜs > 1
2
. It is

analytic except, possibly, for a simple pole at 1.
(ii) If L(1, χ) = 0, then 1 is a removable singularity and ψ is analytic

everywhere on {s : ℜs > 1
2
}.

(iii) We have ψ(s) → 0 as s→ 1
2

through real values of s with s ≥ 1
2
.
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Lemma 132 We adopt the hypotheses and notation of Lemma 131. If
ℜs > 1, then the following is true.

(i) ψ(s) =
∏

χ(p)=1

1 + p−s

1 − p−s
.

(ii) We can find subsets Q1 and Q2 of Z such that

∏

χ(p)=1

(1 + p−s) =
∑

n∈Q1

n−s

∏

χ(p)=1

(1 − p−s)−1 =
∑

n∈Q2

n−s.

(iii) There is a sequence of real positive numbers an with a1 = 1 such that

ψ(s) =
∞∑

n=1

ann
−s.

Lemma 133 We adopt the hypotheses and notation of Lemmas 131 and 132.
(i) If ℜs > 1, then

ψ(m)(s) =
∞∑

n=1

an(− log n)mn−s.

(ii) If ℜs > 1, then (−1)mψ(m)(s) > 0.
(iii) If ψ has no pole at 1, then, if ℜs0 > 1 and |s− s0| < ℜs0 − 1/2, we

have

ψ(s) =
∞∑

m=0

ψ(m)(s0)

m!
(s− s0)

m.

(iv) If ψ has no pole at 1, then ψ(s) 9 0 as s→ 1
2

through real values of
s with s ≥ 1

2
.

We have proved the result we set out to obtain.

Lemma 134 If a character χ 6= χ0 only takes real values then L(1, χ) 6= 0.

Theorem 135 If χ 6= χ0, then L(1, χ) 6= 0.

We have thus proved Theorem 78. If a and d are strictly positive coprime
integers, then there are infinitely many primes of the form a + nd with n a
positive integer.
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12 Chebychev and the distribution of primes

On the strength of numerical evidence, Gauss was led to conjecture that the
number π(n) of primes less than n was approximately n/ log n. The theorem
which confirms this conjecture is known as the prime number theorem. The
first real progress in this direction was due to Chebychev6. We give his
results, not out of historical piety, but because we shall make use of them
in our proof of the prime number theorem. (Note the obvious conventions
that n is an integer with n ≥ 1,

∏
n<p≤2n means the product over all primes

p with n < p ≤ 2n and so on. It is sometimes useful to exclude small values
of n.)

Lemma 136 (i) 2n <

(
2n

n

)
< 22n.

(ii)

(
2n

n

)
divides

∏

p<2n

p[(log 2n)/(log p)] and
∏

n<p≤2n

p divides

(
2n

n

)
.

(iii) We have π(2n) > (log 2)n/(log 2n).
(iv) There exists a constant A > 0 such that π(n) ≥ An(log n)−1.
(v) There exists a constant B′ such that

∑
p≤n log p ≤ B′n.

(vi)There exists a constant B such that π(n) ≤ Bn(log n)−1.

We restate the main conclusions of Lemma 136.

Theorem 137 (Chebychev) There exist constants A and B with 0 < A ≤
B such that

An(log n)−1 ≤ π(n) ≤ Bn(log n)−1.

Riemann’s approach to the prime number theorem involves considering
θ(n) =

∑
p≤n log p rather than π(n).

Lemma 138 Let Q be a set of positive integers and write α(n) =
∑

q∈Q,q≤n 1
and β(n) =

∑
q∈Q,q≤n log q.

(i) There exist constants A and B with 0 < A ≤ B such that

An(log n)−1 ≤ α(n) ≤ Bn(log n)−1.

if and only if there exist constants A′ and B′ with 0 < A ≤ B such that

A′n ≤ β(n) ≤ B′n.

(ii) We have n−1(log n)α(n) → 1 as n → ∞ if and only if n−1β(n) → 1
as n→ ∞.

Lemma 139 If n−1θ(n) → 1 as n → ∞, then n−1(log n)π(n) → 1 as n →
∞.

6His preferred transliteration seems to have been Tchebycheff, but he has been over-
ruled.
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13 The prime number theorem

We start by recalling various facts about the Laplace transform.

Definition 140 If a is a real number, let us write Ea for the collection of
piecewise continuous functions F : R → C such that F (t) = 0 for all t < 0
and F (t)e−at → 0 as t → ∞. If F ∈ Ea, we define the Laplace transform of
F by

(LF )(z) =

∫ ∞

−∞

F (t) exp(−zt) dt

for ℜz > a.

Lemma 141 If F ∈ Ea, then (LF )(z) is well defined.

Lemma 142 (i) If F ∈ Ea, then (LF )(z) analytic on {z ∈ C : ℜz > a}.
(ii) We define the Heaviside function H by writing H(t) = 0 for t < 0

and H(t) = 1 for t ≥ 0. If a ∈ R and b ≥ 0 set Ha,b(t) = H(t− b)eat. Then
Ha,b ∈ Ea and LHa,b(z) can be extended to a meromorphic function on C with
a simple pole at a.

Exercise 143 (Uses Exercise 77.) Let F,G ∈ Ea for some a ∈ R.
(i) Suppose that there exists a b > a such that (LF )(z) = (LG)(z) for all

z with ℜz = b. Show that F = G.
(ii) Suppose that there exist distinct zn ∈ C with ℜzn > a [n ≥ 0] such

that zn → z0 and (LF )(zn) = (LG)(zn) [n ≥ 0]. Show that F = G.

Engineers are convinced that the converse to Lemma 142 (i) holds in the
sense that if F ∈ Ea has a Laplace transform f which can be extended to
a function f̃ analytic on {z ∈ C : ℜz > b} [a, b real, a ≥ b], then F ∈ Eb.
Unfortunately, this is not true, but it represents a good heuristic principle to
bear in mind in what follows. Number theorists use the Mellin transform

MF (z) =

∫ ∞

0

F (t)tz−1 dt

in preference to the Laplace transform but the two transforms are simply
related.

Exercise 144 Give the relation explicitly.

Riemann considered the two functions

Φ(s) =
∑

p

p−s log p
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and the Riemann zeta function

ζ(s) =
∞∑

n=1

n−s.

Both of these functions are defined for ℜs > 1 but Riemann saw that they
could be extended to analytic functions over a larger domain.

The next lemma is essentially a repeat of Lemmas 123 (ii) and 124 (ii).

Lemma 145 (i) Let S0(x) = 0 for x ≤ 0 and S0(x) =
∑

1≤m≤x 1. If

T0(x) = S0(x) − x,

then T0 is bounded and locally integrable. We have

N∑

n=1

n−s → s

∫ ∞

1

T0(x)x
−s−1 dx+

s

s− 1

as N → ∞ for all s with ℜs > 1.
(ii) There exists a meromorphic function ζ analytic on {s ∈ C : ℜs > 0}

except for a simple pole, residue 1 at 1 such that
∑∞

n=1 n
−s converges to ζ(s)

for ℜs > 1.
(iii) If ℜs > 1, then

∑

p≤N

log p

ps
→ s

∫ ∞

1

θ(x)x−s−1 dx

as N → ∞.

The use of s rather than z goes back to Riemann. Riemann showed that ζ
can be extended to a meromorphic function over C, but we shall not need
this.

How does this help us study Φ?

Lemma 146 (i) We have
∏

p<N(1−p−s)−1 → ζ(s) uniformly for ℜs > 1+δ
whenever δ > 0.

(ii) We have
ζ ′(s)

ζ(s)
= −

∑

p

log p

ps − 1

for all ℜs > 1.
(iii) We have

Φ(s) = −ζ
′(s)

ζ(s)
−
∑

p

log p

(ps − 1)ps
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for all ℜs > 1.
(iv) The function Φ can be analytically extended to a meromorphic func-

tion on {s : ℜs > 1
2
}. It has a simple pole at 1 with residue 1 and simple

poles at the zeros of ζ but nowhere else.

The next exercise is long and will not be used later but is, I think, in-
structive.

Exercise 147 (i) Show by grouping in pairs that
∑∞

n=1(−1)n−1n−s converges
to an analytic function g(s) in the region {s : ℜs > 0}.

(ii) Find A and B such that g(s) = Aζ(s)+B2−sζ(s) for all ℜs > 1. Why
does this give another proof that ζ can be extended to an analytic function on
{s : ℜs > 0}?

(iii) Show that g(1/2) 6= 0 and deduce that ζ(1/2) 6= 0.
(iv) By imitating the arguments of Lemma 146, show that we we can find

an analytic function G defined on {s : ℜs > 1/3} such that

Φ(s) = −ζ
′(s)

ζ(s)
− Φ(2s) −G(s).

Deduce that Φ can be extended to a meromorphic function on {s : ℜs > 1/3}.
(v) Show, using (iii), that Φ has a pole at 1/2.
(vi) Show that the assumption that |∑p<N log p−N | ≤ AN1/2−ǫ for some

ǫ > 0 and A > 0 and all large enough N leads to the conclusion that Φ can be
analytically extended from {s : ℜs > 1} to an everywhere analytic function
on {s : ℜs > 1/2 − ǫ}.

(vii) Deduce that if ǫ > 0 and A > 0

|
∑

p<N

log p−N | ≥ AN1/2−ǫ for infinitely many values of N .

It is well known that Riemann conjectured that ζ has no zeros in {s :
ℜs > 1/2} and that his conjecture is the most famous open problem in
mathematics. The best we can do is to follow Hadamard and de la Vallée
Poussin and show that ζ has no zero on {s : ℜs = 1}. Our proof makes use
of the slightly unconventional convention that if h and g are analytic in a
neighbourhood of w, g(w) 6= 0 and h(z) = (z−w)kg(z), then h has a zero of
order k at w. (The mild unconventionality arises when k = 0.)

Lemma 148 Suppose that ζ has a zero of order µ at 1 + iα and a zero of
order ν at 1 + 2iα with α real and α > 0. Then the following results hold.

(i) ζ has a zero of order µ at 1 − iα and a zero of order ν at 1 − 2iα.
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(ii) As ǫ→ 0 through real positive values of ǫ

ǫΦ(1 + ǫ± iα) → −µ
ǫΦ(1 + ǫ± 2iα) → −ν

ǫΦ(1 + ǫ) → 1.

(iii) If s = 1 + ǫ with ǫ real and positive, then

0 ≤
∑

p

p−s log p(e(iα log p)/2 + e−(iα log p)/2)4

= Φ(s+ 2iα) + Φ(s− 2iα) + 4(Φ(s+ iα) + Φ(s− iα)) + 6Φ(s).

(iv) We have 0 ≤ −2ν − 8µ+ 6.

Theorem 149 If ℜs = 1, then ζ(s) 6= 0.

We note the following trivial consequence.

Lemma 150 If we write

T (s) =
ζ ′(s)

ζ(s)
− (s− 1)−1,

then given any R > 0 we can find a δ(R) such that T has no poles in

{z : ℜz ≥ 1 − δ(R), |ℑz| ≤ R}.

We shall show that the results we have obtained on the behaviour of ζ
suffice to show that ∫ X

1

θ(x) − x

x2
dx

tends to a finite limit asX → ∞. The next lemma shows that this is sufficient
to give the prime number theorem.

Lemma 151 Suppose that β : [1,∞) → R is an increasing (so integrable)
function.

(i) If λ > 1, y > 1 and y−1β(y) > λ, then
∫ λy

y

β(x) − x

x2
dx ≥ A(λ)

where A(λ) is a strictly positive number depending only on λ.
(ii) If ∫ X

1

β(x) − x

x2
dx

tends to limit as X → ∞, then x−1β(x) → 1 as x→ ∞.
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We need a couple of further preliminaries. First we note a simple conse-
quence of the Chebychev estimates (Theorem 137).

Lemma 152 There exists a constant 1 > K > 0 such that

|θ(x) − x|
x

≤ K

for all x sufficiently large.

Our second step is to translate our results into the language of Laplace trans-
forms. (It is just a matter of taste whether to work with Laplace transforms
or Mellin transforms.)

Lemma 153 Let f(t) = θ(et)e−t−1 for t ≥ 0 and f(t) = 0 otherwise. Then

Lf(z) =

∫ ∞

−∞

f(t)e−tz dt

is well defined and

Lf(z) =
Φ(z + 1)

z + 1
− 1

z

for all ℜz > 0.
The statement

∫∞

1
(θ(x) − x)/x2 dx convergent is equivalent to the state-

ment that
∫∞

−∞
f(t) dt converges.

We have reduced the proof of the prime number theorem to the proof of
the following lemma.

Lemma 154 Suppose Ω is an open set with Ω ⊇ {z : ℜz ≥ 0}, F : Ω → C is
an analytic function and f : [0,∞] → R is bounded locally integrable function
such that

F (z) = Lf(z) =

∫ ∞

0

f(t)e−tz dt

for ℜz > 0. Then
∫∞

0
f(t) dt converges.

This lemma and its use to prove the prime number theorem are due to
D. Newman. (A version will be found in [1].)

14 The Fourier transform and Heisenberg’s

inequality

In this section we return to the Fourier transform on R. We follow a slightly
different path to that mapped out in Section 6. I shall state results using
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Lebesgue measure but students using Riemann integration will find appro-
priate modifications as exercises.

We pay particular attention to the Gaussian (or heat, or error) kernel
E(x) = (2π)−1/2 exp(−x2/2).

Lemma 155 Ê(λ) = (2π)1/2E(λ).

Exercise 156 If I prove Lemma 155 I shall do so by setting up a differential
equation. Obtain Lemma 155 by complex variable techniques.

We use the following neat formula.

Lemma 157 If f, g ∈ L1(R) then the products f̂ × g, f × ĝ ∈ L1(R) and
∫ ∞

−∞

f̂(x)g(x) dx =

∫ ∞

infty

f(λ)ĝ(λ) dλ.

Exercise 158 (For those using Riemann integration. You will need to refer
back to the exercises in Section 6.) Suppose that f and g are continuous and
there exists a real constant A such that

|f(x)|, |g(x)| ≤ A(1 + x2)−1

for all x and
|f̂(λ)|, |ĝ(λ)| ≤ A(1 + λ2)−1

for all λ. Show that
∫ ∞

−∞

f̂(x)g(x) dx =

∫ ∞

−∞

f(λ)ĝ(λ) dλ.

Without going into detail, convince yourself that the hypothesis ‘f and g are
continuous’ can be replaced by ‘f and g are piecewise continuous’.

By taking f = Eh where Eh(x) = h−1E(h−1(x)) [h > 0] in Lemma 157
we obtain a nice pointwise inversion result.

Theorem 159 If f, f̂ ∈ L1 and f is continuous at t, then
ˆ̂
f(t) = 2πf(−t).

Exercise 160 (For those using Riemann integration.) Suppose that f is
piecewise continuous and there exists a real constant A such that

|f(x)| ≤ A(1 + x2)−1

for all x and
|f̂(λ)| ≤ A(1 + λ2)−1

for all λ. Show that if f is continuous at t, then
ˆ̂
f(t) = 2πf(−t).
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Exercise 161 Suppose that f satisfies the conditions of Theorem 159 (if you
use Lebesgue integration) or Exercise 160 (if you use Riemann integration).
If t is a point where f(t+) = limh→0+ f(t+ h) and f(t−) = limh→0+ f(t− h)
both exist, show that

ˆ̂
f(−t) = π(f(t+) + f(t−)).

Lemma 162 (Parseval’s equality) If f and f̂ are continuous and inte-

grable and
ˆ̂
f(t) = 2πf(−t) for all t then

∫

R

|f(t)|2 dt =
1

2π

∫

R

|f̂(λ)|2 dλ.

(A les ad hoc version of Parseval’s equality is given in Exercise 163 (v).)

Exercise 163 (This requires Lebesgue measure.) The present course is rather
old fashioned, not least in the way it thinks of Fourier transforms f̂ in terms
of its values f̂(λ) at points λ, rather than an object in its own right. Here is
one of several ways in which a more general view gives a more elegant theory.

(i) Let S be the set of infinitely differentiable functions f with

xnf (m)(x) → 0

as |x| → ∞ for all integers n,m ≥ 0. Show that, if f ∈ S, then f̂ ∈ S.
(ii) Let I[a,b](x) = 1 for x ∈ [a, b], I[a,b](x) = 0 otherwise. Show that, if

Eh is defined as above, then

‖I[a,b] − Eh ∗ I[a,b]‖2 → 0

as h→ 0+. Deduce, or prove otherwise, that S is L2 norm dense in L2.
(iii) By taking g = f̂ in Lemma 157 show that

‖f̂‖2
2 = 2π‖f‖2

2

for all f ∈ S.
(iii) Deduce that there is a unique continuous mapping F : L2 → L2 with

F(f) = f̂ for all f ∈ S. (Uniqueness is easy but you should take care proving
existence.)

(iv) Show that F : L2 → L2 is linear and that

‖F(f)‖2
2 = 2π‖f‖2

2

for all f ∈ L2.
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If we define J : L2 → L2 by (J f)(t) = f(−t) show that F2 = 2πJ .
(v) If we wish to work in L2, it makes sense to use a different normalising

factor and call G = (2π)−1/2F the Fourier transform. Show that G4 = I and
that G : L2 → L2 is a bijective linear isometry.

(vi) (Parseval’s equality) Show that, if we work in L2

∫

R

Gf(λ)(Gg)∗(λ) dλ =

∫

R

f(t)g(t)∗ dt.

We now come to one of the key facts about the Fourier transform (some
would say one of the key facts about the world we live in).

Theorem 164 (Heisenberg’s inequality) If f is reasonably well behaved,
then ∫∞

−∞
λ2|f̂(λ)|2 dλ

∫∞

−∞
|f̂(λ)|2 dλ

×
∫∞

−∞
x2|f(x)|2 dx∫∞

−∞
|f(x)|2 dx ≥ 1

4
.

If equality holds, then f(x) = A exp(−bx2) for some b > 0.

Exercise 165 Write down explicit conditions for Theorem 164.

The extension of Heisenberg’s inequality to all f ∈ L2 is given in Section 2.8
of the beautiful book [3] of Dym and McKean.

15 The Poisson formula

The following remarkable observation is called Poisson’s formula.

Theorem 166 Suppose that f : R → C is a continuous function such that∑∞
m=−∞ |f̂(m)| converges and

∑∞
n=−∞ |f(2πn + x)| converges uniformly on

[−π, π]. Then
∞∑

m=−∞

f̂(m) = 2π
∞∑

n=−∞

f(2πn).

It is possible to adjust the hypotheses on f in Poisson’s formula in various
ways, though some hypotheses there must be. We shall simply think of f as
‘well behaved’. The following rather simple lemma will suffice for our needs.

Lemma 167 If f : R → C is a twice continuously differentiable function
such that

∫∞

−∞
|f(x)| dx,

∫∞

−∞
|f ′(x)| dx and

∫∞

−∞
|f ′′(x)| dx converge whilst

f ′(x) → 0 and x2f(x) → 0 as |x| → ∞, then f satisfies the conditions of
Theorem 166.
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Exercise 168 (i) By applying Poisson’s formula to the function f defined
by f(x) = exp(−t|x|/2π), show that

2(1 − e−t)−1 =
∞∑

n=−∞

2t(t2 + 4π2n2)−1.

(ii) By expanding (t2+4πn2)−1 and (carefully) interchanging sums, deduce
that

2(1 − e−t)−1 = 1 + 2t−1 +
∞∑

m=0

cmt
m

where c2m = 0 and

c2m+1 = a2m+1

∞∑

n=1

n−2m

for some value of a2m+1 to be given explicitly.
(iii) Hence obtain Euler’s formula

∞∑

n=1

n−2m = (−1)m−122m−1b2m−1π
2m/(2m− 1)!

for m ≥ 1, where the bm are defined by the formula

(ey − 1)−1 = y−1 − 2−1 +
∞∑

n=1

bny
n/n!

(The bn are called Bernoulli numbers.)

Exercise 169 Suppose f satisfies the conditions of Lemma 167. Show that

K
∞∑

m=−∞

f̂(Km) = 2π
∞∑

n=−∞

f(2πK−1n)

for all K > 0. What is the corresponding result when K < 0?
By letting K → 0+, deduce that

ˆ̂
f(0) = 2πf(0).

(There is some interest in just seeing that this is so but it is more profitable
to give a rigorous proof.) Deduce in the usual way that

ˆ̂
f(t) = 2πf(−t)

for all t.
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Poisson’s formula has a particularly interesting consequence.

Lemma 170 If g : R → C is twice continuously differentiable and g(t) = 0
for |t| ≥ π, then g is completely determined by the values of ĝ(m) for integer
m.

Taking g = f̂ and remembering the inversion formula we obtain the following
result.

Pretheorem 171 If f : R → C is a well behaved function with f̂(λ) = 0 for
|λ| ≥ π, then f is determined by its values at integer points.

We call this a pretheorem because we have not specified what ‘well behaved’
should mean.

The simplest approach is via the sinc function

sinc(x) =
1

2π

∫ π

−π

exp(ixλ) dλ.

We state the most immediately useful properties of sinc.

Lemma 172 (i) sinc(0) = 1,
(ii) sinc(n) = 0 if n ∈ Z but n 6= 0.

(We note also that although, strictly speaking, ŝinc(λ) is not defined for

us, since
∫
| sinc(x)| dx = ∞, we are strongly tempted to say that ŝinc(λ) = 1

if |λ| < π and ŝinc(λ) = 0 if |λ| > π.)
We can, at once, prove that Pretheorem 171 is best possible.

Lemma 173 If ǫ > 0, then we can find an infinitely differentiable non-zero
f such that f̂(λ) = 0 for |λ| > π + ǫ, but f(n) = 0 for all n ∈ Z.

Exercise 174 In Lemma 173 show that we can take f ∈ S where S is the
class discussed in Exercise 163.

We can also show how to recover the function of Pretheorem 171 from its
values at integer points.

Theorem 175 Suppose f : R → C is a continuous function with
∫∞

−∞
|f(t)| dt <

∞. If f̂(λ) = 0 for |λ| ≥ π, then

N∑

n=−N

f(n) sinc(t− n) → f(t)

as uniformly as N → ∞.
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Thus Pretheorem 171 holds under very general conditions. We state it in a
lightly generalised form.
Theorem 176 (Shannon’s Theorem) Suppose that f : R → C is a con-
tinuous function with

∫∞

−∞
|f(t)| dt < ∞ and that K > 0. If f̂(λ) = 0 for

|λ| ≥ K, then f is determined by its values at points of the form nπK−1 with
n ∈ Z.

Theorem 176 belongs to the same circle of ideas as Heisenberg’s inequality.
It is the key to such devices as the CD.

16 References and further reading

If the elegance and variety of a subject is to be judged by the elegance and
variety of the (best) texts on that subject, Fourier Analysis must surely stand
high. On the pure side the books of Helson [4] and Katznelson [6] would be
my first choice for introductions and this course draws on both. If you wish
to think about applications, the obvious text is that of Dym and McKean [3].
The next two recommendations are irrelevant to Part III but, if you go on to
work in any field involving classical analysis, Zygmund’s treatise [10] is a must
and, if you would like a first glimpse at wavelets, (unmentioned in this course)
Babarah Hubbard’s popularisation The World According to Wavelets [5] is
splendid light reading.

There is an excellent treatment of Dirichlet’s theorem and much more
in Davenport’s Multiplicative Number Theory [2]. [The changes between the
first and second editions are substantial but do not affect that part which
deals with material in this course.] If you wish to know mThore about the
Riemann zeta-function you can start with [9].

In preparing this course I have also used [7] and [8] since I find the author
sympathetic.
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