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Small print This is just a first draft of the first part of the course. I suspect these notes
will cover the first 16 hours but I will not be unduly surprised if it takes the entire course
to cover the material. The content of the course will be what I say, not what these notes
say. Experience shows that skeleton notes (at least when I write them) are very error
prone so use these notes with care. I should very much appreciate being told of any
corrections or possible improvements and might even part with a small reward to the first
finder of particular errors.

This course definitely requires a first course in complex variable and enough analysis

to be happy with terms like norm, complete metric space and compact. I am happy to

give classes on any topics that people request. At at least one point, the course requires

measure theory, but you need only quote the required results in examination.
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1 Non-existence of functions of several vari-

ables

Theorem 1. Let λ be irrational We can find increasing continuous functions
φj : [0, 1] → R [1 ≤ j ≤ 5] with the following property. Given any continuous
function f : [0, 1]2 → R we can find a function g : R → R such that

f(x, y) =
5
∑

j=1

g(φj(x) + λφj(y)).

The main point of Theorem 1 may be expressed as follows.

Theorem 2. Any continuous function of two variables can be written in
terms of continuous functions of one variable and addition.

That is, there are no true functions of two variables!
For the moment we merely observe that the result is due in successively

more exact forms to Kolmogorov, Arnol’d and a succession of mathematicians
ending with Kahane whose proof we use here. It is, of course, much easier
to prove a specific result like Theorem 1 than one like Theorem 2.

Our first step is to observe that Theorem 1 follows from the apparently
simpler result that follows.

Lemma 3. Let λ be irrational. We can find increasing continuous functions
φj : [0, 1] → R [1 ≤ j ≤ 5] with the following property. Given any continuous
function F : [0, 1]2 → R we can find a function G : R → R such that
‖G‖∞ ≤ ‖F‖∞ and

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

F (x, y) −
5
∑

j=1

G(φj(x) + λφj(y))

∣

∣

∣

∣

∣

≤
999

1000
‖F‖∞.

(The choice of the constant 999/1000 is, of course, pretty arbitrary.)
Next we make the following observation.

Lemma 4. We can find a sequence of functions fn : [0, 1]2 → R which are
uniformly dense in C([0, 1])2.

2



This enables us to obtain Lemma 3 from a much more specific result.

Lemma 5. Let λ be irrational and let the fn be as in Lemma 4. We can find
increasing continuous functions φj : [0, 1] → R [1 ≤ j ≤ 5] with the following
property. We can find functions gn : R → R such that ‖gn‖∞ ≤ ‖fn‖∞ and

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

fn(x, y) −
5
∑

j=1

gn(φj(x) + λφj(y))

∣

∣

∣

∣

∣

≤
998

1000
‖fn‖∞.

One of Kahane’s contributions is the observation that the proof Theo-
rem 5 is made easier by the use of Baire category. Although most of the
audience is familiar with Baire’s category theorem, we shall reprove it here.

Theorem 6. [Baire’s category theorem] If (X, d) is a complete metric
space then X can not be written as the union of a countable collection of
closed sets with empty interior.

One way of thinking of a closed set E with empty interior is the following.
The property of belonging to E is unstable since arbitrarily small changes
take one outside E but the the property of not belonging to E is stable since,
if we are at a point outside E all sufficiently small changes keep us outside
E.

We shall prove a slightly stronger version of Baire’s theorem.

Theorem 7. Let (X, d) be a complete metric space. If E1, E2, . . . are closed
sets with empty interiors then X \

⋃∞
j=1 Ej is dense in X.

Exercise 8. (If you are happy with general topology.) Show that a result
along the same lines holds true for compact Hausdorff spaces.

For historical reasons Baire’s category theorem is associated with some
rather peculiar nomenclature.

Definition 9. Let (X, d) be a metric space. We say that a a subset A of X
is of the first category if it is a subset of the union of a countable collection
of closed sets with empty interior1 We say that quasi-all points of X belong
to the complement X \ A of X.

The following observations are trivial but useful.

1This usage is not universal. Some authors use the older definition which says that a
subset A of X is of the first category if it is the union of a countable collection of closed
sets with empty interior.However, so far as I know, all authors who use ‘quasi-all’ use it
in he same way.
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Lemma 10. (i) The countable union of first category sets is itself of first
category.

(ii) If (X, d) is a complete metric space, then Baire’s theorem asserts that
X is not of first category.

Since Lemma 4 only involve a countable set of conditions we can use a
Baire category argument. provided that we can find the correct metric space.

Lemma 11. The space Y of continuous functions φ : [0, 1] → R5 with norm

‖φ‖∞ = sup
t∈[0,1]

‖φ(t)‖

is complete. The subset X of Y consisting of those φ such that each φj is
increasing is a closed subset of Y . Thus if d is the metric on X obtained by
restricting the metric on Y derived from ‖ ‖∞ we have (X, d) complete.

Exercise 12. Prove Lemma 11

Lemma 13. Let f : [0, 1]2 → R be continuous and let λ be irrational. Con-
sider the set E of φ ∈ X such that there exists a g : R → R such that
‖g‖∞ ≤ ‖f‖∞

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

f(x, y) −
5
∑

j=1

g(φj(x) + λφj(y))

∣

∣

∣

∣

∣

<
998

1000
‖f‖∞.

Then X \ E is a closed set with dense complement in (X, d).

(Notice that it is important to take ‘<’ rather than ‘≤’ in the displayed
formula of Lemma 13.) Lemma 13 is the heart of the proof and once it is
proved we can easily retrace our steps and obtain Theorem 1.

By using appropriate notions of information Vistuškin2 was able to show
that we can not replace continuous by continuously differentiable in Theo-
rem 2. Thus Theorem 1 is an ‘exotic’ rather than a ‘central’ result. The next
two sections are devoted to the proof of Vistuškin’s simplest result.

We conclude the section with some exercises intended to help the reader
understand the proof of Theorem 1.

Exercise 14. Let (X, d) be as in Exercise 11. Show that quasi-all φ ∈ X
have the property that φj is strictly increasing (that is to say φj(s) < φj(t)
for 0 ≤ s < t ≤ 1) for each 1 ≤ j ≤ 5. Why does this immediately tell us
that we can replace the word ‘increasing’ by the words ‘strictly increasing’ in
Theorem 1.

2For those who wish to dispense with accents Vitushkin.
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Exercise 15. We say that real numbers λ1, λ2, . . . , λn are independent over
Q if the equation

n
∑

j=1

qjλj = 0

has no solution with qj ∈ Q [1 ≤ j ≤ n] apart from the trivial solution with
all qj = 0.

By using the fact that the real numbers are uncountable, or otherwise,
show that, if λ1, λ2, . . . , λn are independent over Q we can find λn+1 such
that λ1, λ2, . . . , λn+1 are independent over Q. Deduce that we can find λ1,
λ2, . . . such that λ1, λ2, . . . , λn are independent over Q for all n.

Exercise 16. Prove that, if λ1, λ2, λ3. are independent over Q we can
find increasing continuous functions φj : [0, 1] → R [0 ≤ j ≤ 6], with the
following property. Given any continuous function f : [0, 1]3 → R we can
find a function g : R → R such that

f(x1, x2, x3) =
6
∑

j=0

g
(

λ1φj(x1) + λ2φj(x2) + λ3φ(x3)
)

.

[You may prefer to identify the only part of the proof which might fail and
concentrate on that.]

Exercise 17. Investigate to what extent the proof would be simplified if we
replaced Theorem 1 by the following slightly less demanding result.

Given any continuous function f : [0, 1]2 → R we can find continuous
functions φr : [0, 1] → R [0 ≤ r ≤ 9] and continuous functions gj : R → R

[0 ≤ j ≤ 4] such that

f(x, y) =
4
∑

j=0

gj

(

φ2j(x) + φ2j+1(y)
)

.

Exercise 18. Show that the result corresponding to Theorem 1 is false if
λ = 1 or λ = −1. Show that it is true for all λ 6= 1, −1.

2 Fourier series on the circle

We work on the circle T = R/2πZ (that is on the interval [0, 2π] with the
two ends 0 and 2π identified). If f : T → C is integrable3 we write

f̂(n) =
1

2π

∫

T

f(t) exp−int dt.

3That is to say Lebesgue integrable or Riemann integrable according to the reader’s
background.
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We shall see (Lemma 28) that f is uniquely determined by its Fourier coef-
ficients f̂(n). Indeed it is clear that there is a ‘natural identification’ (where
natural is deliberately used in a vague sense)

f(t) ∼
∞
∑

r=−∞

f̂(r) exp irt.

However, we shall also see that, even when f is continuous,
∑∞

r=−∞ f̂(r) exp irt
may fail to converge at some points t.

Fejér discovered that, although

Sn(f, t) =
n
∑

r=−n

f̂(r) exp irt

may behave badly as n → ∞, the average

σn(f, t) = (n + 1)−1

n
∑

m=0

Sm(f, t) =
n
∑

r=−n

n + 1 − |r|

n + 1
f̂(r) exp irt

behaves much better. (We call σn(f, t) the Fejér sum. We also write Sn(f, t) =
Sn(f)(t) and σn(f, t) = σn(f)(t).)

Exercise 19. Let a1, a2, . . . be a sequence of complex numbers.
(i) Show that, if an → a, then

a1 + a2 + · · · + an

n
→ a

as n → ∞.
(ii) By taking an appropriate sequence of 0s and 1s or otherwise find a

sequence an such that an does not tend to a limit as n → ∞ but (a1 + a2 +
· · · + an)/n does.

(iii) By taking an appropriate sequence of 0s and 1s or otherwise find a
bounded sequence an such that (a1 + a2 + · · ·+ an)/n does not tend to a limit
as n → ∞.

In what follows we define

f ∗ g(t) =
1

2π

∫

T

f(t − s)g(s) ds

(for appropriate f and g).
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Lemma 20. If f is integrable we have

Sn(f) = f ∗ Dn

σn(f) = f ∗ Kn.

where

Dn(t) =
sin((n + 1

2
)t)

sin(1
2
t)

Kn(t) =
1

n + 1

(

sin(n+1
2

t)

sin(1
2
t)

)2

for t 6= 0.

The key differences between the Dirichlet kernel Dn and the Fejér kernel
Kn are illustrated by the next two lemmas.

Lemma 21. (i)
1

2π

∫

T

Dn(t) dt = 1.

(ii) If t 6= π, then Dn(t) does not tend to a limit as n → ∞.
(iii) There is a constant A > 0 such that

1

2π

∫

T

|Dn(t)| dt ≥ A log n

for n ≥ 1.

Lemma 22. (i)
1

2π

∫

T

Kn(t) dt = 1.

(ii) If η > 0, then Kn → 0 uniformly for |t| ≥ η as n → ∞.
(iii) Kn(t) ≥ 0 for all t.

The properties set out in Lemma 22 show why Fejér sums work so well.
Theorem 23. (i) If f : T → C is integrable and f is continuous at t, then

σn(f, t) → f(t)

as n → ∞.
(ii) If f : T → C is continuous, then

σn(f) → f

uniformly as n → ∞.
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Exercise 24. Suppose that Ln : T → R is continuous (if you know Lebesgue
theory you merely need integrable) and

(A)
1

2π

∫

T

Ln(t) dt = 1,

(B) If η > 0, then Ln → 0 uniformly for |t| ≥ η as n → ∞,
(C) Ln(t) ≥ 0 for all t.
(i) Show that, if f : T → C is integrable and f is continuous at t, then

Ln ∗ f(t) → f(t)

as n → ∞.
(ii) Show that, if f : T → C is continuous, then

Ln ∗ f → f

uniformly as n → ∞.
(iii) Show that condition (C) can be replaced by
(C’) There exists a constant A > 0 such that

1

2π

∫

T

|Ln(t)| dt ≤ A

in parts (i) and (ii). [You need only give the proof in one case and say that
the other is ‘similar’.]

Exercise 25. Suppose that Ln : T → R is continuous but that

sup
n

1

2π

∫

T

|Ln(t)| dt = ∞.

Show that we can find a sequence of continuous functions gn : T → R with
|gn(t)| ≤ 1 for all t, Ln ∗ gn(0) ≥ 0 for all n and

sup
n

Ln ∗ gn(0) = ∞.

(i) If you know some functional analysis deduce the existence of a contin-
uous function f such that

sup
n

Ln ∗ f(0) = ∞.

(ii) Even if you can obtain the result of (i) by slick functional analysis
there is some point in obtaining the result directly.

(a) Suppose that we have defined positive integers n(1) < n(2) < · · · <
n(k), a continuous function gk and a real number ǫ(k) with 2−k > ǫ(k) >
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0. Show that there is an ǫ(k + 1) with ǫ(k)/2 > ǫ(k + 1) > 0 such that
whenever g is a continuous function with ‖g − gk‖∞ < 2ǫ(k + 1) we have
|Ln(j) ∗ g(0) − Ln(j) ∗ gk(0)| ≤ 1. for 1 ≤ j ≤ k.

(b) Continuing with the notation of (a), show that there exists an n(k +
1) > n(k) and a continuous function gk+1 with ‖gk+1 − gk‖∞ ≤ ǫ(k + 1) such
that |Ln(k+1) ∗ gk+1(0)| > 2k+1.

(c) By carrying out the appropriate induction and considering the uniform
limit of gk obtain (i).

(iii) Show that there exists a continuous function f such that Sn(f, 0) fails
to converge as n → ∞.

Theorem 23 has several very useful consequences.

Theorem 26 (Density of trigonometric polynomials). The trigonometric
polynomials are uniformly dense in the continuous functions on T.

Lemma 27 (Riemann-Lebesgue lemma). If f is an integrable function on
T, then f̂(n) → 0 as |n| → ∞.

Theorem 28 (Uniqueness). If f and g are integrable functions on T with
f̂(n) = ĝ(n) for all n, then f = g.

Lemma 29. If f is an integrable function on T and
∑

j |f̂(j)| converges,

then f is continuous and f(t) =
∑

j f̂(j) exp ijt.

As a preliminary to the next couple of results we need the following
temporary lemma (which will be immediately superseded by Theorem 32).

Lemma 30 (Bessel’s inequality). If f is a continuous function on T, then

∞
∑

n=−∞

|f̂(n)|2 ≤
1

2π

∫

T

|f(t)|2 dt.

Theorem 31 (Mean square convergence). If f is a continuous function on
T, then

1

2π

∫

T

|f(t) − Sn(f, t)|2 dt → 0

as n → ∞.

Theorem 32 (Parseval’s Theorem). If f is a continuous function on T, then

∞
∑

n=−∞

|f̂(n)|2 =
1

2π

∫

T

|f(t)|2 dt.
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More generally, if f and g are continuous

∞
∑

n=−∞

f̂(n)ĝ(n)∗ =
1

2π

∫

T

f(t)g(t)∗ dt.

(The extension to all L2 functions of Theorems 31 and 32 uses easy mea-
sure theory.)

Exercise 33. If you use Lebesgue integration, state and prove Theorems 31
and 32 for (L2(T), ‖ ‖2).

If you use Riemann integration, extend and prove Theorems 31 and 32
for all Riemann integrable function.

Note the following complement to the Riemann-Lebesgue lemma.

Lemma 34. If κ(n) → ∞ as n → ∞, then we can find a continuous function
f such that lim supn→∞ κ(n)f̂(n) = ∞.

The proof of the next result is perhaps more interesting than the result
itself.

Lemma 35. Suppose that f is an integrable function on T such that there
exists an A with |f̂(n)| ≤ A|n|−1 for all n 6= 0. If f is continuous at t, then
Sn(f, t) → f(t) as n → ∞.

Exercise 36. Suppose that an ∈ C and there exists an A with |an| ≤ A|n|−1

for all n ≥ 1. Write

sn =
n
∑

r=0

ar.

Show that, if
s0 + s1 + · · · + sn

n + 1
→ s

as n → ∞, then sn → s as n → ∞. (Results like this are called Tauberian
theorems.)

Exercise 37. (i) Suppose that f : [−π, π) → R is increasing and bounded.
Write f(π) = limt→0 f(π − t). Show that

∫ π

−π

f(t) exp it dt =

∫ π

0

(f(t) − f(t − π)) exp it dt

and deduce that |f̂(1)| ≤ (f(π) − f(−π))/2 ≤ (f(π) − f(−π)).
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(ii) Under the assumptions of (i) show that

|f̂(n)| ≤ (f(π) − f(−π))/|n|

for all n 6= 0.
(iii) (Dirichlet’s theorem) Suppose that g = f1−f2 where fk : [−π, π) → R

is increasing and bounded [k = 1, 2]. (It can be shown that functions g of this
form are the, so called, functions of bounded variation.) Show that if g is
continuous at t, then Sn(g, t) → f(t) as n → ∞.

Most readers will already be aware of the next fact.

Lemma 38. If f : T → C is continuously differentiable, then

(f ′)̂ (n) = inf̂(n).

This means that Lemma 35 applies, but we can do better.

Lemma 39. If f : T → C is continuously differentiable, then

∞
∑

n=−∞

|f̂(n)| < ∞.

Here is a beautiful application due to Weyl of Theorem 26. If x is real,
let us write 〈x〉 for the fractional part of x, that is, let us write

〈x〉 = x − [x].

Theorem 40. If α is an irrational number and 0 ≤ a ≤ b ≤ 1, then

card{1 ≤ n ≤ N | 〈nα〉 ∈ [a, b]}

N
→ b − a

as N → ∞. The result is false if α is rational.

(Of course this result may be deduced from the ergodic theorem and
Theorem 26 itself can be deduced from the Stone-Weierstrass theorem but
the techniques used can be extended in directions not covered by the more
general theorems.)
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3 Jackson’s theorems

Once we have the idea of using different kernels such as Dirichlet’s kernel
and Féjer’s kernel we can try our hand at designing kernels for a particular
purpose. The proof of the next theorem provides an excellent example.

Theorem 41. [Jackson’s first theorem] There exists a constant C with
the following property. If f : T → R is once continuously differentiable then
given n ≥ 1 we can find a real trigonometric polynomial Pn of degree at most
n such that

‖Pn − f‖∞ ≤ Cn−1‖f ′‖∞

Jackson’s theorem provides a quantitative statement of the idea that well
behaved functions are easier to approximate.

Exercise 42. It is easy to obtain a weak quantitative statement of the idea
well behaved functions are easier to approximate. Show by integrating by
parts that if f : T → R is k times continuously differentiable

|f̂(r)| ≤ Ak|r|
−k‖f (r)‖∞

for all r 6= 0 and some constant Ak independent of f .
Deduce that, if k ≥ 2

‖Sn(f) − f‖∞ ≤ Bk|n|
2−k

for all n 6= 0 and some constant Bk independent of f .

Our proof of Theorem 41 depends on properties of the Jackson kernel Jn

defined by

Jn(t) = γ−1
n Kn(t)2 = λ−1

n

(

sin
(

nt/2
)

sin t/2

)4

for t 6= 0, Jn(0) = λ−1
n n2 where γn and λn are chosen so that

1

2π

∫

T

Jn(t) dt = 1.

Exercise 43. By using convexity, or otherwise, show that

t ≥ sin t ≥
2t

π

for all t ∈ [0, π/2]
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Lemma 44. There exist strictly positive constants A, A′ and B such that

An3 ≥ λn ≥ A′n3

and
1

2π

∫

T

|t|Jn(t) dt ≤ Bn−1.

We can now prove a version of Theorem 41.

Theorem 45. There exists a constant C ′ with the following property. If
f : T → R is once continuously differentiable then given n ≥ 1 we can find a
real trigonometric polynomial Qn of degree at most 2(n − 1) such that

‖Qn − f‖∞ ≤ C ′n−1

Exercise 46. Deduce Theorem 41 from Theorem 45.

It is easy to guess the generalisation to higher derivatives.

Theorem 47. [Jackson’s second theorem] There exists a constant Ck

with the following property. If f : T → R is k times continuously differen-
tiable then given n ≥ 1 we can find a real trigonometric polynomial Pn of
degree at most n such that

‖Pn − f‖∞ ≤ Ckn
−k‖f (k)‖∞

It is also easy to guess one of the tools used.

Exercise 48. (i) Suppose that we set

Jn,r(t) = γ−1
n Kn(t)2r = λ−1

n,r

(

sin
(

nt/2
)

sin t/2

)2r

for t 6= 0, Jn(0) = λ−1
n n2 where γn,r and λn,r are chosen so that

1

2π

∫

T

Jn,r(t) dt = 1.

Show that there exist constants Bn,r,j such that

1

2π

∫

T

|t|jJn(t) dt ≤ Bn,r,jn
−j

for all 0 ≤ j ≤ 2r − 2.
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(ii) It is instructive (though not necessary) to see that our particular
choice of kernel is not unique. Construct another trigonometric polynomial
J̃n,r of degree at most Arn (for some suitable constant A) which is everywhere
real and positive and satisfies

1

2π

∫

T

|t|jJ̃n,r(t) dt ≤ B̃n,r,jn
−j

for all 0 ≤ j ≤ 2r − 2.

Our proof of Jackson’s first theorem depended on the mean value inequal-
ity

|f(s) − f(t)| ≤ ‖f ′‖∞|t − s|.

We extend this to higher derivatives by using the difference operator △h

defined by
(△hf)(x) = f(x + h) − f(x).

We write △1
hf = △hf and △n

hf = △h(△
n−1f)

Exercise 49. Let f ∈ CR(T).
(i) Using induction, or otherwise, show that, if f is k times continuously

differentiable, then
‖△k

hf‖∞ ≤ k!|h|k‖f (k)‖∞.

(ii) Using induction, or otherwise, show that

△k
hf(x) =

k
∑

j=0

(−1)k−j

(

k

j

)

f(x + jh).

As before we prove a slight variant of the theorem as stated.

Theorem 50. There exist constants C ′
k with the following property. If f :

T → R is k times continuously differentiable then given n ≥ 1 we can find a
real trigonometric polynomial Qn of degree at most 2(n − 1)k such that

‖Qn − f‖∞ ≤ C ′
kn

−k‖f (k)‖∞

Exercise 51. Here is a another proof of Jackson’s second theorem. We did
not use it because we want to extend the proof to n dimensions.

(i) Suppose that f : T → R is once continuously differentiable and in
addition

∫

T
f(t) dt = 0. If P is a real trigonometric polynomial of such that

‖f − P‖∞ ≤ ǫ show that |Q̂(0)| ≤ ǫ.
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(ii) Suppose that f : T → R is once continuously differentiable and in
addition

∫

T
f(t) dt = 0. Show that there exists a real trigonometric polynomial

Qn of degree at most n with Q̂n(0) = 0 and

‖Qn − f‖∞ ≤ 2C1n
−1‖f ′‖∞

where C1 is the constant that occurs in Theorem 41.
(iii) Suppose that f : T → R is twice continuously differentiable. By

using (ii), show that there exists a real trigonometric polynomial Qn of degree
at most n with Q̂n(0) = 0 and

‖Qn − f ′‖∞ ≤ 2C1n
−1‖f ′′‖∞.

Hence show that there is real trigonometric polynomial Rn of degree at most
n with

‖Rn − f‖∞ ≤ 2C2
1n

−2‖f ′′‖∞.

(iv) Prove Theorem 47

Exercise 52. (i) If f ∈ C(T and P is trigonometric polynomial of degree at
most n show that

‖f − P‖∞ ≥

(

1

2π

∫

T

|f(t) − P (t)|2 dt

)1/2

≥ |f̂(m)|

for any |m| > n.
(ii) Let 0 < n(1) < n(2) < . . .. If

f(t) =
∞
∑

j=0

2−jn(j)−1 cos n(j)t

show that f is a well defined once continuously differentiable function with
‖f ′‖∞ ≤ 1 and

inf{‖f−P‖∞ : P a trigonometric polynomial of degree at most n(j) − 1} ≥ 2−jn(j)−1.

Deduce that, if κn is a sequence of strictly positive numbers with κnn → ∞
there exists a continuously differentiable function g with

lim sup κn inf{‖f−P‖∞ : P a trigonometric polynomial of degree at most n} = ∞.

In this sense, Jackson’s first theorem is best possible.
(iii) Show that Jackson’s second theorem is best possible in a similar sense.
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We shall need a multidimensional version of Jackson’s second theorem.
The proof is a natural induction but notationally a bit tedious.

We use the norm ‖ ‖p on Cp(Tn) (the space of real p times continuously
differentiable functions on Cp(Tn) given by

‖f‖p = ‖f‖ +
1

n

∑

1≤p1+p2+...+pn≤p

sup
t∈Tn

∣

∣

∣

∣

∂p1+p2+...+pnf

∂p1x1∂p2x2 . . . ∂pnxn

(t)

∣

∣

∣

∣

.

Theorem 53. There exist constants Ap,n with the following property. If
f ∈ Cp(Tn), then, given N ≥ 1 we can find a real trigonometric polynomial

PN(t) =
∑

|j(u)|≤N

aj(1)j(2)...j(n) exp

(

i
n
∑

v=1

j(v)tv

)

such that
‖PN − f‖∞ ≤ Ap,nN−p‖f‖p.

4 Vistuškin’s theorem

We now prove a theorem of Vistuškin which shows that, if we demand con-
tinuous differentiability, there are genuine functions of several variables. We
need a definition to make things precise.

Definition 54. Let n > m ≥ 1. Define cj, sj ∈ C(Tn) by

sj(t) = sin tj, cj(t) = cos tj [1 ≤ j ≤ n].

and write
E0 = {sj : 1 ≤ j ≤ n} ∪ {cj : 1 ≤ j ≤ n}.

If E is a subset of C(Tm define Er(E), inductively by setting E0(E) = E0 and
taking Er(E) to be the set of all functions f ∈ C(Tn) given by

f(t) = g(u1(t), u2(t), . . . , um(t)

with ul ∈ Er−1(E) [1 ≤ l ≤ m] and g ∈ E. We say that an f ∈ CR(Tn) is
written in terms of functions in E if f ∈ Er(E) for some r ≥ 1.

We can now state our theorem.

Theorem 55. If n > m ≥ 1, p ≥ q ≥ 1 and n/p > m/q there exists an
f ∈ Cp(Tn) which cannot be written in terms of functions in Cq(Tm).
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Our proof depends on the notion of ǫ-entropy introduced by Kolmogorov.

Definition 56. We work in CR(Tn) equipped with the uniform norm. Let E
be a subset of CR(Tn) and ǫ > 0. If E cannot be covered by a finite set of
closed balls

B̃(f, ǫ) = {g ∈ CR(Tn) : ‖f − g‖∞ ≤ ǫ}

we take H(ǫ, E) = ∞. If E can be covered by a finite set of such balls, we
write N(ǫ, E) for the least number of balls required and define H(ǫ,K), the
ǫ-entropy of K by

H(ǫ,K) = log N(ǫ,K).

Suppose that we are using the functions f ∈ E as messages but we
cannot distinguish two messages f1 and f2 if their uniform distance is less
than about ǫ. Then very roughly speaking we can only distinguish about
N(ǫ, E) messages and the amount of information we can send (defined roughly
speaking as the logarithm of the number of possible distinct messages) is
about H(ǫ,K).

We need the following simple observation. (Here Cl∞ E) denotes the
closure in the uniform norm.)

Exercise 57. Let E be a subset of CR(Tn) and ǫ > 0. Then

H(ǫ, E) = log N(ǫ, Cl∞ E).

Since we are interested in the behaviour of H(ǫ, E) as ǫ → 0, we shall only
be interested in those E whose uniform closure is compact in (CR(Tn, ‖ ‖),
that is to say those E which are bounded and uniformly equicontinuous. (If
you have not met uniform equicontinuity before will will talk about it later.)

The sets E we shall consider are balls in Cp(Tn) with an the norm ‖ ‖(p).
defined when we introduced Theorem 53.

The key inequality is given by the next theorem.

Theorem 58. Let Bp,n be the closed unit ball in (Cp(Tn), ‖ ‖(p)). Then there
exist constants Cp,n and C ′

p,n such that

Cnǫ
−n/p ≤ H(ǫ, Bp,n) ≤ C ′

nǫ
−n/p log ǫ−1

for 0 < ǫ < 1/2.

Notice that this theorem is a quantitative version of the much simpler
observation that Bn is uniformly equicontinuous. Notice also that we will
be considering two sorts of balls:- uniform balls, that is to say balls in
(CR(Tn, ‖ ‖), and Cp-balls, that is to say balls in (C

(p)
R

(Tn, ‖ ‖(p)).
The next lemma brings us closer to Vistuškin’s theorem
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Lemma 59. Let n > m ≥ 1. Let Bq,m be the unit ball in (Cq(Tm), ‖ ‖(1)). If
r and u are strictly positive integers then, using the notation of Definitions 54
and 56, we know that there is a constant C(q, r, u,m, n) such that

H(ǫ, Er(uBq,m) ≤ C(q, r, um, n)ǫ−m log ǫ−1

for all 0 < ǫ < 1/2.

We can now prove a Baire category version of Theorem 55.

Theorem 60. If n > m ≥ 1, p, q ≥ 1 p/n ≥ q/m and we work in
(Cp(Tn), ‖ ‖(p)), then quasi-all functions in (Cp(Tn), ‖ ‖(p)) cannot be written
in terms of functions in Cq(Tm).

Exercise 61. Modify the discussion above to show that there exists an f ∈
C1(T2) which cannot be written in terms of functions in C1(T) and the ad-
dition function function (x, y) 7→ x = y.

5 Simple connectedness and the logarithm

The rest of these lectures form a short second course in complex variable
theory with an emphasis on technique rather than theory. None the less I
intend to be rigorous and you should feel free to question any ‘hand waving’
that I indulge in.

But where should rigour start? It is neither necessary nor desirable to
start by reproving all the results of a first course. Instead I shall proceed
on the assumption that all the standard theorems (Cauchy’s theorem, Tay-
lor’s theorem, Laurent’s theorem and so on) have been proved rigorously for
analytic functions4 on an open disc and extend them as necessary.

Almost all the members of the audience are already familiar with one sort
of extension.

Definition 62. An open set U in C is called disconnected if we can find
open sets U1 and U2 such that

(i) U1 ∪ U2 = U ,
(ii) U1 ∩ U2 = ∅,
(iii) U1, U2 6= ∅.
An open set which is not disconnected is called connected.

4Analytic functions are sometimes called ‘holomorphic functions’. We shall call a func-
tion which is ‘analytic except for poles’ a ‘meromorphic function’.
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Theorem 63. If U is an open connected set in C and f : U → C is analytic
and not identically zero then all the zeros of f are isolated that is, given
w ∈ U with f(w) = 0 we can find a δ > 0 such that D(w, δ) ⊆ U and
f(z) 6= 0 whenever z ∈ D(w, δ) and z 6= w.

Here and elsewhere

D(w, δ) = {z : |w − z| < δ}.

The hypothesis of connectedness is exactly what we need in Theorem 63.

Theorem 64. If U is an open set then U is connected if and only if the zeros
of every non-constant analytic function on U are isolated.

If necessary, I shall quote results along the lines of Theorem 63 without
proof but I will be happy to give proofs in supplementary lectures if requested.

Exercise 65 (Maximum principle). (i) Suppose that a, b ∈ C with b 6= 0 and
N is an integer with N ≥ 1. Show that there is a θ ∈ R such that

|a + b(δ exp iθ)N | = |a| + |b|δN

for all real δ with δ ≥ 0.
(ii) Suppose that f : D(0, 1) → C is analytic. Show that

f(z) =
∞
∑

n=0

anz
n

where there is some constant M such that |an| ≤ M2n (we can make much
better estimates). Deduce that either f is constant or we can find N ≥ 1 and
aN 6= 0 such that

f(z) = a0 + (aN + η(z))zN

with ηz → 0 as z → 0.
(iii) If U is a connected open subset of C and f is a non-constant analytic

function on U , show that |f | has no maxima.
(iv) Does the result of (iii) mean that f is unbounded on U? Give reasons.
(v) Show that if is an open set which is not connected then there exists a

non-constant analytic function f on U such that |f | has a maximum.

Exercise 66. (i) Suppose f : D(0, 1) → C is a non-constant analytic func-
tion with f(0) = 0. Show that we can find a δ with 0 < δ < 1 such that
f(z) 6= 0 for all |z| = δ and an ǫ > 0 such that |f(z)| ≥ ǫ for all |z| = δ. Use
Rouché’s theorem to deduce that f(D(0, 1)) ⊇ D(0, ǫ).

19



(ii) (Open mapping theorem) If U is a connected open subset of C

and f is a non-constant analytic function on U show that f(U) is open.
(iii) Deduce the result of Exercise 65. (Thus the maximum principle fol-

lows from the open mapping theorem.)

Exercise 67. Let D be the open unit disc. Suppose f : D → C is analytic and
f(0) = f ′(0) = 0 but f is not identically zero. Use Rouché’s theorem (and
the fact that the zeros of f ′ are isolated) to show that there exists η1, η2 > 0
such that if 0 < |w| < η1 the equation f(z) = w has at least two distinct
solutions with |z| < η2.

Deduce that if Ω1 and Ω2 are open subsets of C and f is a conformal map-
ping of Ω1 into Ω2 then the inverse map f−1 is analytic and so a conformal
map of Ω2 into Ω1.

It can be argued that much of complex analysis reduces to the study of
the logarithm and this course is no exception. We need a general condition
on an open set which allows us to define a logarithm. Recall that we write
T = R/2πZ.

Definition 68. An open set U in C is said to be simply connected if it
is connected and given any continuous function γ : T → U we can find a
continuous function G : [0, 1] × T → U such that

G(0, t) = γ(t)

G(1, t) = G(1, 0)

for all t ∈ T.

In the language of elementary algebraic topology a connected open set is
simply connected if every loop can be homotoped to a point.

Theorem 69. If U is an open simply connected set in C that does not contain
0 we can find an analytic function log : U → C such that exp(log z) = z for
all z ∈ U . The function log is unique up to the addition of integer multiple
of 2πi.

From an elementary viewpoint, the most direct way of proving Theo-
rem 69 is to show that any piece wise smooth loop can be homotoped through
piecewise smooth loops to a point and then use the integral definition of the
logarithm. However, the proof is a little messy and we shall use a different
approach which is longer but introduces some useful ideas.
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Theorem 70. (i) If 0 < r < |w| we can find an analytic function log :
D(w, r) → C such that exp(log z) = z for all z ∈ D(w, r). The function log
is unique up to the addition of integer multiple of 2πi.

(ii) If γ : [a, b] → C\{0} is continuous we can find a continuous function
γ̃ : [a, b] → C such that exp ◦γ̃ = γ.

(iii) Under the hypotheses of (ii), if ˜̃γ : [a, b] → C is a continuous function
such that exp ◦˜̃γ = γ then we can find an integer n such that ˜̃γ = γ̃ + 2πin.

(iv) If U is a simply connected open set not containing 0 then, if γ :
[a, b] → U is continuous, γ(a) = γ(b), and γ̃ : [a, b] → C is a continuous
function such that exp ◦γ̃ = γ then γ̃(a) = γ̃(b).

Theorem 69 is now relatively easy to prove.
It would be nice to show that simple connectedness is the correct condition

here. The following result, although not the best possible, is hard enough
and shows that this is effectively the case.

Lemma 71. Suppose that U is a non-empty open connected set in C with
non-empty complement. The following two conditions are equivalent.

(i) The set U is simply connected.
(ii) If f : U → C is a non-constant analytic function with no zeros then

we can find an analytic function log : f(U) → C with exp(log f(z)) = f(z)
for all z ∈ U

(In looking at condition (ii), recall that the open mapping theorem given
in Exercise 66 tells us that f(U) is open.) The reader is invited to try and
prove this result directly but we shall obtain it only after a long chain of
arguments leading to the Riemann mapping theorem.

The following result is trivial but worth noting.

Lemma 72. If U and V are open subsets of C such that there exists a
homeomorphism f : U → V then if U is simply connected so is V .

Exercise 73. In the next two exercises we develop an alternative approach
to Theorem 69 along the lines suggested above.

(i) Suppose that U is an open set in C and that G : [0, 1] × T → U is
a continuous function. Show, by using compactness arguments or otherwise,
that there exists an ǫ > 0 such that N(G(s, t), ǫ) ⊆ U for all (s, t) ∈ [0, 1]×T,
and that we can find an integer N ≥ 1 such that if

(s1, t1), (s2, t2) ∈ [0, 1] × T and |s1 − s2| < 4N−1, |t1 − t2| < 8πN−1

then |G(s1, t1) − G(s2, t2)| < ǫ/4.
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(ii) Continuing with the notation and hypotheses of of (i) show that if
γ1, γ2 : T → C are the piecewise linear functions5 with

γ0(2πr/N) = G(0, 2πr/N)

γ1(2πr/N) = G(1, 2πr/N)

for all integers r with 0 ≤ r ≤ N then there exists a constant λ and a
continuous function H : [0, 1] × T → U with

H(0, t) = γ0(0, t)

H(1, t) = γ1(1, t)

for all t ∈ [0, 1], such that, for each fixed t, H(s, t) is a piecewise linear
function of s and the curve H( , t) : T → U is of length less than λ.

(iii) Continuing with the notation and hypotheses of of (i) show that if
G(s, 1) and G(s, 0) are piecewise smooth functions of s then there exists a
constant λ and a continuous function F : [0, 1] × T → U with

F (0, t) = γ0(0, t)

F (1, t) = γ1(1, t)

for all t ∈ [0, 1], such that, for each fixed t, F (s, t) is a piecewise smooth
function of s and the curve F ( , t) : T → U is of length less than λ.

(iv) Show that in any simply connected open set any piece wise smooth
loop can be homotoped through piecewise smooth loops of bounded length to a
point.

Exercise 74. (i) Suppose that U is an open set in C and F : [0, 1]×T → U
is a continuous function such that, for each fixed t, F (s, t) is a piecewise
smooth function of s and the curve F ( , t) : T → U is of length less than
λ. We write Γs for the contour defined by F ( , t). Show by a compactness
argument, or otherwise, that if f : U → C is continuous then

∫

Γs

f(z) dz is
a continuous function of s.

(ii) If 0 < δ < |w| show that if Γ is a contour lying entirely within N(w, δ)
joining z1 = r1e

iθ1 to z2 = r2e
iθ2 [r1, r2 > 0, θ1, θ2 ∈ R] show that

∫

Γ

1

z
dz = (log r2 − log r1) + i(θ1 − θ2) + 2nπi

for some integer n.

5Strictly speaking the simplest piecewise linear functions.
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(iii) By using compactness arguments to split Γ into suitable bits, or oth-
erwise, show that if U is any open set not containing 0 and Γ is any closed
contour (i.e. loop) lying entirely within U then

∫

Γ

1

z
dz = 2Nπi

for some integer N .
(iv) Use results from this exercise and its predecessor to show that if U is

any simply connected open set not containing 0 and Γ is any closed contour
lying entirely within U then

∫

Γ

1

z
dz = 0.

Hence, prove Theorem 69.

Exercise 75. Let us say that two open subsets of C, Ω1 and Ω2 are confor-
mally equivalent if there is a conformal mapping of Ω1 into Ω2. Show that
conformal equivalence is indeed an equivalence relation.

6 The Riemann mapping theorem

By using a very beautiful physical argument, Riemann obtained the following
result.

Theorem 76 (Riemann mapping theorem). If Ω is an non-empty, open,
simply connected subset of C with non-empty complement then there exists a
conformal map of Ω to the unit disc D(0, 1).

Notice that we can reduce this result to a version which is easier to think
about.

Theorem 77. If Ω is an open simply connected subset of D and 0 ∈ Ω, then
there exists a conformal map f : Ω → D.

Unfortunately his argument depended on the assumption of the existence
of a function which minimises a certain energy. Since Riemann was an intel-
lectual giant and his result is correct it is often suggested that all that was
needed was a little rigour to be produced by pygmies. However, Riemann’s
argument actually fails in the related three dimensional case so (in the lec-
turer’s opinion) although Riemann’s argument certainly showed that a very
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wide class of sets could be conformally transformed into the unit disc the ex-
treme generality of the final result could not reasonably have been expected
from his argument alone.

In order to rescue the Riemann mapping theorem mathematicians em-
barked on two separate programmes. The first was to study conformal map-
ping in more detail and the second to find abstract principles to guarantee
the existence of minima in a wide range of general circumstances (in modern
terms, to find appropriate compact spaces). The contents of this section come
from the first of these programmes, the contents of the next (on equiconti-
nuity) come from the second. (As a point of history, the first complete proof
of the Riemann mapping theorem was given by Poincaré.)

Theorem 78 (Schwarz’s inequality). If f : D(0, 1) → D(0, 1) is analytic
and f(0) = 0 then

(i) |f(z)| ≤ |z| for all |z| < 1 and |f ′(0)| ≤ 1.
(ii) If |f(w)| = |w| for some |w| < 1 with w 6= 0, or if |f ′(0)| = 1, then

we can find a θ ∈ R such that f(z) = eiθz for all |z| < 1.

Schwarz’s inequality enables us to classify the conformal maps of the unit
disc into itself. If a ∈ D(0, 1) and θ ∈ R let us write

Ta(z) =
z − a

1 − a∗z

Rθ(z) = eiθz

Lemma 79. If a ∈ D(0, 1) and θ ∈ R then Ta and Rθ map D(0, 1) confor-
mally into itself. Further T−1

a = Ta.

Theorem 80. (i) If S maps D(0, 1) conformally into itself then we can find
a ∈ D(0, 1) and θ ∈ R such that S = RθTa. If S = Rθ′Ta′ with a′ ∈ D(0, 1)
and θ′ ∈ R then a = a′ and θ − θ′ ∈ 2πZ.

(ii) Let U be a simply connected open set and a ∈ U . If there exists a
conformal map g : U → D(0, 1) then there exists precisely one conformal
map f : U → D(0, 1) with f(a) = 0 and f ′(a) real and positive.

We shall prove the following version of Theorem 77.

Theorem 81. If Ω is an open simply connected subset of D and 0 ∈ Ω, then
there exists a conformal map f : Ω → D with f(0) = 0 and f ′(0) real and
positive.

Exercise 82. [Pick’s inequality] Let a, b ∈ C, R, S > 0. Set

D1 = {z ∈ C : |z − a| < R}, and D2 = {z ∈ C : |z − b| < S}.
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If f : D1 → C is analytic and f(D1) ⊆ D2 show that
∣

∣

∣

∣

S
f(z) − f(w)

S2 − f(z)∗f(w)

∣

∣

∣

∣

≤

∣

∣

∣

∣

R
z − w

R2 − z∗w

∣

∣

∣

∣

for z 6= w, z, w ∈ D1 and

|f ′(w)| ≤
R

S

S2 − |f(w)|2

R2 − |w|2

for w ∈ D1 Show that if we have equality in the first inequality for any z and
w or in the second for any w, then f is a Möbius map.

We conclude this section with some results which are not needed for the
proof of the Riemann mapping theorem but which show that the ‘surrounding
scenery’.

There is one remark that needs to be made. to add one remark. In ele-
mentary complex variable theory we use the heuristic ‘see how the boundaries
transform’. This worked in Lemma 79 because Möbius maps are defined on
the whole plane C (apart, perhaps, from one point). If we look at the more
general conformal maps considered in Riemann’s theorem, we run into two
linked problems. The first is that the boundary of an open simply connected
set may be rather complicated and the second is that the conformal maps
may not extend to ‘nice’ maps on the closure of the sets considered. I do not
wish to spend time showing precisely how nasty things can become, but the
following simple example should convince you that it would be ill advised to
try to include boundaries in our discussion.

Exercise 83. Find an explicit conformal map T taking

Ω = D \ {x ∈ R 0 ≤ x ≤ 1}

to D. Show that there is no continuous function S : Cl Ω → Cl D with
Sz = Tz for all z ∈ Ω.

Explain why if T̃ is any conformal map of Ω to D there is no continuous
function S̃ : Cl Ω → Cl D with S̃z = T̃ z for all z ∈ Ω.

Example 84. If a, b ∈ D(0, 1) then there exists a conformal map

f : D(0, 1) \ {a} → D(0, 1) \ {b}.

Example 85. If a1, a2, b1, b2 ∈ D(0, 1) then there exists a conformal map

f : D(0, 1) \ {a1, a2} → D(0, 1) \ {b1, b2}

if and only if
∣

∣

∣

∣

a2 − a1

a∗
1a2 − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

b2 − b1

b∗1b2 − 1

∣

∣

∣

∣

.
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In Example 84 we see the the ‘natural rigidity’ of complex analysis reassert
itself.

We now give a more complicated example of this rigidity. The ideas will
be reused later in the proof of Picard’s Little Theorem. I assume the reader
has already met.

Definition 86. (i) Let p and q are orthonormal vectors in R2. If a is a
vector in R2 and x, y ∈ R the reflection of a + xp + yq in the line through a
parallel to p is a + xp − yq.

(ii) If a and are vectors in R2 and R, r > 0 then the reflection of a + rb
in the circle centre a and radius R is a + r−1R2b.

Lemma 87 (Schwarz reflection principle). Let Σ1 and Σ2 be two circles (or
straight lines). Suppose G is an open set which is taken to itself by reflection
in Σ1. Write G+ for that part of G on one side6 of Σ1 and G0 = G ∩ Σ1.
If f : G+ ∪ G0 is a continuous function, analytic on G+ with f(G0) ⊆ Σ2

then we can find an analytic function f̃ : G → C with f̃(z) = f(z) for all
z ∈ G+ ∪G0. If f(G+) lies on one side of Σ2 then we can ensure that f̃(G−)
lies on the other.

We first prove the result when Σ1 and Σ2 are the real axis and then use
Möbius transforms to get the full result.

The next theorem is less powerful than it appears (The theorem we would
wish for is true, but will not be proved here.)

Theorem 88. There exists a homeomorphism

f : {z : a ≤ |z| ≤ b} → {z : A ≤ |z| ≤ B}

whose restriction

f̃ : {z : a < |z| < b} → {z : A < |z| < B}

is conformal if and only if a/b = A/B.

Exercise 89. If a/b = A/B find all the maps of the type described in the
previous theorem.

6There are no topological difficulties here. The two sides of |z−a| = r are {z : |z−a| <

r} and {z : |z − a| > r}.
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7 Equicontinuity

(The reader is welcome to take a different approach but if she derives the re-
sults from more general theorems she must be able to prove those theorems.)
We start with a general remark.

Lemma 90. If Ω is an open subset of Rn we can find a sequence K1, K2,
. . . of compact subsets of Ω such that

⋃

n = 1∞Kn = Ω.

Definition 91. Let K be a compact subset of Rn with the standard metric d.
A subset F ⊆ C(K) is said to be uniformly equicontinuous7 if, given ǫ > 0,
we can find a δ(ǫ) > 0 such that |f(x) − f(y)| < ǫ whenever d(x, y) < δ(ǫ)
and f ∈ F .

Exercise 92. We use the notation and hypotheses of A subset F ⊆ C(K)
is said to be equicontinuous at the point x if, given ǫ > 0, we can find a
δ(ǫ) > 0 such that |f(x) − f(y)| < ǫ whenever d(x, y) < δ(ǫ) and f ∈ F .
Show that, if F is eqicontinuous at every point of K, then F is uniformly
eqicontinuous.

Definition 93. Let X be a compact subset of Rn. A subset F ⊆ C(X) is said
to be uniformly bounded if we can find a C such that ‖f‖∞ ≤ C whenever
f ∈ F .

Theorem 94. [The Arzelá–Ascoli theorem] Let K be a compact subset
of Rn. Then F ⊆ C(K) is compact if and only if F is closed, uniformly
bounded and uniformly equicontinuous.

The natural mode of convergence for analytic functions on an open set is
‘converging uniformly on compacta’.

Definition 95. Let Ω be an open set in C. Consider a sequence of fn :
Ω → C and an f : Ω → C. We say that fn → f uniformly on compacta if
whenever K is a compact subset of Ω fn → f uniformly on K.

Exercise 96. We use the notation and hypotheses of Definition 95.
(i) If fn → f uniformly on compacta and each fn is continuous on Ω,

show that f is continuous on Ω.
(ii) If fn → f uniformly on compacta and each fn is analytic on Ω, show

that f is analytic on Ω.

7Traditionally the word ‘equicontinuous’ was used instead of the phrase ‘uniformly
equicontinuous’ and the majority of mathematicians follow this older usage. See Exer-
cise 92.
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Theorem 97. [Montel’s theorem] Let Ω be an open set in C and F a
set of analytic function f : Ω → C. Then every sequence of functions in
F contains a subsequence which is uniformly convergent on compacta if and
only if F is uniformly bounded on compacta.

The next exercise is not needed, but may help put things in perspective.

Exercise 98. Let Ω be an open set in C and suppose that K1, K2, . . . are
compact sets such that Km ⊆ Ω and

⋂∞
m=1 Int Kj = Ω.

(i) Show that the equation

dK(f, g) =
∞
∑

m=1

2−m max{1, sup
z∈Km

|f(z) − g(z)|}

defines a metric on A(Ω), the space of analytic functions f : Ω → C. Show
that dK is complete.

(ii) If f, fn ∈ A(Ω) show that dK(f, fn) → 0 if and only if fn → f
uniformly on compacta. If gn ∈ A(Ω) show that gn is Cauchy for d if and
only if gn − gm → 0 uniformly on compacta.

Observe that Montel’s theorem may be restated as saying that a closed
subset F of

(

A(Ω), dK

)

is compact if and only if it is uniformly bounded on
compacta.

(iii) If L1, L2, . . . are compact sets such that Lm ⊆ Ω and
⋂∞

m=1 Int Lj =
Ω and we set

dL(f, g) =
∞
∑

m=1

2−m max{1, sup
z∈Lm

|f(z) − g(z)|}

show that the identity map ι :
(

A(Ω), dL) →
(

A(Ω), dK) is a homeomorphism
which preserves Cauchy sequences. Is it true that we can always find a C > 1
such that

CdL(f, g) ≥ dK(f, g) ≥ C−1dL(f, g)?

We shall be dealing with the limit of of injective analytic functions and
will make use of the following result.

Theorem 99. [Hurwitz’s theorem] Suppose that Ω is a pathwise connected
open set. If fn : Ω → C is an injective analytic function and fn → f
uniformly on compacta, then either f is a constant function or f is injective.

We are now in a position to embark on a proof of the Riemann mapping
theorem.
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Lemma 100. If Ω is an open simply connected subset of D and 0 ∈ Ω, then
there exists an injective analytic function f : Ω → D with f(0) = 0, f ′(0)
real and positive such that, if g : Ω → D is an injective analytic function
with g(0) = 0 and g′(0) real and positive, then f ′(0) ≥ g′(0).

Lemma 101. Suppose that Ω is an open simply connected subset of D and
f : Ω → D is an injective analytic function with f(0) = 0 and f ′(0) real
and positive. If f is not surjective, we can find an injective analytic function
g : Ω → D with g(0) = 0, g′(0) real and g′(0) > f ′(0)

Lemmas 100 and 101 yield Theorem 81 and by the earlier this gives
Theorem 76

Exercise 102. Reprove Lemma 101 using nth roots rather than square roots.

8 Boundary behaviour of conformal maps

We now return to the boundary behaviour of the Riemann mapping. (Strictly
speaking we should say, a Riemann mapping but we have seen that it is
‘essentially unique’. We saw in Exercise 83 that there is no general theorem
but the following result is very satisfactory.

Theorem 103. If Ω is a simply connected open set in C with boundary a
Jordan curve then any bijective analytic map f : D(0, 1) → Ω can be extended
to a bijective continuous map from D(0, 1) → Ω.

Recall8 that a Jordan curve is a continuous injective map γ : T → C. We
say that γ is the boundary of Ω if the image of γ is Ω \ Ω.

I shall use the proof in Zygmund’s magnificent treatise [9] (see Theo-
rem 10.9 of Chapter VII) which has the advantage of minimising the topol-
ogy but the minor disadvantage of using measure theory (students who do
not know measure theory may take the results on trust) and the slightly
greater disadvantage of using an idea from Fourier analysis (the conjugate
trigonometric sum S̃N(f, t)) which can not be properly placed in context
here.

We shall use the following simple consequence of Fejér’s theorem (Theo-
rem 23).

Lemma 104. If f : T → R is integrable but SN(f, x) → ∞ as N → ∞ then
f can not be continuous at x.

8In the normal weasel-worded mathematical sense.
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Exercise 105. If f : T → R is integrable and there exist δ > 0 and M > 0
such that |f(t)| ≤ M for all |t| < δ show that it is not possible to have
SN(f, 0) → ∞ as N → ∞.

Lemma 106. (i) If f : T → C is integrable and f is continuous at x then

S̃N(f, x)

log N
→ 0

as N → 0.
(ii) If h(t) = sgn(t) − t/π then there is a non-zero constant L such that

S̃N(h, 0)

log N
→ L

as N → ∞.
(iii) If f : T → C is integrable and f(x+ η) → f(x+), f(x− η) → f(x−)

as η → 0 through positive values then

S̃N(f, x)

log N
→

L(f(x+) − f(x−))

2

as N → 0.

We now come to the object of our Fourier analysis.

Lemma 107. If f : T → C is integrable with f̂(n) = 0 for n < 0. If
f(x + η) → f(x+), f(x− η) → f(x−) as η → 0 through positive values then
f(x+) = f(x−).

In other words, power series cannot have ‘discontinuities of the first kind’.

Exercise 108. Give an example of a discontinuous function with no discon-
tinuities of the first kind.

Once Lemma 107 has been got out of the way we can return to the proof
of Theorem 103 on the boundary behaviour of the Riemann mapping. The
proof turns out to be long but reasonably clear. We start with a very general
result.

Lemma 109. If Ω is a simply connected open set in C and f : D(0, 1) → Ω
is a bijective bicontinuous map then given any compact subset K of Ω we can
find an 1 > rK > 0 such that, whenever 1 > |z| > rK, f(z) /∈ K.

Any bounded open set Ω has an area |Ω| and a simple application of the
Cauchy-Riemann equations yields the following result.
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Lemma 110. Suppose that Ω is a simply connected bounded open set in C

and f : D(0, 1) → Ω is a bijective analytic map. Then

|Ω| =

∫

0≤r<1

∫ 2π

0

|f ′(reiθ)|2r dθ dr.

Lemma 111. Suppose that Ω is a simply connected bounded open set in C

and f : D(0, 1) → Ω is a bijective analytic map. The set X of θ[0, 2π) such
that f(reiθ) tends to a limit as r → 1 from below has complement of Lebesgue
measure 0.

From now on until the end of the section we operate under the stand-
ing hypothesis that Ω is a simply connected open set in C with boundary a
Jordan curve. This means that Ω is bounded (we shall accept this as a topo-
logical fact). We take X as in Lemma 111 and write f(eiθ) = limr→1− f(reiθ)
whenever θ ∈ X. We shall assume (as we may without loss of generality)
that 0 ∈ X.
Lemma 112. Under our standing hypotheses we can find a continuous
bijective map g : T → C such that g(0) = f(1) and such that, if x1, x2 ∈ X
with 0 ≤ x1 ≤ x2 < 2π and t1, t2 satisfy g(t1) = x1, g(t2) = x2 and
0 ≤ t1, t2 < 2π then t1 ≤ t2.

(The reader will, I hope, either excuse or correct the slight abuse of no-
tation.)

We now need a simple lemma.

Lemma 113. Suppose G : D(0, 1) → C is a bounded analytic function such
that G(reiθ) → 0 as r → 1− for all |θ| < δ and some δ > 0. Then G = 0.

Using this we can strengthen Lemma 112
Lemma 114. Under our standing hypotheses we can find a continuous
bijective map γ : T → C such that γ(0) = f(1) and such that, if x1, x2 ∈ X
with 0 ≤ x1 < x2 < 2π and t1, t2 satisfy g(t1) = x1, g(t2) = x2 and
0 ≤ t1, t2 < 2π then t1 < t2.

From now on we add to our standing hypotheses the condition that γ
satisfies the conclusions of Lemma 114.

We now ‘fill in the gaps’.

Lemma 115. We can find a strictly increasing function w : [0, 2π] → [0, 2π]
with w(0) = 0 and w(2π) = 2π, such that γ(w(θ)) = f(eiθ) for all θ ∈ X.

We now set f(eiθ) = γ(w(θ)) and F (θ) = f(eiθ) for all θ. A simple use of
dominated convergence gives us the next lemma.
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Lemma 116. If f(z) =
∑∞

n=1 cnz
n for |z| < 1 then, we have F̂ (n) = cn for

n ≥ 0 and γ̂(n) = 0 for n < 0.

However increasing functions can only have discontinuities of the first
kind. Thus w and so F can only have discontinuities of the first kind. But,
using our investment in Fourier analysis (Lemma 107) we see that F can
have no discontinuities of the first kind..

Lemma 117. The function F : T → C is continuous.

Using the density of X in T we have the required result.

Lemma 118. The function f : D(0, 1) → Ω is continuous and bijective.

This completes the proof of Theorem103.
Using a little analytic topology we may restate Theorem103 as follows.

Theorem 119. If Ω is a simply connected open set in C with boundary a
Jordan curve then any bijective analytic map f : D(0, 1) → Ω can be extended
to a bijective continuous map from D(0, 1) → Ω. The map f−1Ω → D(0, 1)
is continuous on Ω.

.

9 Picard’s little theorem

The object of this section is to prove the following remarkable result.

Theorem 120 (Picard’s little theorem). If f : C → C is analytic and non-
constant, then C \ f(C) contains at most one point.

The example of exp shows that C \ f(C) may contain one point.
The key to Picard’s theorem is the following result.

Theorem 121. There exists an analytic map λ : D(0, 1) → C \ {0, 1} with
the property that given z0 ∈ C \ {0, 1}, w0 ∈ D(0, 1) and δ > 0 such that
λ(w0) = z0 and D(z0, δ) ⊆ C \ {0, 1} we can find an analytic function g :
D(z0, δ) → D(0, 1) such that λ(g(z)) = z for all z ∈ D(z0, δ).

We combine this with a result whose proof differs hardly at all from that
of Theorem 69.
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Lemma 122. Suppose that U and V are open sets and that τ : U → V is
a analytic map with the following property. Given u0 ∈ U and v0 ∈ V such
that τ(u0) = v0 then, given any δ > 0 with D(v0, δ) ⊆ V , we can find an
analytic function g : D(v0, δ) → U such that λ(g(z)) = z for all z ∈ D(v0, δ).
Then if W is an open simply connected set and f : W → U is analytic we
can find an analytic function F : W → U such that τ(F (z)) = f(z) for all
zinW .

(The key words here are ‘lifting’ and ‘monodromy’. It is at points like this
that the resolutely ‘practical’ nature of the presentation shows its weaknesses.
A little more theory about analytic continuation for its own sake would turn
a ‘technique’ into a theorem.)

We now combine the Schwarz reflection principle (given in Lemma 87)
with the work of section 8 on boundary behaviour. By repeated use of the
Schwarz reflection principle we continue f analytically to the whole of H.

Lemma 123. Let H be the upper half plane. There exists an analytic map
τ : H → C \ {0, 1} with the property that given z0 ∈ C \ {0, 1} and w0 ∈ H
such that τ(w0) = z0 we can find δ > 0 with D(z0, δ) ⊆ C \ {0, 1} and an
analytic function g : D(z0, δ) → H such that τ(g(z)) = z for all z ∈ D(z0, δ).

Since H can be mapped conformally to D(0, 1) Theorem 121 follows at
once and we have proved Picard’s little theorem.

10 Picard’s great theorem

The object of this section is to prove the following remarkable generalisation
of the Casorati–Weierstrass theorem.

Theorem 124. Picard’s great theorem Let Ω be an open subset of C and
let w0 ∈ Ω. If f : Ω \ {w0} is analytic with w as an essential singularity,
then we can find an ω0 ∈ C such that, given any δ > 0 and any ω 6= ω0 we
can find a w ∈ Ω \ {w0} with |w − w0| < δ and f(w) = ω.

Exercise 125. (i) If f : C → C is analytic and |z−n−1f(z)| → 0 as |z| → 0
show, by looking at the coefficients of the Taylor expansion,or otherwise, that
f is a polynomial of degree at most n.

(ii) Continuing with the notation of (i), define g : C \ {0} → C by g(z) =
f(1/z). Show that either f is a polynomial or 0 is an essential singularity.

(iii) Deduce Picard’s little theorem from Picard’s great theorem.

We introduce a couple of definitions. We could avoid using them, but the
reader may find them helpful in later work.
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Definition 126. Let Ω be an open set in C and fn : Ω → C a sequence of
analytic functions. We say that fn diverges to infinity uniformly on compacta
if, given K a compact subset of Ω and C > 0, we can find an N such that
|fn(z)| ≥ C for all z ∈ K and n ≥ N .

Definition 127. Let Ω be an open set in C and F a set of analytic function
f : Ω → C. We say that F is normal if every sequence of functions in F
contains a subsequence which is either uniformly convergent on compacta or
diverges to infinity uniformly on compacta.

In view of our earlier discussion of uniformly convergence on compacta
the next result is closer to an exercise than a lemma.

Exercise 128. Let Ω be a connected open set in C and F a set of analytic
function f : Ω → C. Then F is normal if and only if, given w ∈ Ω, we can
find a δ > 0 such that D(w, δ) ⊆ Ω and

FD(w,δ) = {f |D(w,δ) : f ∈ F}

is normal. (More briefly a ‘locally normal’ family is normal.)
Give a simple counterexample to show that we need Ω connected.

If Ω is an open subset of C and a 6= b, let us write Fa,b(Ω) for the set
of analytic functions on Ω which do not take the values a or b. As usual we
write D for the open unit disc.

Theorem 129. [Schottky] Given any ǫ > 0 and any 1 > ρ > 0 we can find
a δ > 0 such that the following is true for an f ∈ F0,1(D).

(i) |f(0)| ≤ δ ⇒ |f(z)| ≤ ǫ for all |z| ≤ ρ.
(ii) |f(0) − 1| ≤ δ ⇒ |f(z) − 1| ≤ ǫ for all |z| ≤ ρ.
(iii) |f(0)| ≥ δ−1 ⇒ |f(z)| ≥ ǫ−1 for all |z| ≤ ρ.

Lemma 130. Let U be an open disc If fn ∈ F0,1(U) and there exists a w ∈ D
such that fn(w) → 0 then fn converges uniformly on compacta to 0. Similar
results hold with 0 replaced by 1 and ∞.

Theorem 131. [A theorem of Montel] If Ω is a connected open set and
a 6= b Fa,b(Ω) is a normal family.

We can now prove Picard’s great theorem.
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11 References and further reading

There is not a great deal on Kolmogorov’s and Vituškin’s theorem. I will
hand out some notes intended for different purposes which (if only because
they are available) are probably as satisfactory as the references that I used
to prepare them ([3], [5], [8]). Jackson’s theorems are dealt with in [5] and
elsewhere.

There exist many good books on advanced classical complex variable
theory which cover what is in this course and much more. I particularly
like [7] and [1]. For those who wish to study from the masters there are
Hille’s two volumes [2] and the elegant text of Nevanlinna [6].

There are also many excellent books on Fourier analysis. I used [9] but
those who want a first introduction are recommended to look at [4].
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