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1 Preliminary remarks

Convention 1.1. We shall write F to mean either C or R.

Our motto in this course is ‘linear maps for understanding, matrices for
computation’. We recall some definitions and theorems from earlier on.

Definition 1.2. Let α : Fn → Fn be linear and let e1, e2, . . . , en be a basis.
Then the matrix A = (aij) of α with respect to this basis is given by the rule

α(ej) =
n
∑

i=1

aijei.

We observe that, if x =
∑n

j=1 xjej and α(x) = y =
∑n

i=1 yiei, then

yi =
n
∑

j=1

aijxj.
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Thus coordinates and bases go opposite ways. The definition chosen is con-
ventional but represents a universal convention and must be learnt.

Theorem 1.3. (Change of basis.) Let α : Fn → Fn be a linear map. If
α has matrix A = (aij) with respect to a basis e1, e2, . . . , en and matrix
B = (bij) with respect to a basis f1, f2, . . . , fn, then there is an invertible
n × n matrix P such that

B = P−1AP.

The matrix P = (pij) is given by the rule

fj =
n
∑

i=1

pijei.

We recall an important application of this result. Since

det(P−1AP ) = (det P )−1 det A det P = det A,

we see that all matrix representations of a given linear map α : Fn → Fn

have the same determinant. We can thus write detα = det A where A is any
matrix representation of α.

Although we shall not conduct any explicit calculations, I shall assume
that my audience is familiar with the process of Gaussian elimination both
as a method of solving linear equations and of inverting square matrices. (If
the previous lecturer has not covered these topics, I will.)

The following observation is quite useful.

Example 1.4. If e1, e2, . . . , en is the standard basis (that is to say ej is the
collumn vector with 1 in the jth place and zero elsewhere), then the matrix
A of a linear map α with respect to this basis has α(ej) as its jth collumn.

2 Eigenvectors and eigenvalues

Definition 2.1. If α : Fn → Fn is linear and α(u) = λu for some vector
u 6= 0 and some λ ∈ F, we say that u is an eigenvector of α with eigenvalue
λ.

Theorem 2.2. If α : Fn → Fn is linear, then λ is an eigenvalue of α if and
only if det(λι − α) = 0.

Lemma 2.3. If n = 3, then any linear map α : R3 → R3 has an eigenvector.
It follows that there exists some line l through 0 with α(l) ⊆ l.
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Example 2.4. Let Rθ : R2 → R2 be the linear map given by rotation through
θ about 0. Then Rθ has no eigenvectors unless θ ≡ 0 mod π. If θ ≡ π
mod 2π, then every vector in R2 \ {0} is an eigenvector with eigenvalue
−1. If θ ≡ 0 mod 2π, then every vector in R2 \ {0} is an eigenvector with
eigenvalue 1.

Theorem 2.5. (Fundamental Theorem of Algebra.) If n ≥ 1 and
aj ∈ C [j = 0, 1, . . . , n] with an 6= 0, then the equation

n
∑

j=0

ajz
j = 0

has a solution in C.

The Fundamental Theorem of Algebra is, in fact, a theorem of analysis
and its proof is one of the many high spots of the complex variable theory
lectures next year. We note the following corollary.

Lemma 2.6. If n ≥ 1 and aj ∈ C [j = 0, 1, . . . , n − 1], then we can find ω1,
ω2, . . . , ωn ∈ C such that

zn +
n−1
∑

j=0

ajz
j =

n
∏

j=1

(z − ωj)

If (z−ω)k is a factor of zn +
∑n−1

j=0 ajz
j, but (z−ω)k+1 is not we say that

ω is a k times repeated root of zn +
∑n−1

j=0 ajz
j.

Lemma 2.7. Any linear map α : Cn → Cn has an eigenvector. It follows
that there exists a one dimensional complex subspace

l = {we : w ∈ C}

(where e 6= 0) with α(l) ⊆ l.

Theorem 2.8. Suppose α : Fn → Fn is linear. Then α has diagonal matrix
D with respect to a basis e1, e2, . . . , en if and only if the ej are eigenvectors.
The diagonal entries dii of D are the eigenvalues of the ei.

If α has a diagonal matrix with respect to some basis we say that α is
diagonalisable.

Theorem 2.9. If a linear map α : Fn → Fn has n distinct eigenvalues, then
the associated eigenvectors form a basis and α has a diagonal matrix with
respect to this basis.
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I shall prove this result for n ≤ 3. It will be obvious from the proof that
the result holds for all n, but the general result is best approached via the
machinery of next year’s linear algebra course.

Theorem 2.9 gives a sufficient but not a necessary condition for a linear
map to be diagonalisable. The identity map ι : Fn → Fn has only one
eigenvalue but has the diagonal matrix I with respect to any basis. On the
other hand even when we work in Cn rather than Rn not every linear map is
diagonalisable.

Example 2.10. Let e1, e2 be a basis for F2. The linear map β : F2 → F2

given by
β(x1e1 + x2e2) = x2e1

is non-diagonalisable.

Fortunately the map just given is the ‘typical’ non-diagonalisable linear
map for C2.

Theorem 2.11. If α : C2 → C2 is linear, then exactly one of the following
three things must happen.

(i) α has two distinct eigenvalues λ and µ and we can take a basis of
eigenvectors e1, e2 for C2. With respect to this basis, α has matrix

(

λ 0
0 µ

)

.

(ii) α has only one distinct eigenvalue λ but is diagonalisable. Then
α = λι and has matrix

(

λ 0
0 λ

)

with respect to any basis.
(iii) α has only one distinct eigenvalue λ and is not diagonalisable. Then

there exists a basis e1, e2 for C2 with respect to which α has matrix

(

λ 1
0 λ

)

.

Note that e1 is an eigenvector with eigenvalue λ but e2 is not.

The general case of a linear map α : Cn → Cn is substantially more
complicated. The possible outcomes are classified using the ‘Jordan Normal
Form’ in a theorem that is easy to state and understand but tricky to prove.

We have the following corollary to Theorem 2.11.
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Example 2.12. (Cayley–Hamilton in 2 dimensions.) If α : C2 → C2

is a linear map, let us write Q(t) = det(tι − α). Then we have

Q(t) = t2 + at + b

where a, b ∈ C. The Cayley–Hamilton theorem states that

α2 + aα + bι = O

or, more briefly1, that Q(α) = O.

We call Q the characteristic polynomial of α and say that α satisfies its
own characteristic equation. Once again the result is much harder to prove
in higher dimensions. (If you find Example 2.12 hard, note that it is merely
an example and not central to the course.)

3 Computation

Let us move from ideas to computation.

Theorem 3.1. The following two statements about an n × n matrix A over
F are equivalent.

(i) If we choose a basis u1, u2, . . . , un for Fn and define a linear map
α : Fn → Fn by

α(uj) =
n
∑

i=1

aijui,

then we can find a basis e1, e2, . . . , en for Fn and di ∈ F such that

α(ej) = djej.

(ii) There is a non-singular n×n matrix P such that P−1AP is diagonal.

If the conditions of Theorem 3.1 hold, we say that A is diagonalisable.
(Thus a matrix A is diagonalisable if and only if it represents a diagonalisable
linear map with respect to some basis.) As an indication of why diagonali-
sation is likely to be useful, observe that if A, P , D are n × n matrices with
P invertible, D diagonal and P−1AP = D, then

Am = (PDP−1)m = PDP−1PDP−1 . . . PDP−1 = PDmP−1

and note how easy it is to compute Dm. Here is an example of why it might
be useful to compute powers of matrices.

1But more confusingly for the novice.
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Example 3.2. Let n towns be called (rather uninterestingly) 1, 2, . . . , n.
Write aij = 1 if there is a road leading directly from town i to town j and

aij = 0 otherwise (we take aii = 0). If we write Am = (a
(m)
ij ) then a

(m)
ij is

the number of routes from i to j of length m. (A route of length m passes
through m + 1 towns including the starting and finishing towns. If you pass
through the same town more than once each visit is counted separately.)

In the discussion that follows, we take the basis vectors uj to be the
standard column vectors of length n with entries 0 except in the jth place
where we have 1. Recall that any n × n matrix A gives rise to a linear map
α by the rule

α(uj) =
n
∑

i=1

aijui.

Suppose that we wish to ‘diagonalise’ such an n × n matrix. The first
step is to look at the roots of the characteristic polynomial

P (t) = det(tI − A).

If we work over R and some of the roots of P are not real, we know at once
that A is not diagonalisable (over R). If we work over C or if we work over
R and all the roots are real, we can move on to the next stage. Either the
characteristic polynomial has n distinct roots or it does not. If it does, we
know that A is diagonalisable. If we find the n distinct roots (easier said than
done outside the artificial conditions of the examination room) λ1, λ2, . . . ,
λn we know without further computation that there exists a non-singular P
such that P−1AP = D where D is a diagonal matrix with diagonal entries
λj. Often knowledge of D is sufficient for our purposes but if not we proceed
to find P as follows.

For each λj we know that the system of n linear equations in n unknowns
given by

(A − λjI)x = 0

(where x is a column vector of length n, that is to say, with n entries) has
non-zero solutions. Let ej be one of them so that

Aej = λjej.

Note that, if P is the n × n matrix with jth column ej, then Puj = ej and

P−1APuj = P−1Aej = λjP
−1ej = λjuj = Duj

for all 1 ≤ j ≤ n and so
P−1AP = D.

If we need to know P−1, we calculate it by inverting P in some standard way.
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Exercise 3.3. Diagonalise the matrix

(

cos θ − sin θ
sin θ cos θ

)

(with θ real) over C.

What if the characteristic polynomial does not have n distinct roots?
In this case we do not know, without further investigation, whether A is
diagonalisable or not. Example 2.10 gives us

(

0 1
0 0

)

as an example of a non-diagonalisable matrix over C. This problem will
be looked at further in next year’s linear algebra course. Later I will do a
simple example (the second matrix of Example 5.8) where the characteristic
polynomial has repeated roots.

It cannot be emphasised too strongly that the method described above
bears the same relation to real life problems as ‘Tom And Wendy Go Shop-
ping’ does to ‘King Lear’. (But remember that you learn to read by reading
‘Tom And Wendy Go Shopping’ rather than ‘King Lear’.) If n = 200 then
the characteristic polynomial is likely to be extremely unpleasant.

We can now rewrite Theorem 2.11 as follows.
Theorem 3.4. If A is a 2 × 2 complex matrix then exactly one of the
following three things must happen.

(i) We can find a non-singular 2 × 2 complex matrix P such that

P−1AP =

(

λ 0
0 µ

)

with λ 6= µ.
(ii) A = λI for some λ.
(iii) We can find a non-singular 2 × 2 complex matrix P such that

P−1AP =

(

λ 1
0 λ

)

.

for some λ.

The following result links up with the first year course on differential
equations.
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Example 3.5. Consider the simultaneous differential equations

ẋ1 = a11x1 + a12x2

ẋ2 = a21x1 + a22x2

According as A falls into one of the three cases given in Theorem 3.4:
(i) x1(t) is a linear combination of eλt and eµt.
(ii) x1(t) = C1e

λt, x2(t) = C2e
λt, with C1 and C2 arbitrary.

(iii) x1(t) is a linear combination of eλt and teλt.

4 Distance-preserving linear maps

We start with a trivial example.

Example 4.1. A restaurant serves n different dishes. The ‘meal vector’ of
a customer is the column vector x = (x1, x2, . . . , xn) where xj is the quantity
of the jth dish ordered. At the end of the meal, the waiter uses the linear
map P : Rn → R to obtain P (x) the amount (in pounds) the customer must
pay.

Although the ‘meal vectors’ live in Rn it is not very useful to talk about
the distance between two meals. There are many other examples where it is
counter-productive to saddle Rn with things like distance and angle.

Equally there are many other occasions (particularly in the study of the
real world) when it makes sense to consider Rn equipped with the scalar
product (inner product)

〈x,y〉 =
n
∑

r=1

xryr,

the Euclidean norm
||x|| = 〈x,x〉1/2

(we take the positive square root) and Euclidean distance

distance between x and y = ||x − y||.

Definition 4.2. (i) We say that a and b are orthogonal if 〈a,b〉 = 0.
(ii) We say that e1, e2, . . . , en are orthonormal if

〈ei, ej〉 = δij =

{

1 if i = j,

0 if i 6= j.

for all 1 ≤ i, j ≤ n.
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Lemma 4.3. Any system of n orthonormal vectors e1, e2, . . . , en forms a
basis for Rn. (We call this an orthonormal basis.) If x ∈ Rn, then

x =
n
∑

r=1

〈x, er〉er.

It will not have escaped the reader that the standard unit vectors ej (with
1 as jth entry, 0 everywhere else) form an orthonormal basis2. what

The following remark is used repeatedly in studying inner products.

Lemma 4.4. If 〈a,x〉 = 〈b,x〉 for all x then a = b.

Our first task will be to study those linear maps which preserve length.
Our main tool is a simple and rather pretty equality.

Lemma 4.5. If a, b ∈ Rn, then

||a + b||2 − ||a − b||2 = 4〈a,b〉.

We shall also need a definition.

Definition 4.6. If A is the n×n matrix (aij), then AT (the transpose of A)
is the n × n matrix (bij) with bij = aji [1 ≤ i, j ≤ n].

Lemma 4.7. If the linear map α : Rn → Rn has matrix A with respect to
some orthonormal basis and α∗ : Rn → Rn is the linear map with matrix AT

with respect to the same basis, then

〈αx,y〉 = 〈x, α∗y〉

for all x,y ∈ Rn.
Further, if the linear map β : Rn → Rn satisfies

〈αx,y〉 = 〈x, βy〉

for all x,y ∈ Rn, then β = α∗.

Exercise 4.8. Let α, β : Rn → Rn be linear.
(i) (αβ)∗ = β∗α∗.
(ii) α∗∗ = α.

2It will also not have escaped the reader that sometimes I call the standard basis ej

and sometimes uj . There is no fixed notation and you should always say explicitly if you
wish a particular set of vectors to have a particular property.
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Theorem 4.9. Let α : Rn → Rn be linear. The following statements are
equivalent.

(i) ||αx|| = ||x|| for all x ∈ Rn.
(ii) 〈αx, αy〉 = 〈x,y〉 for all x,y ∈ Rn.
(iii) α∗α = ι.
(iv) If α has matrix A with respect to some orthonormal basis then AT A = I.

If, as I shall tend to do, we think of the linear maps as central, we refer
to the collection of distance preserving linear maps by the name O(Rn). If
we think of the matrices as central, we refer to the collection of real n × n
matrices A with AAT = I by the name O(Rn). In practice most people
use whichever convention is most convenient at the time and no confusion
results. A real n×n matrix A with AAT = I is called an orthogonal matrix.

We recall that the determinant of a square matrix can be evaluated by
row or by column expansion and so

det AT = det A.

Lemma 4.10. If A is an orthogonal matrix, then det A = 1 or det A = −1.

If we think in terms of linear maps, we define

SO(Rn) = {α ∈ O(Rn) : det α = 1}.

If we think in terms of matrices, we define

SO(Rn) = {A ∈ O(Rn) : det A = 1}.

(The letter O stands for ‘orthogonal’, the letters SO for ‘special orthogonal’.)
In the rest of this section we shall look at other ways of characterising

O(Rn) and SO(Rn). We shall think in terms of linear maps. We shall use
an approach which, I am told, goes back to Euler.

Definition 4.11. If n is a vector of norm 1, the map R : Rn → Rn given by

R(x) = x − 2〈x,n〉n

is said to be a reflection in

π = {x : 〈x,n〉 = 0}.

Lemma 4.12. With the notation of the definition just given:
(i) There is an orthonormal basis e1, e2, . . . , en with respect to which R

has a diagonal matrix D with d11 = −1, dii = 1 for all 2 ≤ i ≤ n.
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(ii) R2 = ι.
(iii) R ∈ O(Rn).
(iv) det R = −1.
(v) If ||x|| = ||y|| and x 6= y, then we can find a unit vector n such that

Rx = y. Moreover, we can choose R in such a way that, whenever u is
perpendicular to x and y, we have Ru = u.

Lemma 4.13. If α ∈ O(Rn), then α is the product of m reflections with
0 ≤ m ≤ n. (If m = 0, α = ι. Otherwise, we can find reflections R1, R2,
. . . , Rm such that α = R1R2 . . . Rm.) If m is even, α ∈ SO(Rn). If m is
odd, α /∈ SO(Rn).

Lemma 4.14. If α ∈ O(R2) then one of two things must happen.
(i) α ∈ SO(R2) and we can find 0 ≤ θ < 2π such that, with respect to

any orthonormal basis, α has one of the two possible matrices

(

cos θ − sin θ
sin θ cos θ

)

or

(

cos θ sin θ
− sin θ cos θ

)

.

(ii) α /∈ SO(R2) and we can find an orthonormal basis with respect to
which α has matrix

(

−1 0
0 1

)

.

To see why we have to allow two forms in part (i), consider an orthonormal
basis e1, e2 and the related orthonormal basis e1, −e2.

Exercise 4.15. By considering the product of the rotation matrices

(

cos θ − sin θ
sin θ cos θ

)

and

(

cos φ − sin φ
sin φ cos φ

)

we can recover the addition formulae for cos and sin.

Lemma 4.16. (i) If α ∈ O(R3) then we can find an orthonormal basis with
respect to which α has matrix





±1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

(ii) If the plus sign is taken in (i), α ∈ SO(R3). If the minus sign is
taken, α /∈ SO(R3).
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The traditional way of stating that part of Lemma 4.16 which deals with
SO(R3) is to say that every rotation has an axis. (Things are more compli-
cated in higher dimensions, but we do not need to go further in this course. If
you are interested, look at Exercise 15.17.) It may be worth stating some of
our earlier results in the form they we be used in the discussion of Cartesian
tensors in next year’s mathematical methods course.

Lemma 4.17. If the matrix L ∈ O(R3), then, using the summation conven-
tion,

likljk = δij.

Further,
ǫijklirljslkt = ±ǫrst

with the positive sign if L ∈ SO(R3) and the negative sign otherwise.

We also make the following remark.

Lemma 4.18. An n×n real matrix L is orthogonal if and only if its columns
are orthonormal column vectors. An n×n real matrix L is orthogonal if and
only if its rows are orthonormal row vectors.

5 Real symmetric matrices

We say that a real n×n matrix A is symmetric if AT = A. In this section we
deal with the diagonalisation of such matrices. It is not immediately clear
why this is important but in the next couple of years the reader will come
across the topic in many contexts.

(1) The study of Sturm–Liouville differential equations in the methods
course next year runs in parallel with what we do here.

(2) The study of symmetric tensors in the methods course next year will
quote our results.

(3) The t-test, F-test and so on in the statistics course next year depend
on the diagonalisation of a symmetric matrix.

(4) The study of small oscillations about equilibrium depends on a gen-
eralisation of our ideas.

(5) The standard formalism for Quantum Mechanics and the spectral
theorem in functional analysis are both deep generalisations of what we do
here.
For the moment we note that the covariance matrix (EXiXj) of n random
variables and the Hessian matrix

(

∂2f

∂xi∂xj

)
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of the second partial derivatives of a well behaved function f of n variables
are both symmetric matrices. (If one or other or both these matrices make
no sense to you, all will become clear next term in the probability and vector
calculus courses.)

Lemma 5.1. Let α : Rn → Rn be linear. The following statements are
equivalent.

(i) 〈αx,y〉 = 〈x, αy〉 for all x,y ∈ Rn.
(ii) If α has matrix A with respect to some orthonormal basis, then A is

symmetric.

Naturally we call an α, having the properties just described, symmetric.
We can also call α a ‘real self-adjoint’ map.

Theorem 5.2. If α : Rn → Rn is symmetric, then all the roots of the
characteristic polynomial det(tι − α) are real.

Theorem 5.3. If α : Rn → Rn is symmetric, then eigenvectors correspond-
ing to distinct eigenvalues are orthogonal.

Theorem 5.4. (i) If α : Rn → Rn is symmetric and all the roots of the char-
acteristic polynomial det(tι−α) are distinct, then there exists an orthonormal
basis of eigenvectors of α.

(ii) If A is a symmetric n × n matrix and and all the roots of the char-
acteristic polynomial det(tI − A) are distinct, then there exists a matrix
P ∈ SO(Rn) such that P T AP is diagonal.

Much more is true.

Fact 5.5. (i) If α : Rn → Rn is symmetric, then there exists an orthonormal
basis of eigenvectors of Rn with respect to which α is diagonal.

(ii) If A is a symmetric n × n matrix, then there exists a matrix P ∈
SO(Rn) such that P T AP is diagonal.

I may sketch a proof for the case n = 3 but it will not be examinable.
The general case will be proved with more sophisticated techniques in next
year’s linear algebra course. We note the easy converse results.

Lemma 5.6. (i) If α : Rn → Rn has an orthonormal basis of eigenvectors,
then α is symmetric.

(ii) If A is an n × n real matrix and there exists a matrix P ∈ SO(Rn)
such that P T AP is diagonal, then A is symmetric.

It is important to think about the various conditions on our results.
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Exercise 5.7. Let

A =

(

2 0
0 1

)

and P =

(

1 0
1 1

)

.

Compute PAP−1 and observe that it is not a symmetric matrix, although A
is. Why does this not contradict Lemma 5.6.

Moving from theory to practice, we see that the diagonalisation of an
n × n symmetric matrix A (using an orthogonal matix) follows the same
pattern as ordinary diagonalisation (using an invertible matrix). The first
step is to look at the roots of the characteristic polynomial

P (t) = det(tI − A).

By Theorem 5.2 we know that all the roots are real. If we can find the n
roots (in examinations, n will usually be 2 or 3 and the resulting quadratics
and cubics will have nice roots) λ1, λ2, . . . , λn and the roots are distinct then
we know, without further calculation, that there exists an orthogonal matrix
P with

P T AP = D,

where D is the diagonal matrix with diagonal entries dii = λi.
For each λj we know that the system of n linear equations in n unknowns

given by
(A − λjI)x = 0

(with x a column vector of length n) has non-zero solutions. Let uj be one
of them so that

Auj = λjuj.

We normalise by setting
ej = ||uj||−1uj

and, unless we are unusually confident of our arithmetic, check that, as The-
orem 5.3 predicts,

〈ei, ej〉 = δij.

If P is the n×n matrix with jth column ej then, from the formula just given,
P is orthogonal (i.e., PP T = I and so P−1 = P T ). We note that, if we write
vj for the unit vector with 1 in the jth place, 0 elsewhere, then

P T APvj = P−1Aej = λjP
−1ej = λjvj = Dvj

for all 1 ≤ j ≤ n and so
P T AP = D.
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Our construction gives P ∈ O(Rn) but does not guarantee that P ∈ SO(Rn).
If det P = 1, then P ∈ SO(Rn). If det P = −1, then replacing e1 by −e1

gives a new P in SO(Rn).
The strict logic of syllabus construction implies that the reader should not

be asked to diagonalise a symmetric matrix when the characteristic equation
has repeated roots until she has done next year’s linear algebra course. Unfor-
tunately nature is not very obliging and symmetric matrices which appear in
physics often have repeated roots. If A is a symmetric 3×3 matrix we proceed
as follows. If the characteristic polynomial P has a three times repeated root
λ (i.e., P (t) = (t − λ)3) then (since A is symmetric, so A = P T (λI)P = λI
for some othogonal P) we have A = λI and there is no problem. If P has a
single root µ and a double root λ (i.e., P (t) = (t−µ)(t−λ)2) then, as before,
we can find e1 a column vector of Euclidean length 1 with Ae1 = µe1. On
the other hand, it will turn out that we can find two orthonormal vectors e2,
e3 such that

Ae2 = λe2, Ae3 = λe3.

If we take P to be the 3×3 matrix with jth column ej, then P is orthogonal
and

P T AP =





µ 0 0
0 λ 0
0 0 λ



 .

Example 5.8. We shall diagonalise




1 1 0
1 0 1
0 1 1



 and





1 0 0
0 0 1
0 1 0



 .

As I said earlier, most of the applications of the results of this section will
occur in later courses but we can give one important one immediately. Let
u1, u2, . . . , un be the standard orthonormal basis of column vectors for Rn.
Consider a ‘quadratic form’ Q : Rn → R given by

Q(x) =
n
∑

i=1

n
∑

j=1

aijxixj,

where x =
∑n

i=1 xiui. It is clear that there is no loss in generality in taking
aij = aji. We then have

Q(x) = xT Ax

with A the symmetric matrix (aij). We know that there exists a special
orthogonal matrix P such that

P T AP = D
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with D diagonal. In particular, setting ej = Puj, we see that the ej form an
orthonormal basis for Rn such that, if y =

∑n
i=1 yiei, then

Q(y) =
n
∑

i=1

diiy
2
i .

Example 5.9. Suppose that f : R2 → R is given by

f(x) = ax2 + 2bxy + cy2

with respect to some orthogonal axes Oxy. Then we can find orthogonal axes
OXY with respect to which

f(x) = AX2 + CY 2,

for some A and C. We observe that
(i) If A,C > 0, f has a minimum at 0.
(ii) If A,C < 0, f has a maximum at 0.
(iii) If A < 0 < C or C < 0 < A then f has a so-called ‘saddle point’ (or

‘pass’) at 0.

This result underlies the treatment of stationary points in the vector
calculus course next term.

Example 5.10. The set

{(x, y) ∈ R2 : ax2 + 2bxy + cy2 = d}

is an ellipse, a point, the empty set, a hyperbola, a pair of lines meeting at
(0, 0), a pair of parallel lines, a single line or the whole plane.

6 Concrete groups

Although the syllabus does not explicitly require it, life will be simpler if we
start with a discussion of functions. Recall that a function f : A → B assigns
to each a ∈ A a unique element f(a) in B. The reader may feel disappointed
that we have not defined the concept of function in terms of more primitive
concepts but we must start somewhere and I shall assume that the lecture
audience and I share the same notion of function. I shall rely strongly on the
following key definition.

Definition 6.1. If f, g : A → B are functions we say that f = g if f(a) =
g(a) for all a ∈ A.
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Again, although the syllabus does not contain the following definitions,
it will be convenient to have them readily to hand.

Definition 6.2. (i) We say that f : A → B is injective if f(x) = f(y)
implies x = y.

(ii) We say that f : A → B is surjective3 if given b ∈ B there exists an
a ∈ A such that f(a) = b.

(iii) We say that f : A → B is bijective if f is both injective and surjective.

In other words, f is injective if the equation f(a) = b has at most one
solution for each b ∈ B; f is surjective if the equation f(a) = b has at least
one solution for each b ∈ B; f is bijective if the equation f(a) = b has exactly
one solution for each b ∈ B.

Still more informally, f is injective if different points go to different points
and f is surjective if it hits every point in B. (However, it turns out to
be genuinely easier to prove things using the definition than by using their
informal restatement.)

Definition 6.3. If X is a set then we write S(X) for the set of bijective
maps σ : X → X.

If X is finite then we may picture S(X) as the set of shuffles of an appro-
priate deck of cards. (By shuffles I mean actions like ‘Interchange the 2nd
and the 23rd card,’ ‘Reverse the order of the pack,’ and so on.)

Theorem 6.4. (i) If σ, τ ∈ S(X) and we write (στ)(x) = σ(τ(x)), then
στ ∈ S(X).

(ii) If σ, τ, ρ ∈ S(X), then

(στ)ρ = σ(τρ).

(iii) If we define ι : X → X by ι(x) = x, then ι ∈ S(X). Further,

ισ = σι = σ

for all σ ∈ S(X).
(iv) If σ ∈ S(X), we can define a function σ−1 : X → X by σ−1(x) = y

when σ(y) = x. The function σ−1 ∈ S(X) and

σσ−1 = σ−1σ = ι.

3The word ‘onto’ is sometimes used in place of ‘surjective’. You should not use the
terms ‘one-one’ or ‘one to one’ since a a quick trawl with your favourite search engine
shows that there is deep confusion about which word means which thing.
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We call ι the identity and σ−1 the inverse of σ. We call S(X) the ‘per-
mutation group of X’ (or the ‘symmetric group on X’).

When X is finite, S(X) has been the object of profitable study both by
men with waxed moustaches and wide sleeves and by mathematicians. (In
this course we will acquire enough knowledge to handle Exercise 18.12 which
interests both classes of humanity.) However, when X = Rn or even when
X = R, S(X) contains objects not merely weirder than we imagine, but, most
mathematicians believe, weirder than we can possibly imagine. Under these
circumstances it makes sense to study not S(X) itself but smaller ‘subgroups’.

Definition 6.5. If G is a subset of S(X) such that
(i) σ, τ ∈ G implies στ ∈ G,
(ii) σ ∈ G implies σ−1 ∈ G,
(iii) ι ∈ G,

we say that G is a subgroup of S(X). We also say that G is a group acting
faithfully4 on X, or less precisely that G is a concrete group.

Conditions (i) to (iii) can be re-expressed in various ways (for example (iii)
can be replaced by the condition G non-empty, see also Exercise 16.1 (iii))
but are quite convenient as they stand. If G and H are subgroups of S(X)
with H ⊆ G, we say that H is a subgroup of G.

Here are some examples of concrete groups.

Example 6.6. (i) The set GL(Fn) of invertible linear maps α : Fn → Fn

forms a group acting faithfully on Fn. We call it the general linear group.
(ii) The set E(Rn) of bijective isometries5 α : Rn → Rn forms a group

acting faithfully on Rn. We call it the Euclidean group.
(iii) The set O(Rn) of linear isometries forms a group acting faithfully

on Rn. We call it the orthogonal group6.
(iv) The set SL(Rn) of linear maps with determinant 1 forms a group

acting faithfully on Rn. We call it the special linear group.
(v) The set SO(Rn) of linear isometries with determinant 1 forms a group

acting faithfully on Rn. We call it the special orthogonal group.
(vi) GL(Rn) ⊇ E(Rn) ∩ GL(Rn) = O(Rn) ⊇ SO(Rn) and

SO(Rn) = O(Rn) ∩ SL(Rn).

However, if n ≥ 2, SL(Rn) 6⊆ O(Rn).

4We give an alternative but entirely equivalent definition of what it means for a group
G to act faithfully on a set X in Definition 7.19.

5An isometry is automatically injective and the ideas of Example 6.7 show that an
isometry of Rn is always a bijection, so, if we were prepared to work harder we could leave
out the qualifier ‘bijective’.

6Sometimes called O(n), On(R), O(R, n) or O(n, R). It is always clear what is meant.
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Example 6.7. If S ∈ E(Rn) the group of isometries, then we can find a
translation Ta (with Ta(x) = a + x) and R ∈ O(Rn) such that

S = TaR.

(Our treatment of Example 6.7 will be informal.)

Example 6.8. The collection G of similarity-preserving maps7 S : Rn → Rn

forms a group acting faithfully on Rn. (We call it the similarity group.) If
S ∈ G, then we can find a translation Ta (with Ta(x) = a + x), a dilation
Dλ (with Dλ(x) = λx, λ > 0) and R ∈ O(Rn) such that

S = DλTaR.

The great German mathematician Klein suggested that geometry was the
study of those properties of Rn which are invariant under the actions of a
particular subgroup of S(Rn). Thus ‘Euclidean Geometry’ is the study of
the properties of Rn invariant under the actions of the Euclidean group. A
particularly interesting example occurs when we consider the collection G of
f ∈ S(Rn) such that f and f−1 are continuous. (The reader may easily check
that G is in fact a group.) The study of the properties of Rn invariant under
the actions of G is now called topology. These ideas will be taken up again
in Part II.

Continuing the geometric theme, we define the so-called symmetry groups.

Lemma 6.9. Let X be a set of points in Rn. The collection G of σ ∈ S(X)
such that

||σ(x) − σ(y)|| = ||x − y||
for all x,y ∈ X is a subgroup of S(X).

We call G the symmetry group of X. If we pick a random collection
of points then, in general, G will consist of the single element ι. However,
if X consists of the vertices of a regular polygon or solid, G becomes more
interesting. The syllabus used to state rather grandly that the lecturer should
talk about ‘symmetry groups of regular polygons and solids’. Since Klein
devoted an entire book to the study of the symmetry group of the regular
icosahedron8 this was rather tall order and lecturers made only the feeblest
attempt to carry it out. In Example 7.14 we shall look at the symmetry
group of the regular tetrahedron (this is very easy, can you see why?) and

7Maps which preserve angles and straight lines. Our treatment will be informal and
the result is not part of the course.

8There is a remarkable Open University TV programme on the same subject.
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the symmetry group of the cube. There will be a more detailed study of the
symmetry groups of the regular solids in a later geometry course. For the
moment we look at the symmetry group of the regular polygons in the plane.

Lemma 6.10. If n ≥ 3, the symmetry group Dn of the regular n-gon in R2

has 2n elements. If α is a rotation about the centre of the n-gon of 2π/n and
β is a reflection about some axis of symmetry, then the distinct elements of
Dn are

ι, α, α2, . . . , αn−1, β, αβ, α2β, . . . , αn−1β.

Further
αn = ι, β2 = ι, βα = α−1β.

(Since the mathematical literature is confused about whether to write Dn

or D2n for the group just described, you should always make it clear that
you mean the symmetry group of the regular n-gon.)

Students are liable to panic when faced with so many different groups.
They should note that the syllabus gives them as examples and that, though
there is nothing to prevent a rogue examiner suddenly asking for the defi-
nition of some named group, a glance through previous examination papers
shows that, in practice, examiners give definitions of all but the commonest
groups.

7 Abstract groups and isomorphism

Traditional treatments of group theory begin not with concrete but with
abstract groups.

Definition 7.1. We say that (G, ∗) is an (abstract) group if G is a set and
∗ an operation such that

(i) If a, b ∈ G, then a ∗ b ∈ G. (Closure)
(ii) If a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c). (Associativity)
(iii) There exists an e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.

(Unit)
(iv) If a ∈ G, then there exists an element a−1 ∈ G with a−1∗a = a∗a−1 =

e. (Inverse)

The associativity rule means that we can bracket expressions any way we
like. Ordinary subtraction is not associative since (3 − 4) − 5 = −6 6= 4 =
3 − (4 − 5) and so (Z,−) is not a group.

It will be helpful to get the following results out of the way once and for
all.
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Lemma 7.2. (i) The unit of a group (G, ∗) is unique, i.e., if e∗a = a∗e = a
and e′ ∗ a = a ∗ e′ = a for all a ∈ G, then e = e′.

(ii) The inverse of an element in a group (G, ∗) is unique, i.e., if b ∗ a =
a ∗ b = e and c ∗ a = a ∗ c = e, then b = c.

Exercise 7.3. If (G, ∗) is a group and a, b ∈ G then (ab)−1 = b−1a−1.

Definition 7.4. If (G, ∗) is a group and H ⊆ G we say that (H, ∗) is a
subgroup of (G, ∗) if

(i) e ∈ H,
(ii) x ∈ H implies x−1 ∈ H,
(iii) x, y ∈ H implies xy ∈ H.

(Exercise 16.1 embroiders this a little bit further.)

Lemma 7.5. If (H, ∗) is a subgroup of (G, ∗) then (H, ∗) is a group.

Clearly, any concrete group is an abstract group so we already have quite
a collection of examples. Here are some more.

Example 7.6. (i) (Z, +) is a group.
(ii) (Rn, +) with vector addition is a group.
(iii) If we take Cn = {0, 1, 2, . . . , n− 1} and take addition modulo n, then

(Cn, +) is a group (called the cyclic group of order n).
(iv) If (G, .) and (H, .) are groups, then we may define a new group (G×

H, .) by
(g1, h1).(g2, h2) = (g1.g2, h1.h2).

From now on we shall often refer to a group G rather than a group (G, ∗).
We shall usually write ab = a ∗ b.

The example of matrix groups like GL(Rn) for n ≥ 2 shows us that we
cannot assume automatically that a ∗ b = b ∗ a.

Definition 7.7. We say that G is a commutative (or an Abelian, or an
abelian) group if

g ∗ h = h ∗ g

for all g, h ∈ G.

Example 7.8. (i) (Z, +), (Rn, +), (Cn, +) and SO(R2) are commutative.
(ii) Dn the group of symmetries of the regular n-gon [n ≥ 3], O(R2) and

SO(R3) are non-commutative.
(iii) If G and H are commutative groups then G × H is commutative.
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We can already see the possibility that what is essentially the same group
may turn up under different disguises. We deal with this by introducing the
notion of isomorphism.

Definition 7.9. If (G, ∗) and (H, .) are groups and f : G → H is a bijection
such that

f(x ∗ y) = f(x).f(y)

for all x, y ∈ G then we say that f is an isomorphism and that (G, ∗) and
(H, .) are isomorphic.

The notion of isomorphism is closely linked with that of homomorphism
(or ‘group morphism’).

Definition 7.10. If (G, ∗) and (H, .) are groups and f : G → H is a map
such that

f(x ∗ y) = f(x).f(y)

for all x, y ∈ G, then we say that f is a homomorphism.

The following result is trivial but worth noting.

Lemma 7.11. Let f : G → H be a homomorphism.
(i) If G has unit eG and H unit eH , then f(eG) = eH .
(ii) If x ∈ G, then f(x)−1 = f(x−1).

Normally we write e for both eG and eH . Any reader who finds this
confusing is free to continue using the unambiguous notation eG and eH .

We shall talk a bit about homomorphism later but, for the moment, we
concentrate on isomorphism. Those members of my audience who are doing
the Numbers and Sets course should note the following remark (the others
may ignore it).

Lemma 7.12. Let us write G ≡ H if G and H are isomorphic. Then, if G,
H and K are groups,

(i) G ≡ G.
(ii) G ≡ H implies H ≡ G.
(iii) If G ≡ H and H ≡ K then G ≡ K.

Thus, isomorphism is an equivalence relation.

Example 7.13. (i) If G and H are groups, then G × H is isomorphic to
H × G.

(ii) C2 × C2 is not isomorphic to C4.
(iii) C2 × C3 is isomorphic to C6.
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(iv) The set R \ {0} is a group under (ordinary) multiplication which is
not isomorphic to (R, +).

(v) The set {x ∈ R : x > 0} is a group under (ordinary) multiplication
which is isomorphic to (R, +).

(vi) Sn = S({1, 2, . . . , n}) is isomorphic to S(X) if and only if X has n
elements.

(vii) S3 and D3 are isomorphic.

In general, to show two groups isomorphic, we look for a ‘natural’ map be-
tween them. To show they are not isomorphic, we look for a ‘group property’
possessed by one but not the other.

Example 7.14. (i) The symmetry group of the regular tetrahedron is iso-
morphic to S4.

(ii) The symmetry group of the cube has 48 elements. The subgroup con-
sisting of rotations alone is isomorphic to S4. The symmetry group of the
cube is isomorphic to S4 × C2.

(iii) The symmetry group of the regular octahedron is isomorphic to the
symmetry group of the cube.

The proof of the next result is simple but faintly Zen. (You may be
relieved to note that the proof is not in the syllabus.)

Fact 7.15. (Cayley’s Theorem.) Every abstract group G is isomorphic to
a concrete group (more specifically to a subgroup of S(G)).

Thus the study of abstract and concrete groups comes to the same thing
in the end.

If we think in terms of abstract groups rather than concrete groups, we
have to restate what it means for a group G to act faithfully on a set X.

Definition 7.16. Suppose G is a group and X a non-empty set. If there
exists a map θ : G × X → X such that, writing gx = θ(g, x), we have

(i) g(hx) = (gh)x for all g, h ∈ G and x ∈ X,
(ii) ex = x for all x ∈ X,

we say that θ is an action of G on X, or, more informally that G acts on X.

Example 7.17. (i) If θ : Z × R → R is given by θ(n, x) = n + x then θ is
an action of (Z, +) on R.

(ii) If φ : Z × R → R is given by φ(n, x) = 2n + x then φ is an action of
(Z, +) on R.

Exercise 7.18. If G acts on X show that, if g ∈ G, the map x 7→ gx is a
bijection.
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Definition 7.19. Suppose G is a group acting on a non-empty set X. We
say that G acts faithfully on X if the only element g of G with the property
gx = x for all x ∈ X is e itself.

More compactly ‘G acts faithfully on X if and only if the relation gx = x
for all x ∈ X implies g = e’.

Exercise 7.20. Give an example of a group G acting on a set X which does
not act faithfully.

The syllabus only demands that you know Definition 7.16. Example 10.7
sheds some more light on what is going on.

It should be noted that, for any but the smallest groups, checking the
associative law on a case by case basis is essentially impossible. Thus the
usual way to show that something is a group is to show that it is a subgroup
of some other group and often this means showing that it is (isomorphic to)
a concrete group. More generally the easiest way to study a particular group
is often via some isomorphic concrete group. On the other hand, the general
properties common to many groups are frequently best approached by using
abstract group theory.

We end with a simple but genuine theorem.

Definition 7.21. We say that G is cyclic if there exists an a ∈ G such that
every element of G has the form ar for some integer r.

Theorem 7.22. Every cyclic group is isomorphic to (Z, +) or to Cn for
some n ≥ 1.

8 Orbits and suchlike

We now return to groups as objects that act on sets.

Definition 8.1. Suppose G is a group acting on a set X.
(i) If x ∈ X, the orbit Orb(x) of x under G is defined by

Orb(x) = {gx : g ∈ G}.

(ii) If x ∈ X, the stabiliser Stab(x) of x is defined by

Stab(x) = {g : gx = x}.

We use the following notation in the next lemma and elsewhere.
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Definition 8.2. If F is a finite set we write |F | for the number of elements
of F .

Lemma 8.3. Suppose G is a group acting on a set X.
(i)
⋃

x∈X Orb(x) = X.
(ii) If x, y ∈ X, then either Orb(x) ∩ Orb(y) = ∅ or Orb(x) = Orb(y).
(iii) If X is finite and the distinct orbits under G are Orb(x1), Orb(x2),

. . . , Orb(xm), then

|X| = |Orb(x1)| + |Orb(x2)| + · · · + |Orb(xm)|.

Those students doing the Numbers and Sets course will recognise that
Lemma 8.3 could be proved by showing that the relation

x ≡ y if y ∈ Orb(x)

is an equivalence relation, but I shall prove it directly.

Lemma 8.4. If G is a group acting on a set X and x ∈ X then Stab(x) is
a subgroup of G.

Example 8.5. Consider the group SO(R3) acting on R3. If x ∈ R3, then

Orb(x) = {y ∈ R3 : ||y|| = ||x||},

the sphere with radius ||x|| and centre 0.
If x 6= 0, then the stabiliser of x is the subgroup of rotations about an

axis through x and 0. The stabiliser of 0 is the full group SO(R3).

If G is a group and H is a subgroup of G, then H acts on G by the map
(h, g) 7→ hg. The orbit of an x ∈ G is given a special name.

Definition 8.6. If H is a subgroup of a group G and x ∈ G, we write

Hx = {hx : h ∈ H}

and call Hx a right coset of H. The left coset xH is defined similarly9.

Example 8.7. Consider D3 the group of symmetries of an equilateral tri-
angle. If H is a subgroup {ι, ρ} with ρ a reflection and σ is a non-trivial
rotation, then Hσ 6= σH.

9The reader is warned that some mathematicians reverse this convention and call xH

a left coset.
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We constantly make use of simple remarks of the type illustrated in the
next lemma.

Lemma 8.8. If H is a subgroup of a group G and a, b ∈ G, then the following
three statements are equivalent.

(i) aH = bH,
(ii) b−1a ∈ H,
(iii) b−1aH = H.

Expressions of the type PAP−1 occur throughout mathematics. In the
context of group theory we talk of conjugation.

Definition 8.9. (i) If G is a group and and x, y ∈ G, we say that x and y
are conjugate if there exists an a ∈ G such that

x = aya−1.

(ii) If G is a group and and H and K are subgroups, we say that H and
K are conjugate if there exists an a ∈ G such that

H = aKa−1.

or, more formally,
H = {aka−1 : k ∈ K}.

Definition 8.9 (ii) is supplemented by the following easy observation.

Lemma 8.10. If G is a group, a ∈ G and K a subgroup, then aKa−1 is a
subgroup.

The following remarks are easy but useful.

Lemma 8.11. (i) If we consider conjugacy of elements of a group G and
write x ≡ y whenever x and y are conjugate then

(a) x ≡ x,
(b) x ≡ y implies y ≡ x,
(c) If x ≡ y and y ≡ z, then x ≡ z.
(ii) Similar results hold if we consider conjugacy of subgroups of a group G.

Example 8.12. If G is a group acting on a set X then points in the same
orbit have conjugate stabilisers.
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9 Lagrange’s theorem

Algebraists call the number of elements in a finite group G the order of G.
The following theorem can be proved using the language of orbits but, in
view of its importance, I shall give a self contained proof.

Theorem 9.1. (Lagrange’s Theorem.) If G is finite group and H a
subgroup, then the order of H divides the order of G.

The proof of this theorem is book-work and frequently asked for in exams.
Example 12.14 gives an example of a group of order 12 with no subgroup of
order 6.

The next result (the ‘orbit-stabiliser theorem’) is also an old examination
favourite.

Theorem 9.2. Suppose that G is a group acting on a set X and that x ∈ X.
(i) There is a bijection between Orb(x) and the left cosets of Stab x.
(ii) If G is finite, then |Orb(x)| = |G|/| Stab x|.
(iii) If G is finite, then the number of elements in Orb(x) divides the

order of G.

Exercise 9.3. (i) Verify the orbit-stabiliser theorem for the full group of
isometries of the cube.

(ii) Let X be a regular 6-gon with centre O and one vertex A. Consider
the group G of symmetries of X generated by rotation through 2π/3 about O
and reflection in the line OA. Verify the orbit-stabiliser theorem for G acting
on X.

Definition 9.4. If a ∈ G a group, then
(i) If a = e, we say a has order 1.
(ii) If a 6= e and there exists an r 6= 0 such that ar = e, we say that a has

order
min{r > 0 : ar = e}.

(iii) If the equation ar = e has no solution with r 6= 0, we say that a has
infinite order.

Theorem 9.5. If G is finite group then the order of any a ∈ G divides the
order of G. In particular, a|G| = e.

Note that C2 × C2 × C2 has order 8 but contains no elements of order 4.

Lemma 9.6. If p is a prime, all groups of order p are isomorphic to Cp.
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Anyone who believes that the study of finite commutative groups is trivial
should test their belief against the next collection of groups.

Definition 9.7. We define (Rn, .) to be the set of integers r with 1 ≤ r ≤ n
and r coprime to n with multiplication modulo n. We write φ(n) = |Rn|.
(We call φ Euler’s totient function.)

It is not even trivial to show that Rn is indeed a group. We shall use
the following result (proved as a consequence of Euclid’s Algorithm in the
Numbers and Sets course for those of my audience who attend that course)
without proof.

Fact 9.8. If integers n and m are coprime, then there exist a and b integers
such that an + bm = 1.

Lemma 9.9. (Rn, .) is a commutative group.

Example 9.10. (Euler-Fermat Theorem.) If r and n are coprime, then

rφ(n) ≡ 1 mod n.

Example 9.11. (Fermat’s Little Theorem.) If p is a prime and 1 ≤ r ≤
p − 1, then

rp−1 ≡ 1 mod p.

Example 9.13, below, is not important in itself (indeed if time presses
I shall omit it) but provides useful revision of much of our discussion of
abstract finite groups. We need a preliminary remark.

Lemma 9.12. If G is a group in which every element has order 1 or 2 then
G is the product of cyclic groups of order 2.

Example 9.13. Up to isomorphism the only groups of order 8 or less are
(i) {e} (isomorphic to S1 and C1),
(ii) C2,
(iii) C3,
(iv) C4, C2 × C2 (isomorphic to the symmetry group of the rectangle),
(v) C5,
(vi) C2 × C3 (isomorphic to C3 × C2 and C6), D3 (isomorphic to S3),
(vii) C7

(viii) C8, C2×C4 (isomorphic to C4×C2), C2×C2×C2, D4 and possibly
a further group Q.
All these groups are non-isomorphic unless specified otherwise.
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Our next task is to satisfy ourselves that the putative group Q does in
fact exist.

Example 9.14. Consider the 2 × 2 matrices

i =

(

i 0
0 −i

)

, j =

(

0 1
−1 0

)

, k =

(

0 i
i 0

)

,

together with I, −I, −i, −j and −k. The set

Q = {I,−I, i,−i, j,−j,k,−k}

forms a subgroup Q of GL(C2) of order 8 with

i2 = j2 = k2 = −I, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Example 9.15. Continuing with the notation of the previous example, let
us consider the collection Q of matrices

x = x0I + x1i + x2j + x3k.

If we add or multiply matrices in Q we obtain matrices in Q. Further, if we
write

x∗ = x0I − x1i − x2j − x3k,

then
xx∗ = x∗x = x2

0 + x2
1 + x2

2 + x2
3 = ||x||2, say,

and so, if x 6= 0, we may set x−1 = ||x||−2x∗ and obtain

x−1x = xx−1 = I.

Thus we obtain the system Q of Hamilton’s quaternions which behaves
much like R and C although multiplication is not commutative (ij 6= ji). The
quaternions form a fascinating system but further discussion would take us
too far afield.

10 A brief look at quotient groups

The notion of a quotient group (like the notion of quotients in general) is
extremely useful but also fairly subtle.

If we consider a group G with a subgroup H, then it is natural to try
and put a group structure on the collection of left cosets gH. The ‘natural
definition’ is to write g1H.g2H = g1g2H. BUT THIS DOES NOT ALWAYS
WORK.
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Theorem 10.1. Let G be a group and H a subgroup of G. The following
two statements are equivalent

(i) g1H = g′
1H, g2H = g′

2H ⇒ g1g2H = g′
1g

′
2H,

(ii) ghg−1 ∈ H whenever g ∈ G, h ∈ H.

In view of this, we make the following definitions.

Definition 10.2. If H is a subgroup of a group G we say that H is normal
if ghg−1 ∈ H whenever g ∈ G, h ∈ H.

This is sometimes restated as ‘H is normal if gHg−1 ⊆ H for all g ∈ G’
or (using the next lemma) ‘H is normal if the only subgroup conjugate to H
is H itself’.

Lemma 10.3. Let H is a subgroup of a group G. Then H is normal if and
only if gH = Hg for all g ∈ G.

Since left and right cosets agree for H normal, we shall refer, in this case,
to ‘cosets’ rather than left cosets.

Definition 10.4. If H is a normal subgroup of a group G, the set G/H
of cosets gH with multiplication defined by g1H.g2H = g1g2H is called a
quotient group.

Theorem 10.5. Quotient groups are groups.

I reiterate the warning above:

QUOTIENT GROUPS EXIST ONLY FOR NORMAL SUBGROUPS.

Example 10.6. (i) Subgroups of Abelian groups are always normal.
(ii) If D3 is the symmetry group of the equilateral triangle, then no sub-

group of order 2 is normal.
(iii) If H is a subgroup of the finite group G and |H| = |G|/2, then H is

normal in G.

Here is a natural example of the use of quotient groups.

Example 10.7. Suppose that G is a group acting on a non-empty set X and
we write

H = {g ∈ G : gx = x for all x ∈ X}.
Then H is a normal subgroup of G and, if we take

(gH)x = gx,

then G/H acts faithfully on X.
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Quotient groups and homomorphisms are intimately linked.

Definition 10.8. If θ : G → H is a homomorphism we define the image
θ(G) of θ by

θ(G) = {θ(g) : g ∈ G},
and the kernel ker(θ) of θ by

ker(θ) = θ−1(e) = {g ∈ G : θ(g) = e}.
Lemma 10.9. Let θ : G → H be a homomorphism.

(i) θ(G) is a subgroup of H.
(ii) ker(θ) is a subgroup of G.
(iii) ker(θ) is a normal subgroup of G.
(iv) The equation θ(g) = h with h ∈ H has a solution in G if and only if

h ∈ θ(G).
(v) If g1 ∈ G is a solution of θ(g) = h with h ∈ H, then g2 ∈ G is a

solution if and only if g2 ∈ g1 ker(θ).

Theorem 10.10. (The isomorphism theorem.) If θ : G → H is a
homomorphism, then G/ ker θ is isomorphic to θ(G).

Example 10.11. (i) Consider the additive group (Z, +) and the cyclic group
(Cn, .) generated by a, say. If θ : Z → Cn is given by

θ(r) = ar,

then θ is a homomorphism,

ker(θ) = {r : r ≡ 0 mod n} = nZ and θ(Z) = Cn.

Thus Z/nZ is isomorphic to Cn.
(ii) Consider D3 generated by a and b with a3 = e, b2 = e and ba = a−1b

and the cyclic group C2 generated by c with c2 = e. If we set

θ(arbs) = cs,

then θ : D3 → C2 is a homomorphism, θ(D3) = C2 and ker(θ) is isomorphic
to C3.

(iii) Consider the cyclic group C6 generated by a with a6 = e, and the
cyclic group C2 generated by c with c2 = e. If we set

θ(ar) = cr,

then θ : C6 → C2 is a homomorphism, θ(C6) = C2 and ker(θ) is isomorphic
to C3.

(iv) If p and q are distinct primes, then the only homomorphism θ : Cp → Cq

is the trivial map θ(g) = e for all g ∈ Cp.
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Notice that every normal subgroup can be obtained a kernel.

Example 10.12. If H is a normal subgroup of a group G, then the map
θ : G → G/H given by

θ(g) = gH

is a homomorphism with kernel H.

11 The Möbius group

At the beginning of the course you briefly looked at the Möbius map T̃

T̃ (z) =
az + b

cz + d
,

where ad− bc 6= 0. This is ‘almost a well defined bijective map on C’ but, if
c 6= 0, there are two problems. The first is that T̃ (−d/c) is not defined and
the second is that there is no w ∈ C with T̃ (w) = a/c. We get round this by
adding a new point ∞ (‘the point at infinity’ in old fashioned language) to
C.

Definition 11.1. If a, b, c, d ∈ C and ad− bc 6= 0 we define the Möbius map
T which will be written informally as

T (z) =
az + b

cz + d

by the following formal rules.
(i) If c 6= 0, then

T (z) =
az + b

cz + d
when z ∈ C \ {−d/c},

T (−d/c) = ∞,

T (∞) = a/c.

(ii) If c = 0, then

T (z) =
az + b

cz + d
when z ∈ C,

T (∞) = ∞.

Henceforward, when we talk about a Möbius map we shall use this defini-
tion. Möbius maps will reappear in geometry courses and play an important
rôle throughout complex variable theory. The following result will be the key
to our treatment of Möbius maps.
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Lemma 11.2. Every Möbius map is the composition of Möbius maps of the
following three forms [α, λ ∈ C, λ 6= 0]

S1(z) = z + α (Translation),

S2(z) = λz (Rotation and dilation),

S3(z) =
1

z
.

Theorem 11.3. The collection M of Möbius maps forms a group acting on
C ∪ {∞}.

Lemma 11.4. The general equation of a circle or straight line in C is

Azz∗ + Bz∗ + B∗z + C = 0

with A and C real and |B|2 > AC. We have a straight line if and only if
A = 0. We have a locus through 0 (i.e. the set defined by our equation
contains 0) if and only if C = 0.

Theorem 11.5. The Möbius transform T given by Tz = z−1 takes circles
and straight lines to circles and straight lines. Any straight line is taken to a
circle or straight line through 0. Any circle or straight line through 0 is taken
to a straight line.

Theorem 11.6. Möbius transforms take circles and straight lines to circles
and straight lines.

Example 11.7. (Inversion.) (i) If k > 0, the map T : R2 ∪ {∞} →
R2 ∪ {∞} given, in polars, by T (r, θ) = (kr−1, θ) for r 6= 0, T0 = ∞,
T∞ = 0 takes circles and straight lines to circles and straight lines.

(ii) If k > 0, the map T : R3∪{∞} → R3∪{∞} given by Tr = kr−2r for
r 6= 0, T0 = ∞, T∞ = 0 takes spheres and planes to spheres and planes.

Example 11.8. (Peaucellier’s Inversor.) Consider a set of jointed rods
with OB, OD of equal length and AB, BC, CD, DA of equal length. If O is
a fixed point but the rest of the framework is free to move in a plane then, if
A describes part of a circle through O, C will describe part of a straight line.

Definition 11.9. If z1, z2, z3 and z4 are distinct complex numbers, we write

[z1, z2, z3, z4] =
(z4 − z1)(z2 − z3)

(z4 − z3)(z2 − z1)
.

and call [z1, z2, z3, z4] the cross ratio of z1, z2, z3 and z4.
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As might be expected, different authors permute the suffices in different
ways so you should always state which definition you use10. (All the theorems
remain unaltered whichever definition is used.)

Theorem 11.10. (i) Cross ratio is unaltered by Möbius transformation.
Thus, if z1, z2, z3 and z4 are distinct complex numbers and T is a Möbius
transform,

[Tz1, T z2, T z3, T z4] = [z1, z2, z3, z4].

(ii) If T is a Möbius map with T0 = 0, T1 = 1 and T∞ = ∞, then
T = I.

(iii) If z1, z2 and z3 are distinct complex numbers, then there exists a
unique Möbius transform T such that

Tz1 = 0, T z2 = 1, T z3 = ∞.

(iv) If z1, z2 and z3 are distinct complex numbers and w1, w2 and w3

are distinct complex numbers, then there exists a unique Möbius transform
T such that

Tz1 = w1, T z2 = w2, T z3 = w3.

Example 11.11. The distinct complex numbers z1, z2, z3 and z4 lie on a
circle (or straight line) if and only if their cross ratio [z1, z2, z3, z4] is real.

Note that this gives us an alternative proof of Theorem 11.611.
It is interesting to apply some of our general ideas on groups to the specific

group M.

Lemma 11.12. The collection GL(Cn) of invertible n×n complex matrices
forms a group under matrix multiplication. The set

SL(Cn) = {A ∈ GL(Cn) : det A = 1}

is a subgroup.

Lemma 11.13. (i) The map θ : GL(C2) → M given by

θ

(

a b
c d

)

(z) =
az + b

cz + d

10The particular choice we made has the property that, if we write, Tw = [z1, z2, z3, w]
then Tz1 = 0, Tz2 = 1 and Tz3 = ∞.

11To avoid circularity we have to give an alternative proof of Example 11.11. One way of
obtaining such a proof is to use the fact that (provided we choose their sign appropriately)
angles on the same chord of a circle are equal modulo π.
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is a surjective homomorphism with kernel the subgroup

{λI : λ ∈ C, λ 6= 0}.

(ii) The map θ : SL(C2) → M given by

θ

(

a b
c d

)

(z) =
az + b

cz + d

is a surjective homomorphism with kernel the subgroup {I,−I}.

We note that a simple modification of Theorem 3.4 gives the following
lemma.

Lemma 11.14. If A ∈ SL(C2), then exactly one of the following three things
must happen.

(i) We can find P ∈ SL(C2) such that

P−1AP =

(

λ 0
0 λ−1

)

for some λ ∈ C with λ 6= 1,−1, 0.
(ii) A = ±I.
(iii) We can find P ∈ SL(C2) such that

P−1AP =

(

λ 1
0 λ

)

.

with λ = ±1.

Using Lemma 11.13 (ii) this gives us the following result on Möbius maps.

Lemma 11.15. If T ∈ M, then one of the following three things must
happen.

(i) T is conjugate to a map S of the form Sz = µz (i.e., a rotation and
dilation) with µ 6= 1.

(ii) T = ι (i.e., Tz = z for all z).
(iii) T is conjugate to the map S given by Sz = z ± 1 (a translation).

Note that we seperate (i) and (ii) because T behaves very differently in
the two cases. In Lemma 11.17 we see that the two maps Sz = z ± 1 are, in
fact, conjugate.

We say that a map F : X → X has x ∈ X as a fixed point if f(x) = x.

Lemma 11.16. If T ∈ M, then T = ι or T has one or two fixed points.
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If we are interested in the behaviour of T nz, then (by conjugating with
the Möbius map S given by Sz = 1/z in (i) and by a similar trick in (iii))
we can obtain a slightly more refined version of Lemma 11.15.

Lemma 11.17. If T ∈ M then one of the following four things must happen.
(ia) T is conjugate to a map S of the form Sz = µz with |µ| > 1.
(ib) T is conjugate to a map S of the form Sz = µz with |µ| = 1 (pure

rotation) with µ 6= 1.
(ii) T = ι (i.e., Tz = z for all z).
(iii) T is conjugate to the map S given by Sz = z + 1 (a translation).

Thus, given a T ∈ M, we can find Q ∈ M such that S = QTQ−1 takes
one of the simple forms above. Since

T nz = Q−1(Sn(Q(z))),

study of Snw with w = Q(z) tells us about T nz.
Exercise 18.17 outlines a direct proof of Lemma 11.17 which does not

depend on looking at SL(C2).

12 Permutation groups

We now return to the study of the finite permutation group

Sn = S({1, 2, . . . , n}),

Definition 12.1. If σ ∈ Sn has the property that there exist distinct a1, a2, . . . , am

such that

σ(aj) = aj+1 [1 ≤ j ≤ m − 1],

σ(am) = a1,

σ(x) = x if x /∈ {a1, a2, . . . , am},

we say that σ is a cycle of length m and write

σ = (a1a2 . . . am).

If {a1, a2, . . . , am} ∩ {b1, b2, . . . , bp} = ∅ we say that the cycles (a1a2 . . . am)
and (b1b2 . . . bp) are disjoint.

Lemma 12.2. (i) (a1a2 . . . am) = (ama1 . . . am−1) = (am−1am . . . am−2) = . . .
(i.e., cycles can be cycled).

(ii) If σ and τ are disjoint cycles then στ = τσ (i.e., disjoint cycles
commute).

(iii) (a) = ι for all a ∈ {1, 2, . . . , n}.
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Theorem 12.3. Every σ ∈ Sn can be written as the product of disjoint cycles.
The representation is unique subject to the variations allowed by Lemma 12.2.

Example 12.4. (i) If σ is the product of disjoint cycles of length n1, n2,
. . . , nk, then σ has order lcm(n1, n2, . . . , nk).

(ii) If a pack of N cards is repeatedly shuffled using exactly the same
shuffle, then the pack will return to its initial state after at most

max{lcm(n1, n2, . . . , nk) : n1 + n2 + · · · + nk = N}

shuffles.

The following results are very useful in later work (but experience shows
that by the time the results are needed they will have been forgotten and
need to be painfully relearned).

Lemma 12.5. (i) If σ ∈ Sn, then

σ(a1a2 . . . am)σ−1 = (σ(a1)σ(a2) . . . σ(am)).

(ii) If the (a1ja2j . . . am(j)j) are disjoint cycles and σ ∈ Sn, then

σ

(

s
∏

j=1

(a1ja2j . . . am(j)j)

)

σ−1 =
s
∏

j=1

(σ(a1j)σ(a2j) . . . σ(am(j)j))

(iii) Two elements of Sn are conjugate if and only if they are the product
of the same number of disjoint cycles of each length (have the same ‘cycle
type’).

When thinking about results like (iii) we must be careful to treat cycles
of length 1 consistently.

The next lemma is obvious. We refer to cycles of length 2 as transposi-
tions.

Lemma 12.6. Every σ ∈ Sn is the product of transpositions.

What is much less obvious is the next result.

Lemma 12.7. The product of an even number of transpositions cannot be
written as the product of an odd number of transpositions and vice versa.

We obtain this result as the consequence of an equivalent statement.
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Theorem 12.8. (Existence of Signature.) (i) If n ≥ 2 there exists a non-
trivial homomorphism ζ from Sn to the multiplicative group ({−1, 1},×).

(ii) There is only one non-trivial homomorphism ζ from Sn to the multi-
plicative group ({−1, 1},×) [n ≥ 2]. If σ is the product of m transpositions,
then ζ(σ) = (−1)m.

(Exercise 18.18 sheds some light on our proof of Theorem 12.8.) We call
the ζ of Theorem 12.8 the signature. It will be used in the treatment of the
determinant in the linear algebra course and in the treatment of alternating
forms in later algebra. The signature also appears (via the alternating group
An defined below in Definition 12.11) in the discussion of the symmetry
groups of regular polyhedra in later geometry courses and in Galois Theory.

The following example, which is emphatically outside the schedules, shows
that the existence of a signature is not obvious.

Example 12.9. Suppose θ : S(Z) → {−1, 1} is a homomorphism. Extending
our notation from the finite case, suppose that

σ = (12)(34)(56) . . .

and that τ is the shift map given by τ(j) = j + 1 for all j ∈ Z.
(i) τ 2στ−2 = (34)(56)(78) . . . .
(ii) στ 2στ−2 = (12).
(iii) θ((12)) = 1.
(iv) If µ is the product of a finite number of cycles of finite length then

θ(µ) = 1.

Computation of signatures is made easy by the following observation.

Lemma 12.10. (i) (a1am+1)(a1a2 . . . am) = (a1a2 . . . amam+1).
(ii) A cycle of length k has signature (−1)k+1.

Definition 12.11. If n ≥ 2 and ζ : Sn → {−1, 1} is the signature, we write
An = ker(ζ) and call An the alternating group.

Lemma 12.12. (i) Sn has order n!.
(ii) An is a normal subgroup of Sn. Sn/An is isomorphic to C2.
(iii) An has order n!/2.

Exercise 12.13. Use the orbit-stabiliser theorem to prove that Sn has order
n! and An has order n!/2.

The following result is interesting in itself and will give us some practice
in working with An.

Example 12.14. A4 has order 12 but has no subgroup of order 6.
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13 Trailers

(The contents of this section are not part of the course and I will not lecture
on them unless there is time at the end.)

One of the main topics in my treatment of this course was the subject of
distance preserving linear maps, that is linear maps α : Rn → Rn such that
if αx = x′ then

x2
1 + x2

2 + · · · + x2
n = x′2

1 + x′2
2 + · · · + x′2

n .

In Einstein’s Special Theory of Relativity, which is the subject of a course in
the third term, particular interest is attached to those linear maps on R3×R

(that is ‘space-time’) which leave

x2 + y2 + z2 − (ct)2

unchanged. Normalising and generalising, this suggests that we should study
the linear maps α : Rn → Rn such that if αx = x′, then

x2
1 + x2

2 + · · · + x2
m − x2

m+1 − x2
m+2 − · · · − x2

n

= x′2
1 + x′2

2 + · · · + x′2
m − x′2

m+1 − x′2
m+2 − · · · − x′2

n .

This is too much of a challenge for the moment (it will be easier after next
year’s linear algebra course) so we study the simplest case.

Example 13.1. The collection L of linear maps α : R2 → R2 such that, if
αx = x′, then

x2
1 − x2

2 = x′2
1 − x′2

2

forms a group L. If we write L0 for the set of linear maps α : R2 → R2

which have matrix
(

cosh t sinh t
sinh t cosh t

)

,

with respect to the standard basis then:
(i) L0 is a subgroup of L.
(ii) L is the union of the four disjoint cosets EjL0 with

E1 = I, E2 = −I, E3 =

(

1 0
0 −1

)

, E4 =

(

−1 0
0 1

)

.

(iii) L0 is normal.
(iv) L0 is isomorphic to (R, +).
(v) {Ej : 1 ≤ j ≤ 4} is a subgroup of L isomorphic to C2 × C2 but L is

not commutative and so, in particular, not isomorphic to C2 × C2 × R.
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Groups like L are called Lorentz groups after the great Dutch physi-
cist who first formulated the transformation rules which underlie the Special
Theory of Relativity.

Next year’s linear algebra course contain generalisations of the notions of
orthogonal and symmetric matrices and maps from the real to the complex
case. When people become algebraists they have to swear a terrible oath
never to reveal that their subject has applications to other parts of mathe-
matics and the linear algebra course has been designed with this in mind.
However the generalisations are used in classical and, particularly, in modern
physics.

We start by defining an inner product on Cn by

〈z,w〉 =
n
∑

r=1

zrw
∗
r .

Lemma 13.2. If z,w,u ∈ Cn and λ ∈ C, then
(i) 〈z, z〉 is always real and positive.
(ii) 〈z, z〉 = 0 if and only if z = 0.
(iii) 〈λz,w〉 = λ〈z,w〉.
(iv) 〈z + u,w〉 = 〈z,w〉 + 〈u,w〉.
(v) 〈w, z〉 = 〈z,w〉∗.

Rule (v) is a warning that we must tread carefully with our new complex
inner product and not expect it to behave quite as simply as the old real
inner product. However, it turns out that

||z|| = 〈z, z〉1/2

behaves just as we wish it to behave. (This is not really surprising, if we
write zr = xr + iyr with xr and yr real, we get

||z||2 =
n
∑

r=1

x2
r +

n
∑

r=1

y2
r

which is clearly well behaved.)
We can take over Definition 4.2 and Lemma 4.3 directly.

Definition 13.3. (i) We say that a and b are orthogonal if 〈a,b〉 = 0.
(ii) We say that e1, e2, . . . , en are orthonormal if

〈ei, ej〉 = δij

for all 1 ≤ i, j ≤ n.
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Lemma 13.4. Any system of n orthonormal vectors e1, e2, . . . , en forms a
basis for Cn. (We call this an orthonormal basis.) If x ∈ Cn, then

x =
n
∑

r=1

〈x, er〉er.

If we now ask which linear maps preserve our new distance, we get results
and definitions which parallel the sequence from Lemma 4.5 to Lemma 4.10.

Lemma 13.5. If a, b ∈ Cn, then

||a + b||2 − ||a − b||2 + i||a + ib||2 − i||a − ib||2 = 4〈a,b〉.

Definition 13.6. If A is the n×n complex matrix (aij), then A∗ (the adjoint
of A) is the n × n matrix (bij) with bij = a∗

ji [1 ≤ i, j ≤ n].

Theorem 13.7. Let α : Cn → Cn be linear. The following statements are
equivalent.

(i) ||αx|| = ||x|| for all x ∈ Cn.
(ii) 〈αx, αy〉 = 〈x,y〉 for all x,y ∈ Cn.
(iii) If α has matrix A with respect to some orthonormal basis, then

AA∗ = I.

A complex n × n matrix A with AA∗ = I is called a unitary matrix.
If we think of the linear maps as central, we refer to the collection of

norm-preserving linear maps by the name U(n). If we think of the matrices
as central, we refer to the collection of complex n×n matrices A with AA∗ = I
by the name U(n).

Lemma 13.8. If A is a unitary matrix then | det A| = 1.

If we think in terms of linear maps, we define

SU(n) = {α ∈ U(n) : det α = 1}.

If we think in terms of matrices, we define

SU(n) = {A ∈ U(n) : det A = 1}.

(The letter U stands for ‘unitary’, the letters SU for ‘special unitary’.)

Lemma 13.9. U(n) is a group and SU(n) a subgroup of U(n).

Not surprisingly, the generalisation of the symmetric matrix from the real
case turns out to involve ∗ rather than T . The reader should have no difficulty
in proving the following parallel to Lemma 5.1.
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Lemma 13.10. Let α : Cn → Cn be linear. The following statements are
equivalent.

(i) 〈αx,y〉 = 〈x, αy〉 for all x,y ∈ Cn.
(ii) If α has matrix A with respect to some orthonormal basis, then A =

A∗.

We call an α, having the properties just described, Hermitian. We can
also call α a ‘self-adjoint’ map.

Again, the reader should have no problems proving the following versions
of Theorems 5.2 and 5.3

Theorem 13.11. If α : Cn → Cn is Hermitian, then all the roots of the
characteristic polynomial det(tι − α) are real.

Theorem 13.12. If α : Cn → Cn is Hermitian, then eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

As we might expect, the linear algebra course will contain a proof of the
following result (compare Fact 5.5).

Fact 13.13. (i) The map α : Cn → Cn is Hermitian if and only if there
exists an orthonormal basis of eigenvectors of Cn with respect to which α has
a diagonal matrix with real entries.

(ii) The n × n complex matrix A is Hermitian if and only if there exists
a matrix P ∈ SU(n) such that P ∗AP is diagonal with real entries.

In order to keep things simple for the rest of the discussion, we shall
confine ourselves to the two dimensional space C2, but almost everything
carries over to higher dimensions.

Lemma 13.14. (i) If α ∈ U(2), then we can find an orthonormal basis for
C2 with respect to which α has matrix

(

eiθ 0
0 eiφ

)

with θ, φ ∈ R. Conversely, any α with such a matrix representation is in
U(2).

(ii) If α ∈ SU(2), then we can find an orthonormal basis for C2 with
respect to which α has matrix

(

eiθ 0
0 e−iθ

)

with θ ∈ R. Conversely, any α with such a matrix representation is in SU(2).
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(iii) If β : C2 → C2 is Hermitian, then we can find an orthonormal basis
for C2 with respect to which β has matrix

(

λ 0
0 µ

)

with λ, µ ∈ R. Conversely, any β with such a matrix representation is Her-
mitian.

(Note that we can prove (iii) directly without appealing to Fact 13.13.)
The discussion now takes off into the wild blue yonder. Readers who are

already confused should stop reading here (indeed they could throw away the
whole of this last section without real loss). Those who read on can treat
what follows as a formal exercise (though, rather surprisingly, it is actually
rigorous).

Lemma 13.15. If α : C2 → C2 is linear, then
(i) We can find a K such that

||αx|| ≤ K||x||

for all x ∈ C2.
(ii) With the notation of (i),

||αnx|| ≤ Kn||x||.

(iii) If x ∈ C2, then
∑∞

n=0 αnx/n! converges to a limit which we call
exp(α)x. More formally, we can find exp(α)x ∈ C2 such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

n=0

1

n!
αnx − exp(α)x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

→ 0

as N → ∞.
(iv) With the notation of (iii), exp(α) : C2 → C2 is a linear map.
(v) If α has matrix A with respect to a given basis, then, with respect to

the same basis, exp(α) has matrix

exp(A) =
∞
∑

n=0

1

n!
An

with the sum taken in the obvious (component by component) way.

IMPORTANT WARNING In general exp(α) exp(β) 6= exp(α + β).
Before stating our final result we need a definition and an accompanying

remark.
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Definition 13.16. If α : Fn → Fn is linear, then the trace tr(α) is defined to
be minus the coefficient of tn−1 in the characteristic polynomial det(tι − α).

Lemma 13.17. If the linear map α : Fn → Fn has matrix A with respect to
some basis then

tr(α) =
n
∑

j=1

ajj.

We call
∑n

j=1 ajj the trace of A and write it tr A. The trace will be
discussed again in the linear algebra course.

Lemma 13.18. (i) The map α ∈ SU(2) if and only if α = eiβ with β
Hermitian of trace 0.

(ii) The 2×2 matrix A is in SU(2) (considered as a matrix group) if and
only if

A = exp(i(a1S1 + a2S2 + a3S3))

with a1, a2, a3 real and

S1 =

(

0 1
1 0

)

, S2 =

(

0 −i
i 0

)

, S3 =

(

1 0
0 −1

)

.

The matrices S1, S2 and S3 are called the Pauli spin matrices. They will
turn up together with the group SU(2) in the Part II Quantum Mechanics
courses. Had we gone through the argument above with SU(3) in place of
SU(2), we would have obtained eight real parameters a1, a2, . . . , a8 in place
of the three just found, and so heard a distant echo of the famous eight-fold
way of Gell-Mann and Ne’eman.

14 Books

Professor Beardon has just brought out a book Algebra and Geometry which
is very close in spirit and content to this course. If you want just one algebra
text to see you through Parts 1A and 1B then C. W. Norman Undergraduate
Algebra is very user friendly. P. M. Cohn’s Algebra (Volume 1) is a more
highbrow text but will appeal to future algebraists. All three books should
be in your college library. (If not the librarian will be pleased to order them.)
In general you should first consult textbooks in your library and only buy
one when you have used it successfully for some time.
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15 First exercise set

Most of the exercises in these exercise sets are taken from earlier sheets of
Professor Beardon. In each case, the first five or so exercises are intended
to be short and any exercises after the first twelve are for enthusiasts. (The
extra questions may come in handy for revision, or your supervisor may
choose a different selection of questions or one of the extra questions such as
Exercise 15.17 or 18.18 may catch your fancy.)

We will take e1, e2 . . . , en to be the standard basis of Rn. Unless otherwise
stated, matrices act on Rn with respect to this basis.

Exercise 15.1. (a) Find a 3× 3 real matrix with eigenvalues 1, i, −i. [Think
geometrically.]

(b) Construct a 3×3 non-zero real matrix which has all three eigenvalues
zero.

Exercise 15.2. (a) Let A be a square matrix such that Am = 0 for some
integer m. Show that every eigenvalue of A is zero.

(b) Let A be a real 2× 2 matrix which has non-zero non-real eigenvalues.
Show that the non-diagonal elements of A are non-zero, but that the diagonal
elements may be zero.

Exercise 15.3. Suppose that A is an n×n square matrix and that A−1 exists.
Show that if A has characteristic equation a0 + a1t + · · · + ant

n = 0, then
A−1 has characteristic equation

(−1)n det(A−1)(an + an−1t + · · · + a0t
n) = 0.

[Note : take n = 3 in this question if you wish, but treat the general
case if you can. It should be clear that λ is an eigenvalue of A if and only
if 1/λ is an eigenvalue of A−1, but this result says more than this (about
multiplicities of eigenvalues). You should use properties of the determinant
to solve this problem, for example, det(A) det(B) = det(AB). You should
also state explicitly why we do not need to worry about zero eigenvalues.]

Exercise 15.4. Show that the matrix

A =





0 1 0
−4 4 0
−2 1 2





has characteristic equation (t− 2)3 = 0. Explain (without doing any further
calculations) why A is not diagonalisable.
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Exercise 15.5. (i) Find a, b and c such that the matrix





1/3 0 a

2/3 1/
√

2 b

2/3 −1/
√

2 c





is orthogonal. Does this condition determine a, b and c, uniquely?
(ii) (Exercise 5.7) Let

A =

(

2 0
0 1

)

and P =

(

1 0
1 1

)

.

Compute PAP−1 and observe that it is not a symmetric matrix, although A
is. Why does this not contradict Lemma 5.6.

Exercise 15.6. Let

A =

(

3 4
−1 −1

)

.

Find the characteristic equation for A. Verify12 that A2 = 2A − I. Is A
diagonalisable ?

Show by induction that An lies in the two-dimensional subspace (of the
space of 2 × 2 real matrices) spanned by A and I, so that there exists real
numbers αn and βn with

An = αnA + βnI.

Use the fact that An+1 = AAn to find a recurrence relation (i.e., a difference
equation) for αn and βn. Solve these and hence find an explicit formula for
An. Verify this formula by induction.

Exercise 15.7. For each of the three matrices below,
(a) compute their eigenvalues (as often happens in exercises and seldom

in real life each eigenvalue is a small integer);
(b) for each real eigenvalue λ compute the dimension of the eigenspace

{x ∈ R3 : Ax = λx};
(c) determine whether or not the matrix is diagonalisable as a map of R3

into itself.




5 −3 2
6 −4 4
4 −4 5



 ,





1 −3 4
4 −7 8
6 −7 7



 ,





7 −12 6
10 −19 10
12 −24 13



 .

12See Example 2.12.
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Exercise 15.8. Determine the eigenvalues and eigenvectors of the symmetric
matrix

A =





3 1 1
1 2 0
1 0 2



 .

Use an identity of the form PAP T = D, where D is a diagonal matrix,
to find A−1.

Exercise 15.9. The object of this exercise is to show why finding eigenvalues
of a large matrix is not just a matter of finding a large fast computer.

Consider the n × n complex matrix A = (aij) given by

aj j+1 = 1 for 1 ≤ j ≤ n − 1

an1 = κn

aij = 0 otherwise,

where κ ∈ C is non-zero. Thus, when n = 2 and n = 3, we get the matrices

(

0 1
κ2 0

)

and





0 1 0
0 0 1
κ3 0 0



 .

(i) Find the eigenvalues and associated eigenvectors of A for n = 2 and
n = 3. (Note that we are working over C so we must consider complex roots.)

(ii) By guessing and then verifying your answers, or otherwise, find the
eigenvalues and associated eigenvectors of A for for all n ≥ 2.

(iii) Suppose that your computer works to 15 decimal places and that
n = 100. You decide to find the eigenvalues of A in the cases κ = 2−1 and
κ = 3−1. Explain why at least one (and more probably) both attempts will
deliver answers which bear no relation to the true answers.

Exercise 15.10. (a) Let

A =

(

2 −2
−2 5

)

Find an orthogonal matrix P such that P T AP is diagonal and use P to
diagonalise the quadratic form

Q(x, y) = 2x2 − 4xy + 5y2.

(b) Diagonalise the quadratic form

(a cos2 θ + b sin2 θ)x2 + 2(a − b)(sin θ cos θ)xy + (a sin2 θ + b cos2 θ)y2.
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Exercise 15.11. Find all eigenvalues, and an orthonormal set of eigenvectors,
of the matrices

A =





5 0
√

3
0 3 0√
3 0 3



 and B =





2 −1 −1
−1 2 −1
−1 −1 2.





Hence sketch the surfaces

5x2 + 3y2 + 3z2 + 2
√

3xz = 1 and x2 + y2 + z2 − xy − yz − zx = 1.

Exercise 15.12. Use Gaussian elimination to solve the following two systems
of integer congruences modulo 7.

x + y + z ≡ 3

x + 2y + 3z ≡ 1

x + 4y + 2z ≡ 1.

Do the same for

x + y + 6z ≡ 2

x + 2y + 5z ≡ 4

x + 4y + 3z ≡ 1.

Write down a third equation which makes the system

x + y + 6z ≡ 2

x + 2y + 5z ≡ 4

insoluble and show that you have done so.

Exercise 15.13. (a) Suppose that a 3 × 3 real matrix A acting on R3 has
eigenvalues λ, µ and µ̄, where λ is real, µ is complex and non-real, and µ̄ is
the complex conjugate of µ. Suppose also that u is a real eigenvector for λ
and that v is a complex eigenvector for µ, where v = v1 + iv2, and v1 and
v2 are real vectors. Show that v1 − iv2 is a complex eigenvector for µ̄.

Assume that the vectors u, v1, v2 are linearly independent. Show that A
maps the plane Π in R3 spanned by v1 and v2 into itself, and that Π contains
no eigenvectors of A.

(b) Illustrate the previous paragraph with the case of a rotation of R3 of
angle π/4 about the axis along e1.
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(c) Illustrate (a) again by taking

A =





4 −5 7
1 −4 9
−4 0 5



 ,

and show that in this case Π has equation 2x − 2y + z = 0.

Exercise 15.14. Let Σ be the surface in R3 given by

2x2 + 2xy + 4yz + z2 = 1.

By writing this equation as
xT Ax = 1,

with A a real symmetric matrix, show that there is an orthonormal basis
such that, if we use coordinates (u, v, w) with respect to this new basis, Σ
takes the form

λu2 + µv2 + νw2 = 1.

Find λ, µ and ν and hence find the minimum distance between the origin
and Σ. [It is not necessary to find the basis explicitly.]

Exercise 15.15. (This is another way of proving detAB = det A det B. You
may wish to stick to the case n = 3.)

If 1 ≤ r, s ≤ n, r 6= s and λ is real, let E(λ, r, s) be an n× n matrix with
(i, j) entry δij + λδirδjs. If 1 ≤ r ≤ n and µ is real, let F (µ, r) be an n × n
matrix with (i, j) entry δij + (µ − 1)δirδjr.

(i) Give a simple geometric interpretation of the linear maps from Rn to
Rn associated with E(λ, r, s) and F (µ, r).

(ii) Give a simple account of the effect of pre-multiplying an n×m matrix
by E(λ, r, s) and by F (µ, r). What is the effect of post-multiplying an m×n
matrix?

(iii) If A is an n × n matrix, find det(E(λ, r, s)A) and det(F (µ, r)A) in
terms of det A.

(iv) Show that every n× n matrix is the product of matrices of the form
E(λ, r, s) and F (µ, r) and a diagonal matrix with entries 0 or 1.

(v) Use (iii) and (iv) to show that, if A and B are n × n matrices, then
det A det B = det AB.

Exercise 15.16. Show that a rotation about the z axis through an angle θ
corresponds to the matrix

R =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .
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Write down a real eigenvector of R and give the corresponding eigenvalue.
In the case of a matrix corresponding to a general rotation, how can one

find the axis of rotation?
A rotation through 45◦ about the x-axis is followed by a similar one about

the z-axis. Show that the rotation corresponding to their combined effect has
its axis inclined at equal angles

cos−1 1√
(5 − 2

√
2)

to the x and z axes.

Exercise 15.17. (i) If β : Rn → Rn is an orthogonal map which fixes two
orthonormal vectors e1 and e2, show that if, x is perpendicular to e1 and e2,
then βx is perpendicular to e1 and e2.

(ii) Use the ideas of Lemma 4.16 and the surrounding lemmas to show
that, if n ≥ 3, then there is an orthonormal basis of Rn with respect to which
β has matrix

(

C O2,n−2

On−2,2 B

)

where Or,s is a r × s matrix of zeros, B is an (n − 2) × (n − 2) orthogonal
matrix and

C =

(

cos θ − sin θ
sin θ cos θ

)

for some real θ.
(iii) Show that, if n = 4, then, if β is special orthogonal, we can find an

orthonormal basis of R4 with respect to which β has matrix








cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2

0 0 sin θ2 cos θ2









,

for some real θ1 and θ2, whilst, if β is not special orthogonal, we can find an
orthonormal basis of R4 with respect to which β has matrix









−1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ









,

for some real θ.
(iv) What happens if we take n = 5? What happens for general n? Prove

your statements.
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16 Second exercise set

Most of the exercises in these exercise sets are taken from earlier sheets of
Professor Beardon. In each case, the first five or so exercises are intended
to be short and any exercises after the first twelve are for enthusiasts. (The
extra questions may come in handy for revision, or your supervisor may
choose a different selection of questions or one of the extra questions such as
Exercise 15.17 or 18.18 may catch your fancy.)

Exercise 16.1. Throughout this question (G, ∗) will be set G with a multi-
plication ∗ such that a ∗ b ∈ G whenever a, b ∈ G whilst

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

(i) Suppose that there exist eR and eL in G such that

a ∗ eR = eL ∗ a = a for all a ∈ G.

Show that eR = eL. How does this show that the unit in a group is unique?
(ii) Suppose that there exists an e ∈ G such that a ∗ e = e ∗ a = a for all

a ∈ G. Show that, if x ∈ G and we can find xR and xL in G such that

x ∗ xR = xL ∗ x = e,

then xR = xL. How does this show that the inverse of any element in a group
is unique?

(iii) Suppose now that (G, ∗) is a group. If H is a non-empty subset of G
such that ab−1 ∈ H whenever a, b ∈ H, show that H is a subgroup of G.

Exercise 16.2. Let Z be the group of integers under addition. What is the
subgroup of Z generated

(i) by 530 and 27?
(ii) by 531 and 27?

[Recall that the subgroup generated by a subset E of a group is the smallest
subgroup of G containing E. Consider the greatest common divisor.]

Exercise 16.3. Show that if H and K are subgroups of a group G, then
H ∩ K is also a subgroup of G. Show also that, if H and K have orders p
and q, respectively, where p and q are coprime, then H ∩ K contains only
the identity element e of G.

Exercise 16.4. Show that the set G of matrices of the form
(

z w
−w̄ z̄

)

,
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where z and w are complex numbers with |z|2 + |w|2 6= 0, is a non-Abelian
group under multiplication.

Show that the set H of matrices of the form
(

z w
−w̄ z̄

)

,

where z and w are complex numbers with |z|2 + |w|2 = 1, is a subgroup of
G. Is H a normal subgroup of G? [Think determinants. H is normal if
ABA−1 ∈ H whenever A ∈ G and B ∈ H.] Is H Abelian? Is H infinite? In
each case, give reasons.

Exercise 16.5. Let G be the set of complex numbers of the form exp iπq with
q rational. Show that G is an Abelian group under multiplication. Show
that G is infinite but that every element of G is of finite order.

Can you find an infinite group in which every element except the identity
is of infinite order? Give reasons.

Exercise 16.6. Let P be a solid triangular prism with an equilateral triangle
as cross-section and ends orthogonal to the longitudinal axis of the prism (a
‘Toblerone’ bar). Find the group of rotations which leaves P invariant. Can
you show that it is isomorphic to a standard group? [It may be helpful to
proceed as follows. First find the number of elements in the group. Now find
generators for the group and relations between them. Now see if you can
identify the group as isomorphic to one you already know.] Find the group
of rotations and reflections which leaves P invariant. Can you show that it
is isomorphic to a standard group?

Exercise 16.7. Suppose G is group in which every element other than the
identity has order 2. By evaluating x(xy)2y in two ways, show that xy = yx
for all x, y ∈ G. If the identity e, x and y are all distinct, show that the set
{e, x, y, xy} is a subgroup of G of order exactly 4.

Use Lagrange’s theorem to show that any group of order 2p, where p is
an odd prime, must contain an element of order p.

Exercise 16.8. Consider the four matrices

1 =

(

1 0
0 1

)

, i =

(

i 0
0 −i

)

, j =

(

0 1
−1 0

)

, k =

(

0 i
i 0

)

.

Compute i2, j2, k2, ij, jk, ki, ji, kj, ik and show that the four matrices
generate a group Q of order 8. Is the group Q Abelian? How many subgroups
of order 4 does it have?

Exercise 16.9. (a) Consider the functions f : A → B, g : B → C and their
composition g ◦ f : A → C given by g ◦ f(a) = g(f(a)). Prove the following
results.
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(i) If f and g are surjective, then so is g ◦ f .
(ii) If f and g are injective, then so is g ◦ f .
(iii) If g ◦ f is injective, then so is f .
(iv) If g ◦ f is surjective, then so is g.
(b) Give an example where g ◦ f is injective and surjective but f is not

surjective and g is not injective.
(c) If any of your proofs of parts (i) to (iv) of (a) involved contradiction,

reprove them without such arguments13.
(d) Have you given the simplest possible example in (b)? (If you feel that

this is not a proper question, let us ask instead for the smallest possible sets
A and B.)

Exercise 16.10. Three fixed lines a, b, c are the sides of an equilateral trian-
gle, and A, B C denote the operations of reflection in a, b, c respectively.
Describe the operations AB, CB, CBAB. (You should use the composition
law (fg)(x) = f(g(x)).)

Show that there exists an infinite group G containing elements p, q, r
such that

(i) G is generated by p, q, r;
(ii) p2 = q2 = r2 = (qr)3 = (rp)3 = (pq)3 = e.

Exercise 16.11. For any two sets A and B the symmetric difference A△B
of A and B is the set of elements in exactly one of A and B. Let Ω be a
non-empty set and let G be the set of subsets of Ω (note that G includes both
the empty set ∅ and Ω). Show that G with the operation △ is an abelian
group. [Hint : the identity element is likely to be either ∅ or Ω as no other
‘special’ element presents itself. Remark : this is an example in which the
associative law is not entirely trivial.]

Let Ω = {1, . . . , 7} and let A = {1, 2, 3}, B = {3, 4, 5}, C = {5, 6, 7}.
Find X in G such that A△X△B = C.

Exercise 16.12. Let Cn be the cyclic group with n elements and D2n the
dihedral group with 2n elements (i.e., the group of symmetries of the regular
n-gon14). If n is odd and f : D2n → Cn is a homomorphism, show that
f(x) = e for all x ∈ D2n. What can we say if n is even?

Find all the homomorphisms from the cyclic group Cn of order n gen-
erated by a, say, to Cm the cyclic group generated by b, say. If n = m,
show that there are φ(n) isomorphisms, where φ(n) is the number of integers
between 0 and n − 1 coprime to n (Euler’s totient function).

13Conway refers to arguments of the form ‘Assume X is true but Y is false. Since X

implies Y it follows that Y is true. This contradicts our original assumption. Thus X

implies Y .’ as ‘absurd absurdums’.
14Observe my inability to keep to a consistent choice between Dn and D2n.
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Exercise 16.13. (This question will be accessible to those who are doing the
course ‘Numbers and Sets’, it may or may not be accessible to others.) State
what is meant by an equivalence relation between members of a set E and
show that an equivalence relation defines a partition of E into disjoint sets.

A relation ∼ between m × n matrices A and B is defined as follows:
A ∼ B if there exists a non-singular m × m matrix P and a non-singular
n × n matrix Q such that

PAQ = B.

Show that this is an equivalence relation.
State a criterion for A to be equivalent to

[

Ir 0
0 0

]

,

where Ir is the unit r × r matrix, and deduce the number of equivalence
classes.

Exercise 16.14. Giving adequate justification for your answers, state which
of the following sets of n × n matrices are groups under the usual operation
of matrix multiplication (in each case n ≥ 2)

(i) the matrices A with a11 = 1;
(ii) the set consisting of the zero matrix only;
(iii) the matrices with a positive non-zero determinant;
(iv) the matrices with determinant zero;
(v) the matrices whose determinant is a non-zero integer;
(vi) the matrices A such that aij is an integer for all (i, j) and det A = 1.

Exercise 16.15. We work in R2. Let R1 be the rectangle with vertices (0, 0),
(1, 0), (1, 2), (0, 2) and let R2 be the rectangle with vertices (0, 0), (2, 0),
(2, 1), (0, 1). Find all the isometries which map R1 to R2 and show that you
have indeed found all of them.

Exercise 16.16. Throughout this question G is a group and K a non-empty
subset of G.

(i) Give an example of a finite group G and a non-empty subset K such
that x−1Kx = K for all x ∈ G but K is not a normal subgroup of G.

(ii) Show that if K is finite and Kx ⊆ K for some x ∈ G, then Kx = K.
(iii) Give an example to show that (ii) is false if we drop the condition K

finite.
(iv) If Kx = K for all x ∈ G, show that K = G.
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Exercise 16.17. From time to time the lecturer and your supervisor may
mention the notion of ‘a group generated by certain elements’ (eg in the hint
to Exercise 16.6). It is not necessary to make this notion precise at 1A level.
If you are interested, this exercise shows how it can be made precise. The
arguments are easy but not worth doing unless you formulate them carefully.

(i) Let G be a group and let {Hα : α ∈ A} be a non-empty collection of
subgroups of G. Show that

⋂

α∈A Hα is a subgroup of G.
(ii) Let G be a group and X a non-empty subset of G. Explain why the

collection GX of subgroups of G containing X is non-empty. We call

gen X =
⋂

H∈GX

H

the subgroup of G generated by X.
(iii) Show that if G and X are as in (ii), then there is unique subgroup K

of G containing X with the property that, if H is a subgroup of G containing
X, then H ⊇ K. Show also that K = gen X.

(iv) If G and X are as in (ii), show that genX consists of the unit e
together with all elements

N
∏

i=1

gǫi

i = gǫ1
1 gǫ1

2 . . . gǫN

N

with ǫi = ±1, gi ∈ X [1 ≤ i ≤ N ] and N ≥ 1.
(v) [In the remainder of this question we use the notion of generator to

bound the number of non-isomorphic groups of order n. You should worry
less about dotting i’s and crossing t’s.] If E contains n elements explain why
there are exactly nn2

distinct functions f : E × E → E and use this fact to
show that there are at most nn2

non-isomorphic groups of order n.
(vi) If H is a subgroup of a finite group G and x /∈ H show that {x} ∪H

generates a subgroup of order at least twice the order of H. Deduce that
that a group of order n has a set of generators with at most log2 n elements.
(That is to say, we can find X a subset of G with at most log2 n elements
and gen X = G. We define log2 n by the equation 2log

2
n = n.)

(v) Suppose that X generates a group G. Explain how, given the values
of xg and x−1g for every x ∈ X and g ∈ G, we may compute uv for every
u, v ∈ G. Deduce that there are at most n2n log

2
n non-isomorphic groups of

order n.
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17 Third exercise set

Most of the exercises in these exercise sets are taken from earlier sheets of
Professor Beardon. In each case, the first five or so exercises are intended
to be short and any exercises after the first twelve are for enthusiasts. (The
extra questions may come in handy for revision, or your supervisor may
choose a different selection of questions or one of the extra questions such as
Exercise 15.17 or 18.18 may catch your fancy.)

Exercise 17.1. Show that if a group G is generated by two elements a and b,
where a−1ba = b2 and b−1ab = a2, then G contains only one element. [Recall
that ‘G is generated by two elements a and b’ means that every element of
G is the product of terms of the form a, b, a−1 and b−1.]

Exercise 17.2. The dihedral group D2n is the full symmetry group of a regular
plane n-gon. Show that, if the integer m divides 2n, then D2n has a subgroup
of order m.

If n ≥ m ≥ 3, show that D2m is isomorphic to a subgroup of D2n if and
only if m divides n.

Exercise 17.3. Show that the set of real non-singular 3×3 upper-triangular15

matrices form a group under matrix multiplication. Does this group contain
any elements of order two which are not diagonal matrices?

Exercise 17.4. Let G the group of orthogonal 2 × 2 real matrices and let N
be a normal subgroup of G that contains a reflection in some line through
the origin. Show that N contains all reflections and deduce that N = G.

Exercise 17.5. Show that the set of real 2 × 2 upper triangular matrices of
positive determinant is a group G under matrix multiplication. Show that
the map θ given by

θ

(

a b
0 d

)

= log ad

is a homomorphism of G onto the additive group R. What is the kernel K
of θ?

Exercise 17.6. Let G be the set of all 3× 3 real matrices of determinant 1 of
the form





a 0 0
b x y
c z w



 .

15If you come across a word which you do not know like ‘upper-triangular’ you have
various choices. You can not do the question OR you can ask a friend OR go and look in
the index in the algebra books in your college library. Which of these three choices is the
stupidest? Actually an upper triangular matrix (aij) is one with aij = 0 whenever i > j

i.e., one with all elements below the diagonal zero.
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Show that G is a group under matrix multiplication. Find16 a homomorphism
from G onto the group of all non-singular 2 × 2 real matrices and find its
kernel.

Exercise 17.7. Let Z, Q and R be the additive groups of integers, rational
and real numbers respectively. Show that every element of the quotient group
Q/Z has finite order. Show that every element of the quotient group R/Q

(apart from the identity) has infinite order. Show that some elements of R/Z

have infinite order and some non-identity elements do not.

Exercise 17.8. The group of 2 × 2 real non-singular matrices is the General
Linear Group GL(2, R); the subset of GL(2, R) consisting of matrices of de-
terminant 1 is called the Special Linear Group SL(2, R). Show that SL(2, R)
is, indeed, a subgroup of GL(2, R) and that it is, in fact, normal. Show that
the quotient group GL(2, R)/SL(2, R) is isomorphic to the multiplicative
group of non-zero real numbers. [The neatest way to do this question is to
reflect on the isomorphism theorem (Theorem 10.10).]

Exercise 17.9. Let G and H be groups and φ : G → H a homomorphism
with kernel K. Show that, if K = {e, a}, then x−1ax = a for all x ∈ G.

Show that:–
(i) There is a homomorphism from O(3), the orthogonal group of 3 × 3

real matrices, onto a group of order 2 with kernel the special orthogonal
group SO(3).

(ii) There is a homomorphism from S3 the symmetry group on 3 elements
to a group of order 2 with a kernel of order 3.

(iii) There is a homomorphism from O(3) onto SO(3) with kernel of order
2.

(iv) There is no homomorphism from S3 to a group of order 3 with a
kernel of order 2.

Exercise 17.10. For a combinatorialist a graph is a finite set of points called
vertices and some edges. Each edge joins two vertices and there is at most
one edge [ab] = [ba] joining any two vertices a and b. (Think of airports with
at most one route joining any two airports.) Two such graphs with vertices
labelled 1 to 6 are shown in Figure 1.
Graph A has edges [12], [23], [34], [45], [56], [61], [35], [31] and [51].
Graph B has edges [12], [23], [34], [45], [56], [61], [35], [26], [63] and [52].

A symmetry ρ of the graph is a permutation of {1, . . . , 6} such that
(ρa, ρb) is an edge if and only if (a, b) is an edge. Show that the symme-
tries of a graph form a subgroup of S6.

16That is to say, guess, and then verify that your guess is correct. Guessing is an essential
part of mathematics. Very good guessers are very good mathematicians (provided they
understand the difference between a guess and a proof).
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Figure 1: Graphs A and B

For each of graphs A and B
(a) find the symmetry group of the graph;
(b) find the orbit and stabiliser for each vertex;
(c) verify the orbit-stabiliser theorem for each vertex.

Exercise 17.11. Let G be a finite group and X the set of its subgroups. Show
that g(L) = gLg−1 [g ∈ G, L ∈ X] defines an action of G on X. If H is a
proper subgroup of G show that the orbit of H has at most |G|/|H| elements
and, by considering overlapping, or otherwise, show that there is an element
of G which does not belong to any conjugate of H.

Exercise 17.12. In each case, give reasons for your answer.
(i) Is it true that, if a finite group G acts on a finite set X, then every

g ∈ G has a fixed point? [Recall that x is a fixed point for g if gx = x.]
(ii) Is it true that, if a finite group G with more than one element acts

faithfully on a finite set X with more than one element, then there exists a
g ∈ G with no fixed point?

(iii) Can an infinite group have a finite subgroup with more than one
element?

(iv) Let a and b be elements of an Abelian group. If a and b have order
2, what are the possible orders of ab?

(v) Is every subgroup of a normal subgroup of a group G itself normal in
G?

(vi) Let G1 and G2 be arbitrary groups. Does there exist a group G with
subgroups H1 and H2 such that H1 is isomorphic to G1 and H2 is isomorphic
to G2?

(vii) [For those who have done the course ‘Numbers and Sets’ or know
about countability from other sources.] Does there exist an uncountable set
of finite groups no two of which are isomorphic?

Exercise 17.13. Let G be a group acting faithfully on a finite set X.
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(i) We say that G acts transitively on X if there is only one orbit. Show
that G acts transitively if and only if given x, y ∈ X we can find a g ∈ G
with gx = y.

(ii) Suppose that G acts transitively on X. Define a function T : G ×
X → Z by T (g, x) = 1 if gx = x, T (g, x) = 0 otherwise. By evaluating
∑

x∈X

∑

g∈G T (g, x) in two different ways, show that

1

|G|
∑

g∈G

I(g) = 1,

where I(g) is the number of elements fixed by g.
(iii) Deduce that, if G acts transitively on X and X has more than one

element, then there must exist a g ∈ G with no fixed point.
(iv) Suppose now that we do not assume that G acts transitively. Find

and prove a formula along the lines of (ii) for the number N of distinct orbits.
[The formula you find is called the Cauchy–Frobenius formula. If your super-
visor is a combinatorialist or a group theorist you may expect an impassioned
speech on the many uses of this result, but, alas, there is not room in 1A for
all that we would like to teach.]

Exercise 17.14. If G is a group, we call an isomorphism α : G → G an
automorphism. Show that the automorphisms of G form a group under
composition.

Consider Q (the rationals) as an additive group. Show that, if r and s are
non-zero rationals, there is a unique automorphism α with α(r) = s. Deduce
that the group of automorphisms of Q is isomorphic to the multiplicative
group of Q \ {0}.
Exercise 17.15. You are skiing on the border of Syldavia. By mistake you
cross into Borduria and are arrested. The border guard turns out to be an
old Trinity man and agrees to let you go provided that you prove you are
indeed a mathematician by classifying all groups of order 10. Do so.

Exercise 17.16. (i) Consider the collection A of maps T : R2 → R2 given by

Tx = α(x) + u

where α is a non-singular linear map (i.e. α ∈ GL(R2)) and u ∈ R2. Show
that A forms a group under composition.

(ii) Show that the set of isometries, that is to say, T such that

‖Tx − Ty‖ = ‖x − y‖,

for all x, y ∈ R2 forms a subgroup of A. [You may assume that any isometry
which fixes 0 is linear.]
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(iii) In what follows we seek to characterise the set B of T ∈ A such that
T 2 = I, the identity map. Suppose

Tx = α(x) + u

where α ∈ GL(R2) and u ∈ R2. Show that T ∈ B if and only if α2 = I and
αu = −u.

(iv) Suppose that α ∈ GL(R2) and α2 = I. Show that either α = I, or
α = −I, or there exists a basis f1, f2 with respect to which α has matrix

(

−1 0
0 1

)

.

(v) Suppose that α ∈ GL(R2) and α2 = I. Show that either α = I, or
α = −I, or there exists a orthonormal basis e1, e2 with respect to which α
has matrix

(

−1 k
0 1

)

for some real k.
(vi) Show that T ∈ B if and only if

Tx = x

for all x ∈ R2, or
Tx = −x + u

for all x ∈ R2 and some fixed u ∈ R2, or if, after an appropriate rotation of
axes,

T

(

x
y

)

=

(

−1 k
0 1

)(

x
y

)

+

(

u
0

)

for some fixed k, u ∈ R.
(vii) Show that, if T ∈ B, then T leaves some line l through the origin

fixed (that is to say, T l = l).
(viii) Is B a subgroup of A?
(xi) Show that, if T is an isometry and T 2 = I, then T is a reflection in

some line (not necessarily through the origin), or a rotation through π about
some point (not necessarily the origin) or the identity map.

18 Fourth exercise set

Most of the exercises in these exercise sets are taken from earlier sheets of
Professor Beardon. In each case, the first five or so exercises are intended
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to be short and any exercises after the first twelve are for enthusiasts. (The
extra questions may come in handy for revision, or your supervisor may
choose a different selection of questions or one of the extra questions such as
Exercise 15.17 or 18.18 may catch your fancy.)

Exercise 18.1. Let X = {0, 1, 2, . . . , 16}. Express each of the following
permutations of X as a product of cycles and decide whether it is even or
odd.

(a) The function defined by f1(x) ≡ 2x mod 17.
(b) The function defined by f2(x) ≡ x + 5 mod 17.
(c) The function defined by f3(x) ≡ 3x mod 17.
Explain why the function defined by f4(x) ≡ x2 mod 17 is not a permu-

tation.

Exercise 18.2. What is the largest possible order of an element in S5?
What is the largest possible order of an element in S9?
What is the largest possible order of an element in S16? [You may need

to run through several possibilities.]
Show that every element in S10 of order 14 is odd.

Exercise 18.3. Show that any subgroup of Sn which is not contained in An

contains an equal number of odd and even elements.

Exercise 18.4. Let g(z) = (z + 1)/(z − 1). By considering the points g(0),
g(∞), g(1) and g(i), find the image of the real axis R and the imaginary
axis (in each case with ∞ attached) under g. What is the image under g of
{x + iy : x > 0, y > 0}?
Exercise 18.5. Express the Möbius transformation z 7→ (2z + 3)/(z − 4) as
the composition of maps of the form z 7→ az, z 7→ z + b and z 7→ 1/z. Hence
show that z 7→ (2z + 3)/(z − 4) maps the circle |z − 2i| = 2 onto the circle

∣

∣

∣

∣

z +

(

6 + 11i

8

)∣

∣

∣

∣

=
11

8
.

Exercise 18.6. (i) Show that, if z1, z2, z3 and w1, w2, w3 are two triples of
distinct points in C∪{∞}, there exists a unique Möbius transformation that
takes zj to wj [j = 1, 2, 3]. Hence show that 4 distinct points z1, z2, z3 and z4

lie on a circle or a straight line if and only if the cross ratio CR(z1, z2, z3, z4)
is real.

(ii) If z1, z2, z3 and z4 are distinct and CR(z1, z2, z3, z4) = λ write down
the possible values of CR(zσ1, zσ2, zσ3, zσ4) when σ ∈ S4, proving your asser-
tion.

(iii) Use cross-ratios to prove Ptolemy’s theorem:– ‘For any quadrilateral
whose vertices lie on a circle the product of the lengths of the diagonals is
the sum of the products of the lengths of pairs of opposite sides.’
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Exercise 18.7. Let G be the subgroup of those Möbius transformations which
map the set {0, 1,∞} onto itself. Show that the only elements of G are the
functions

f0(z) = z, f1(z) = 1−z, f2(z) =
1

z
, f3(z) =

z

z − 1
, f4(z) =

1

1 − z
, f5(z) =

z − 1

z
.

To which standard group is G isomorphic?
Find the group of Möbius transformations which map the set {0, 2,∞}

onto itself.

Exercise 18.8. Show that if |a| 6= 1 the map

Taz =
z − a

a∗z − 1

takes the unit circle {z : |z| = 1} to itself. What are Ta0 and Taa? What
does Ta take the unit disc D = {z : |z| < 1} to (i) if |a| < 1, (ii) if |a| > 1?
What happens if |a| = 1?

Show that the only Möbius map S with S0 = 0, S1 = 1 and SD = D is
the identity map. Hence, or otherwise, show that the most general Möbius
map R with RD = D is given by

Rz = exp(iθ)
z − a

a∗z − 1
,

where θ is real and |a| < 1.
Find the most general Möbius map which takes the half-plane {z : Im(z) >

0} to the unit disc D. (You may leave your result in the form of a composi-
tion.)

Exercise 18.9. Show that every Möbius transform has at least one fixed point.
Identify the stabiliser G of ∞. Find all the T ∈ G which have only one

fixed point and show that

T nz → ∞ as |n| → ∞

for all such T and all z ∈ C. Hence show that, if S is any Möbius map with
a unique fixed point z0, then

Snz → z0 as |n| → ∞

for all z ∈ C ∪ {∞}.
Identify the subgroup H of Möbius maps which leave 0 and ∞ fixed and

the subgroup H ′ of Möbius maps which leave the set {0,∞} fixed. Describe,
in general terms, the orbits under T ∈ H (that is to say, the orbit of a
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point z under the cyclic group generated by T ) if T does not leave the circle
{z ∈ C : |z| = 1} fixed. Give an example of a Möbius map for which the
orbit of every point with two exceptions has four elements.

Show that every Möbius transform, with exactly one exception, has ex-
actly one fixed point or exactly two fixed points.

Exercise 18.10. The cycle type of an element σ of the symmetric group Sn

is defined to be the collection of lengths of disjoint cycles that form σ. (For
example (1754)(268)(3)(9) ∈ S9 has cycle type 4, 3, 1, 1.)

(i) Show that σ1 and σ2 in Sn have the same cycle type if and only if
there exists a τ ∈ Sn such that σ1 = τ−1σ2τ .

(ii) Find the number of elements of each cycle type in S5. Which of them
belong to A5?

Exercise 18.11. (i) Show that Sn is generated by transpositions of the form
(1j) with 2 ≤ j ≤ n.

(ii) Show that Sn is generated by transpositions of the form (j−1 j) with
2 ≤ j ≤ n.

(iii) Show that Sn is generated by the two elements (12) and (123 . . . n).
(iv) For which values of n is Sn generated by a single element? Prove

your answer.
(v) Calculate the product (12)(13) in Sn for n ≥ 3. Calculate the product

(123)(124) in Sn for n ≥ 4. Show that, if n ≥ 3, An is generated by the set
of all cycles of length 3 in Sn. What happens if n = 2 or n = 1?

Exercise 18.12. By dint of constant practice, the well known man about town
Simon Wendel Indler has reached the point where, given a pack of 2n cards,
he can execute a ‘perfect shuffle’ in which the card in rth position in the pack
moves to the 2rth position for 1 ≤ r ≤ n and to the 2(r − n) − 1st position
for n + 1 ≤ r ≤ 2n.

(i) By using the cycle notation, find how many shuffles does it take him
to return the pack to its initial state when n = 1, 2, 3, 4, 5, 6, 7? Are there
any remarks about particular things for particular n that might be helpful to
Mr Indler? Remember that even a small amount of extra information gives
a card player a substantial advantage.

(ii) Why does Mr Indler prefer a shuffle in which the card in rth position in
the pack moves to the 2r − 1th position for 1 ≤ r ≤ n and to the 2(r − n)st
position for n + 1 ≤ r ≤ 2n? (This is called an ‘out-shuffle’. The shuffle
described in the first paragraph is called an ‘in-shuffle’.)

(iii) Show that the in-shuffle can be described using modular arithmetic
by saying that the card in position r goes to position k where

k ≡ 2r mod 2n + 1.
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Explain why the pack returns to its original order after φ(2n + 1) shuffles
where φ is Euler’s totient function. Apply this result to a standard pack of
52 cards.

(iv) Now consider the out-shuffle. Show that, if we ignore the first and
last cards and renumber the remainder so that what was the r + 1st card is
now the rth card, then the effect of the out-shuffle can be described using
modular arithmetic by saying that the card in position r goes to position k
where

k ≡ 2r mod 2n − 1.

Explain why the pack returns to its original order after φ(2n − 1) shuffles
where φ is Euler’s totient function. Apply this result to a standard pack of
52 cards.

(v) Show that, in fact, out-shuffling returns a standard pack of 52 cards
to it original state in 8 shuffles (making it a particularly useful shuffle for
Mr Indler and for stage magicians). Why is this consistent with the result of
(iv)?

(vi) Show that in-shuffling does require at least 52 shuffles to return the
pack to its original order. (You should only need 26 easy calculations, or
less, to show this. Cunning can replace computation but thinking of cunning
tricks takes effort.)

(vii) Is it true that every orbit for an in-shuffle is the same size? Is it
true that every orbit for an in-shuffle has a size dividing the size of the orbit
of the first card? Can you give an infinite set of integers n such that every
orbit for an in-shuffle is the same size? Give reasons.

[Remark: Provided that your in-shuffling is not quite accurate, in-shuffling
is a very good way of randomising packs. It has been shown that seven
imperfect in-shuffles are sufficient. The study of imperfect shuffles only began
a few years ago. It requires probability theory and group theory.]

Exercise 18.13. Consider the following groups:– (R\{0},×) the non-zero reals
under multiplication, (R+,×) the strictly positive reals under multiplication,
(R, +) the reals under addition, (Z, +) the integers under addition, (R/Z, +),
SO(R, 2) the group of 2× 2 orthogonal real matrices of determinant 1 under
matrix multiplication, O(R, 2) the group of orthogonal real matrices under
matrix multiplication. Establish which are isomorphic and which are not.

Exercise 18.14. Let M be the group of Möbius maps acting on C ∪ {∞}. If
α(z) = z−1 and βz = z + 2, show that 0 < |αβr(z)| < 1 whenever |z| < 1
and r is a non-zero integer. Deduce that, if t is a strictly positive integer and
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r1, r2, . . . , rt are non-zero integers, then αβr1αβr2 . . . αβrt does not lie in the
stabiliser of 0.

Does the group generated by α and β contain a non-identity element
which lies in the stabiliser of 0? Give a proof or counter-example.

Exercise 18.15. If H is a subgroup of a finite group G and G has twice as
many elements as H, show that H is normal in G.

How many elements does the group G1 of isometries of the cube have, how
many does the group G2 of rotations of a cube have? How many elements does
the group G3 of isometries of the regular tetrahedron have, how many does
the group G4 of rotations of a regular tetrahedron have? Give reasons. By
considering the effect of rotations on the diagonals of the cube, or otherwise,
show that G2 is isomorphic to S4. Give, with reasons, similar isomorphisms
of G3 and G4 with permutation groups or subgroups.

By colouring opposite faces of the cube in the same colour but otherwise
using different colours find a surjective homomorphism from G2 to S3 and
so a surjective homomorphism from S4 to S3. Deduce that S4 has a normal
subgroup with 4 elements.

Exercise 18.16. For each integer c, define fc : Z → Z by fc(k) = k + (−1)kc.
Show that {fc : c ∈ Z} is a subgroup of the group of permutations of Z.

Exercise 18.17. Here is another proof of Lemma 11.17.
(i) Show that every Möbius map has a fixed point. Deduce that every

Möbius map is conjugate to a Möbius map which fixes ∞.
(ii) Show that every Möbius map which fixes ∞ either has another fixed

point or has the form z 7→ z + a. Deduce that every Möbius map is either
conjugate to a Möbius map which fixes ∞ and 0, or is conjugate to map of
the form z 7→ z + a.

(iii) Show that every Möbius map is either the identity or is conjugate to
map of the form z 7→ z + 1 or is conjugate to map of the form z 7→ λz with
|λ| ≥ 1. Why is the map z 7→ z +1 not conjugate to map of the form z 7→ λz
with |λ| ≥ 1?

(iv) Suppose that Tz = λz, Sz = µz, R is Möbius map and T = RSR−1.
Show that Rz = az or Rz = a/z (for some a 6= 0). Deduce that if |µ|, |λ| ≥ 1
and µ, λ 6= 1 then either λ = µ or |λ| = |µ| = 1 and λ = µ∗.

Exercise 18.18. (The Vandermonde determinant.) (i) Consider the func-
tion F : R3 → R given by

F (x, y, z) = det





1 1 1
x y z
x2 y2 z2



 .
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Explain why F is a multinomial of degree 3. By considering F (x, x, z), show
that F has x−y as a factor. Explain why F (x, y, z) = A(x−y)(y−z)(z−x)
for some constant A. By looking at the coefficient of yz2, or otherwise, show
that F (x, y, z) = (x − y)(y − z)(z − x).

(ii) Consider the n × n matrix V with vrs = xr−1
s . Show that, if we set

F (x1, x2, . . . , xn) = det V,

then
F (x1, x2, . . . , xn) =

∏

i>j

(xi − xj).

(iii) If σ ∈ Sn and all the xr are distinct, we set

ζ(σ) =
F (xσ(1), xσ(2), . . . , xσ(n))

F (x1, x2, . . . , xn)
.

Use the rules for calculating determinants to find ζ(σ) when σ is a transpo-
sition and when σ is the product of k transpositions.
[Part (iii) shows that we could define signature using determinants but it is
more common to define determinants using signature and we must be careful
to avoid circularity.]

Exercise 18.19. (i) Show that, if n ≥ 5, then Sn is generated by 4-cycles (that
is to say, cycles of length 4). Can the identity can be written as the product
of an odd number of 4-cycles?

(ii) Let n ≥ 3 and let X be the subset of Sn consisting of those σ with
σ1 = 2. Show that Sn is generated by X. Can we define a function Ω : Sn →
{−1, 1} by taking Ω(σ) = (−1)n if σ is the product of n elements of X and
their inverses?

(iii) If G is an Abelian group and T : Sn → G is a homomorphism, what
can you say about the image T (Sn)?
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