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Small print The syllabus for the course is defined by the Faculty Board Schedules (which

are minimal for lecturing and maximal for examining). I have starred certain results

which seem to me to go beyond a strict interpretation of the syllabus. However whilst

it would not, in my opinion, be fair to set such results as bookwork they could well

appear as problems. I should very much appreciate being told of any corrections or

possible improvements. This document is written in LATEXand stored in the file labeled

~twk/1B/V1.tex on emu in (I hope) read permitted form. My e-mail address is twk.

1 Vector Spaces

Convention 1.1 We shall write F to mean R or C.

Definition 1.2 We call (V,+, .,F) a vector space over F if, whenever u, v, w ∈
V and λ, µ ∈ F, then u+ v ∈ V , λu ∈ V and
(i) (V,+) is an Abelian group (so in particular u+(v+w) = (u+ v)+w,

u+ v = v + u).
(ii) λ(µu) = (λµ)u.
(iii) (λ+ µ)u = λu+ µu.
(iv) λ(u+ v) = λu+ λv.
(v) 1u = u.

Lemma 1.3 (i) The zero 0 of (V,+) satisfies 0u = 0 for all u ∈ V .
(ii) The additive inverse −u of u ∈ V satisfies −u = (−1)u.

We call 0 the zero vector and write it as 0. (Our general policy of dropping
‘boldface’ u and ‘underline’ u in favour of the simple u will not usually lead
to ambiguity but if it does we simply revert to the less simple convention.)
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Theorem 1.4 If X is any set then the set FX of functions f : X → F is a
vector space if we define ‘vector addition’ and ‘multiplication by a scalar’ by

(f + g)(x) = f(x) + g(x), and (λf)(x) = λf(x)

for all x ∈ X where f, g ∈ FX and λ ∈ F.

Definition 1.5 If V is a vector space we say that U ⊆ V is a subspace of V
if 0 ∈ U and

(λ, µ ∈ F, u, v ∈ U)⇒ λu+ µv ∈ U.

Lemma 1.6 If U is a subspace of a vector space V then U is itself a vector
space.

It is usually easier to use Theorem 1.4 (or its generalisation Theorem 2.7
below) together with Lemma 1.6 to prove that something is a vector space
than to verify the axioms in Definition 1.2.

Example 1.7 The space C([0, 1]) of continuous functions f : [0, 1]→ F, the
space P of real polynomials P : R → R, the classical spaces Fn and the set
J of n × n real matrices all of whose rows and columns add up to the same
number can all be made into vector spaces in a natural way.

Definition 1.8 (i) Vectors e1, e2, . . . , en span a vector space E if given any
e ∈ E we can find λ1, λ2, . . . , λn ∈ F such that

e = λ1e1 + λ2e2 + . . .+ λnen.

(ii) Vectors e1, e2, . . . , en in a vector space E are linearly independent if
the only solution of

0 = λ1e1 + λ2e2 + . . .+ λnen

(with λ1, λ2, . . . , λn ∈ F) is λ1 = λ2 = . . . = λn = 0.
(iii) Vectors e1, e2, . . . , en form a (finite) basis of a vector space E if they

span E and are linearly independent.

We shall not be interested in ‘infinite bases’ (few people are, in an algebraic
context) so we shall write ‘basis’ rather than ‘(finite) basis’ from now on.

Lemma 1.9 Vectors e1, e2, . . . , en form a basis of a vector space E if and
only if the equation

e = λ1e1 + λ2e2 + . . .+ λnen

(with λ1, λ2, . . . , λn ∈ F) has one and only one solution for each e ∈ E.
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Definition 1.10 A vector space E is said to be finite dimensional if it has
a finite spanning set.

Lemma 1.11 (i) If vectors e1, e2, . . . , en span a vector space E then some
sub-collection forms a basis.
(ii) Every finite dimensional vector space has a basis.

The key result in the study of finite dimensional vector spaces is the
Steinitz Replacement Lemma.

Theorem 1.12 Let E be a vector space. If
(A) e1, e2, . . . , en span E, and
(B) f1, f2, . . . , fm are linearly independent in E,

then n ≥ m and (possibly after reordering the ej) f1, f2, . . . , fm, em+1, em+2, . . . , en
span E.

Corollary 1.13 Every finite dimensional space E has an associated dimen-
sion N such that
(i) Every basis of E has N elements.
(ii) Every linearly independent collection of vectors in E has at most N

elements.
(iii) Every spanning collection of vectors in E has at least N elements.

Corollary 1.14 (i) Any subspace of a finite dimensional space is finite di-
mensional (and the dimension of the subspace is no greater than the dimen-
sion of the space).
(ii) Any linearly independent collection of vectors in a finite dimensional

space can be extended to a basis.

Example 1.15 In Example 1.7 the space C([0, 1]) of continuous functions
is infinite dimensional and the space J of n × n magic squares is finite di-
mensional.

Definition 1.16 If V and W are subspaces of a vector space U we write

V +W = {v + w : v ∈ V, w ∈W}

.

Lemma 1.17 If V and W are subspaces of a vector space U then V +W
and V ∩W are subspaces of U . Further, if V +W is finite dimensional,

dim(V +W ) + dim(V ∩W ) = dim(V ) + dim(W ).
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Definition 1.18 Subspaces E1, , E2, . . . , Em of a vector space E are said to
have E as direct sum if and only if the equation

e = e1 + e2 + . . .+ em

(with ej ∈ Ej for 1 ≤ j ≤ m) has one and only one solution for each e ∈ E.
We then write

E = E1 ⊕ E2 ⊕ . . .⊕ Em.

Lemma 1.19 Subspaces E1, , E2, . . . , Em of a finite dimensional vector space
E have E as direct sum if and only if the combination of bases of E1, , E2, . . . , Em

gives a basis of E.

Lemma 1.20 If V andW are subspaces of a vector space U then V ⊕W = U
if and only if V +W = U and V ∩W = {0}.

The reader is warned that Lemma 1.20 does not generalise in the obvious
way to direct sums of more than two subspaces.

Example 1.21 In R2 if we set

U = {(x, 0) : x ∈ R}
V = {(0, y) : y ∈ R}
W = {(t, t) : t ∈ R}

then U ∩ V = V ∩W = W ∩ U = {0} and U + V +W = R2 but R2 is not
the direct sum of U , V and W .

Definition 1.22 If V andW are subspaces of a vector space U and V ⊕W =
U then W is called a complementary subspace of V in U .

The reader is warned that this definition is a strong competitor for the title of
‘Definition most frequently mangled by undergraduates’. She is also warned
that except in the trivial cases V = U and V = {0} the complementary
subspace of V in U IS NOT UNIQUE! In Example 1.21 both U and V are
complementary subspaces of W in R2.

Example 1.23 Consider the vector space C(R) of continuous functions f :
R → R. Let

E = {f ∈ C(R) : f(x) = f(−x) for all x ∈ R}
F = {f ∈ C(R) : f(x) = −f(−x) for all x ∈ R}
G = {f ∈ C(R) : f(x) = 0 for all x ≤ 0}.

Then both F and G are complements of E in C(R).
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The course now contains some remarks on quotient groups. These are
starred, but only to prevent the examiners going overboard, the actual ideas
are very easy.
The development is parallel to, but easier than the development of quo-

tient groups in course C1. Suppose that U is a subspace of a vector space V .
We observe that U is a subgroup of (V,+) the the vector space V considered
as an Abelian group under addition. We take over from group theory the
idea of a coset

v + U = {v + u : u ∈ U}

and observe that the first part of the proof of Lagrange’s theorem shows that
the cosets form a disjoint cover of V .

Lemma 1.24 Let U be a subspace of a vector space V . Then
(i)
⋃

v∈V (v + U) = V .
(ii) If v, w ∈ V then either (v + U) ∩ (w + U) = ∅ or v + V = w + I.

The remarkable thing is that we can define addition and scalar multipli-
cation of these cosets in a natural way. (Of course, we can deal with addition
by noting that any subgroup of an Abelian group is normal and quoting
course C1 but it is just as easy to do things directly.)

Lemma 1.25 If U is a subspace of a vector space V over F and

v1 + U = v2 + U, w1 + U = w2 + U, λ ∈ F

then

(v1 + w1) + U = (v2 + w2) + U, λv1 + U = λv2 + U.

Definition 1.26 If U is a subspace of a vector space V over F we write
V/U for the set of cosets of U and define addition and scalar multiplication
on V/U by

(v + U) + (w + U) = (u+ w) + U, λ(v + U) = λv + U.

Note that 0(v + U) = 0v + U = U .

Lemma 1.27 If U is a subspace of a vector space V over F then V/U with
addition and scalar multiplication as in the previous definition is a vector
space over F.

We call V/U a quotient space (or a quotient vector space).
The reader will natural expect us to produce an isomorphism theorem.

We shall do so in Theorem 2.26 but first we need to discuss linear maps.
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2 Linear Maps

Definition 2.1 If U and V are vector spaces over F then the map α : U →
V is said to be linear if

α(λ1u1 + λ2u2) = λ1α(u1) + λ2α(u2)

for all uj ∈ Uj, λj ∈ F.

If abstract algebraists were the only people to use vector spaces then ‘lin-
ear maps’ would be called ‘vector space homomorphisms’. The following
definitions may have been mentioned in previous courses.

Definition 2.2 Let f : X → Y .
(i) We say that f is injective if f(x1) = f(x2) implies x1 = x2.
(ii) We say that f is surjective if, given y ∈ Y , we can find an x ∈ X

such that f(x) = y.
(iii) We say that f is bijective if it is both injective and surjective.

If f : X → Y is bijective then there is a unique function f−1 : Y → X (the
inverse of f) such that f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for
all y ∈ Y .

Definition 2.3 If U and V are vector spaces over F the linear map α : U →
V is said to be an isomorphism if it is a bijection.

Lemma 2.4 If α : U → V is an isomorphism then α−1 : V → U is also
linear (and so also an isomorphism).

Lemma 2.5 If U and V are vector spaces over F and α : U → V is linear
then
(i) α(U) = {α(u) : u ∈ U} is a subspace of V .
(ii) α−1(0) = {u ∈ U : α(u) = 0} is a subspace of U .
(iii) α is injective if and only if α−1(0) = {0}.

We call α−1(0) the null space of α and α(U) the range space of α. (Note
that, unless α is bijective, there is no inverse function α−1.)

Theorem 2.6 (The Classification Theorem For Finite Dimensional Vector
Spaces) Every vector space over F of dimension N is isomorphic to FN .

We now give the promised generalisation of Theorem 1.4
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Theorem 2.7 If X is any set and U any vector space over F then the set
UX of functions f : X → U is a vector space over F if we define ‘vector
addition’ and ‘multiplication by a scalar’ by

(f + g)(x) = f(x) + g(x), and (λf)(x) = λf(x)

for all x ∈ X where f, g ∈ XU and λ ∈ F.

Theorem 2.8 If U and V are vector spaces over F then the set L(U, V ) of
linear maps forms a vector space if we define ‘vector addition’ and ‘multipli-
cation by a scalar’ by

(α + β)(u) = α(u) + β(u), and (λα)(u) = λα(u)

for all u ∈ U where α, β ∈ L(U, V ) and λ ∈ F.

The operation of composition interacts with the operation of addition just
defined in a suggestive way.

Theorem 2.9 If U , V and W are vector spaces over F and α, β ∈ L(U, V ),
γ, δ ∈ L(V,W ), ε ∈ L(W,X) then

ε(γα) = (εγ)α, γ(α + β) = γα + γβ, (γ + δ)α = γα + δα.

Theorems 2.7 and 2.9 apply in particular to L(U,U).

Theorem 2.10 If U is a vector space over F then L(U,U) is a vector space
over F which obeys the additional laws

α(βγ) = (αβ)γ, α(β + γ) = αβ + αγ, (α + β)γ = αγ + βγ, ια = αι,

where ι is the identity map.

(A vector space which obeys these laws is called an ‘algebra’ but the definition
is not part of this course.)

Theorem 2.11 If U is a vector space over F then the set of bijective (‘in-
vertible’) maps in L(U,U) form a group GL(U) under composition with unit
the identity map ι.

GL(U) is called ‘the general linear group’ and its elements are called auto-
morphisms.
Theorem 2.10 forms a link with an older but not unsuccessful tradition

of formal symbolic manipulation.
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Example 2.12 (i) Consider the vector space C∞C (R) of infinitely differen-
tiable functions f : R → C. The map D : C∞C (R)→ C∞C (R) is a well defined
linear map. If a0, a1, . . . , an ∈ R then, taking D0 = I the identity function

(

n
∑

r=0

arD
r

)

f =
n
∑

r=0

arf
(r).

(ii)∗ If a ∈ C then D− aI is surjective with a one dimensional nul space.
The map Ta : C

∞
C (R)→ C∞C (R) defined by

(Taf)(t) = eat
∫ t

0

f(x)e−axdx

is linear and injective but not surjective. We have

(D − aI)Ta = I.

The general solution f of

(D − aI)f = g

(with f, g ∈ C∞C R) is f = Tag + h with h ∈ (D − aI)−1(0).
(iii)∗ If aj ∈ C for 1 ≤ j ≤ n then (D − a1I)(D − a2I) . . . (D − anI) is

surjective with an n dimensional nul space H. The equation

(D − a1I)(D − a2I) . . . (D − anI)f = g

(with f, g ∈ C∞C (R)) always has a solution f0 (the ‘particular integral’) and
its general solution is f = f0+h where h (the ‘complementary function’) lies
in the n dimensional nul space H.

Although general theorems about linear maps are often best viewed geo-
metrically or abstractly, particular computations require matrices.

Theorem 2.13 Suppose that U is a finite dimensional vector space over F
with basis u1, u2, . . . , um and V is a finite dimensional vector space over F
with basis v1, v2, . . . , vn. If α : U → V is linear then α has an associated
n×m matrix A = (aij) with entries in F given by

α(uj) =
n
∑

i=1

aijvi. (∗)

Automatically

α(
m
∑

j=1

xjuj) =
n
∑

i=1

(

m
∑

j=1

aijxj

)

vi. (∗∗)

Conversely if A is an n×m matrix with entries in F then the formula (∗∗)
defines a linear map α : U → V which has A as associated matrix.
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We say that A is the matrix of α with respect to the bases u1, u2, . . . , un
of U and v1, v2, . . . , vn of V. Equation (∗) is conventional (in the same way
that making clocks go clockwise is conventional) but it represents a universal
convention which you should follow.

Theorem 2.14 Suppose that U is a finite dimensional vector space over F
with basis u1, u2, . . . , um, V is a finite dimensional vector space over F with
basis v1, v2, . . . , vn and W is a finite dimensional vector space over F with
basis w1, w2, . . . , wp. If α, β ∈ L(U, V ) have matrices A and B with respect
to the bases u1, u2, . . . , um of U , v1, v2, . . . , vn of V and γ ∈ L(V,W ) has
matrix C with respect to the bases v1, v2, . . . , vn of V and w1, w2, . . . , wp of
W and λ ∈ F then α + β has matrix A + B and λα has matrix λA with
respect to the bases u1, u2, . . . , um of U and v1, v2, . . . , vn of V and γβ has
matrix CB with respect to the bases u1, u2, . . . , un of U and w1, w2, . . . , wpof
W .

Here A+B is the matrix E given by

eij = aij + bij for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

λA is the matrix F given by

fij = λaij for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and CB is the matrix G given by

grj =
n
∑

i=1

cribij for 1 ≤ r ≤ p, 1 ≤ j ≤ m

.
Notice that if, in Theorem 2.13, we write

α

(

m
∑

j=1

xjuj

)

=
n
∑

i=1

yivi

and write x for the column vector (i.e. m× 1 matrix) (xj), y for the column
vector (yi) then equation (∗∗) becomes

y = Ax.

The exact correspondence between linear maps of finite dimensional vec-
tor spaces and matrices means that we can rewrite theorems about maps as
theorems about matrices. For example, restricting Theorem 2.10 to finite
dimensional spaces, we obtain the following matricial translation.
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Theorem 2.15 If we use the standard matrix addition, multiplication and
multiplication by a scalar the set Mn(F) of n× n matrices with entries in F
is a vector space satisfying the further rules

A(B + C) = AB + AC, A(B + C) = AB + AC, (A+B)C = AC +BC, IA = AI = A,

where I is the identity matrix with (i, j)th entry δij.

Conversely we can use results about matrices to obtain results on linear maps
between finite dimensional spaces.

Theorem 2.16 (i) The vector space Mnm(F) of n×m matrices over F has
dimension nm.
(ii) If U and V are vector spaces of dimension n and m then L(U, V ) has

dimension nm.

Since Theorem 2.6 tells us that all finite dimensional vector spaces are
isomorphic to Fn for some n and since linear maps between such spaces
can always be represented by matrices, it is clearly possible to do all ques-
tions involving finite dimensional vector spaces by taking bases and using
co-ordinates. There are however several reasons for using co-ordinate free
methods when possible.

• As Maxwell pointed out, co-ordinate free methods often give a better
formulation of the underlying physical or geometric problem.

• For analysts and most physicists the study of finite dimensional is
merely a prelude to the study of infinite dimensional spaces where co-
ordinate methods are often not available.

• One of the reasons for doing the course P1 is to learn more abstract
modes of thought. Sticking to concrete co-ordinate systems is hardly
the way to go about it.

Returning to the ideas associated with Lemma 2.5 we make the following
definitions.

Definition 2.17 If U and V are finite dimensional vector spaces over F and
α : U → V is linear then
(i) The rank r(α) of α is the dimension of the range space α(U).
(ii) The nullity n(α) of α is the dimension of the nul space α−1(0).
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Theorem 2.18 If U and V are finite dimensional vector spaces over F and
α : U → V is linear then

r(α) + n(α) = dimU (∗).

Further we can find bases for U and V such that the matrix A associated with
α is given by aij = 1 if 1 ≤ i = j ≤ r(α), bij = 0 otherwise.

Formula (∗) is the famous ‘rank-nullity formula’.

Theorem 2.19 If U is a vector space over F and α : U → V is linear then

U ⊇ α(U) ⊇ α2(U) ⊇ . . . ⊇ αk(U) ⊇ αk+1(U) ⊇ . . . .

If αl(U) = αl+1(U) then αk(U) = αl(U) for all k ≥ l.
If U is finite dimensional then

dim(U) ≥ r(α) ≥ r(α2) ≥ . . . ,

and there exists an l with l ≤ dim(U) such that r(αk) > r(αk+1) for k < l
and r(αk) = r(αl) for k ≥ l. Further

r(αk)− r(αk+1) ≥ r(αk+1)− r(αk+2)

for all k.

Definition 2.20 If A is a matrix with entries in F then the column rank of
A is the dimension of the space spanned by the column vectors of A and the
row rank of A is the dimension of the space spanned by the row vectors of A.

Lemma 2.21 If A is matrix associated with a linear map α then the column
rank of A is the rank of α.

Later, in Theorem 3.17 (and in a ‘more natural manner’ in Theorem 6.10)
we shall see that the row and column rank of a matrix are the same so that
we can speak just of the ‘rank’ of a matrix. The following theorem used to
be a high point of the first course in linear algebra but is now not even in
the syllabus.

Theorem 2.22 ∗ Let A be an m × n matrix and b an m × 1 matrix (i.e. a
column vector) over F. Observe that the column rank of A is no greater than
m. We define the ‘augmented matrix’ (A|b) to be the m×(n+1) matrix whose
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first m columns are the columns of A and whose last column is b. Consider
the system of m equations

n
∑

j=1

aijxj = bi [1 ≤ i ≤ m], (∗)

which we write in matrix form as Ax = b (where x is the n× 1 matrix with
entries xj).
(i) The system (∗) of equations has a solution if and only if the column

ranks of A and the augmented matrix (A|b) are the same.
(ii) If A has column rank m then (∗) always has a solution. If A has

column rank less than m (and so, in particular, if n < m) then there exist
choices of b for which (∗) has no solution.
(iii) The column rank of A is no greater than n and there exists a subspace

V of the space of n × 1 matrices of dimension precisely n−column rank(A)
such that, if x′ is a solution of (∗), then x is a solution of (∗) if and only if
x− x′ ∈ V . (In particular if m < n (∗) can not have a unique solution.)
(iv) The system (∗) has 0, 1 or infinitely many solutions. It is a necessary

(but not a sufficient) condition for (∗) to have a unique solution for each b
that n = m.

As we have already noticed, the matrix associated with a linear map
depends on the bases chosen.

Theorem 2.23 [The Change of Basis Theorem] Suppose that U is a finite
dimensional vector space over F with two bases u1, u2, . . . , um and u

′
1, u

′
2, . . . , u

′
m

and V is a finite dimensional vector space over F with two bases v1, v2, . . . , vn
and v′1, v

′
2, . . . , v

′
n. Then we can find an m×m matrix P and an n×n matrix

Q such that

uj =
m
∑

i=1

piju
′
j for 1 ≤ i ≤ n

vs =
n
∑

r=1

qrsu
′
r for 1 ≤ s ≤ m.

The matrices P and Q are invertible and if α ∈ L(U, V ) has matrix A with
respect to the bases u1, u2, . . . , um of U and v1, v2, . . . , vn of V and matrix B
with respect to the bases u′1, u

′
2, . . . , u

′
m of U and v

′
1, v

′
2, . . . , v

′
n then

B = Q−1AP.
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Corollary 2.24 Let U be an m dimensional vector space over F and V an
n dimensional vector space. Two m× n matrices A and B can represent the
same linear map from U to V (with respect to appropriately chosen bases) if
and only if there exist a non singular m ×m matrix P and a non singular
n× n matrix Q such that B = QAP .

Using Theorem 2.18 we obtain the first and easiest result on ‘canonical forms’
of matrices.

Corollary 2.25 An m×n matrix A over F has column rank r if and only if
there exist a non singular m×m matrix P and a non singular n× n matrix
Q such that B = QAP is an m × n matrix with bij = 1 if 1 ≤ i = j ≤ r,
bij = 0 otherwise.

The reader will already have seen a computational proof of this based on
Gaussian elimination.
We complete this section by proving an isomorphism theorem which di-

rectly parallels the isomorphism theorem for groups. It is starred but very
easy.

Theorem 2.26 If U and V are vector spaces over F and α : U → V is
linear then there is a natural isomorphism α̃ : U/α−1(0)→ α(U) given by

α̃(u+ α−1(0)) = α(u).

As usual, a key point is to show that α̃ is well defined.

3 Endomorphisms

If α ∈ L(U, V ) we defined a matrix associated with α in terms of a basis of U
and a basis of V . If U = V , i.e. if α is an endomorphism, is seems reasonable
only to use one basis.

Definition 3.1 If V is a vector space over F with basis v1, v2, . . . , vn. We
say that the linear map α : V → V has the n × n matrix A with respect to
the given basis if

α(vj) =
n
∑

i=1

aijvi.

In this context the change of basis theorem takes the following form.
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Theorem 3.2 (The Change of Basis Theorem For Endomorphisms) Sup-
pose that V is a finite dimensional vector space over F with two bases v1, v2, . . . , vn
and v′1, v

′
2, . . . , v

′
n. Then we can find an n× n matrix P such that

uj =
m
∑

i=1

piju
′
j for 1 ≤ i ≤ n.

The matrix P is invertible and if the linear map α : V → V has matrix A
with respect to the base u1, u2, . . . , um and matrix B with respect to the base
v′1, v

′
2, . . . , v

′
n then

B = P−1AP.

Corollary 3.3 Let V be an n dimensional vector space over F. Two n × n
matrices A and B can represent the same endomorphism of V (with respect
to appropriately chosen bases) if and only if there exists a non singular n×n
matrix P such that B = P−1AP .

We are particularly interested in the case when the n×n matrix A can be
diagonalised, that is we can find a n×n diagonal matrix D (a matrix D with
dij = 0 for i 6= j) and an n × n invertible matrix P such that D = P−1AP .
In this case we say that A is ‘diagonalisable’. One of the many reasons for
being interested in this phenomenon is indicated by the observation that

AN = (PDP−1)N = PDNP−1

and that DN is a diagonal matrix whose diagonal entries are the Nth powers
of the corresponding diagonal entries of D. In the same way an endomor-
phism of a finite dimensional vector space V is called diagonalisable if we
can find a basis of V with respect to which the matrix associated to α is
diagonal. It is important to note that (even over C) NOT ALL SQUARE
MATRICES ARE DIAGONALISABLE.

Example 3.4 The matrix
(

0 1
0 0

)

is not diagonalisable over F.

With very little exaggeration it may be said that all putative theorems about
matrices should be tested on the matrix just given.
The problem of diagonalisation is closely linked to the existence of eigen-

values and eigenvectors.
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Definition 3.5 Let V be a vector space over F and let α be an endomorphism
of V . If e is a non-zero vector, λ ∈ F and

αe = λe

then we say that λ is an eigenvalue and e an eigenvector of α.

Eigenobjects (though associated with infinite rather than finite dimensional
spaces) occur throughout modern physics.

Lemma 3.6 An endomorphism of a finite dimensional vector space is diag-
onalisable if and only if the space has a basis of eigenvectors.

Lemma 3.7 Eigenvectors with distinct eigenvalues are linearly independent.
In particular an endomorphism of an n dimensional vector space which has
n distinct eigenvalues is diagonalisable.

Our treatment of eigenvectors will use determinants. Recall that the
signature function ζ is the unique non trivial homomorphism from the group
S(n) of permutations on the set {1, 2, . . . , n} to the multiplicative group
{1,−1}.

Definition 3.8 If A is an n× n matrix over F then

detA =
∑

σ∈S(n)

ζ(σ)
n
∏

i=1

ai,σi.

Lemma 3.9 If A is an n× n matrix with rows a1, a2, . . . , an let us write

f(a1, a2, . . . , an) = detA.

Then
(i) f is linear in each variable.
(ii) f is alternating in the sense that

f(aσ1, aσ2, . . . , aσn) = ζ(σ)f(a1, a2, . . . , an)

for all σ ∈ S(n).
(iii) If ei is the row vector of length n with jth component δij then

f(e1, e2, . . . , en) = 1.

Moreover conditions (i), (ii) and (iii) determine f completely.
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Theorem 3.10 If A and B are n × n matrices over F then detA detB =
det(AB).

Corollary 3.11 If A and B are matrices associated with an endomorphism
of a finite dimensional vector space (with respect to appropriate bases) then
detA = detB.

The result just proved enables us to make the following definition

Definition 3.12 If α is an endomorphism of a finite dimensional vector
space V associated to a matrix A with respect to some basis we set detα =
detA.

It is a blemish on our presentation that we define a co-ordinate free quantity
detα via co-ordinates but, since the quantity only exists (in general) for
finite dimensional spaces some reference to bases (though not to matrices) is
unavoidable. (If the structure of the course permitted it, I would prefer to
define determinants via area.)

Corollary 3.13 If α and β are endomorphisms of a finite dimensional vector
space V and if ι is the identity map on V then detα det β = det(αβ) and
det ι = 1.

Definition 3.14 If A is an n× n matrix over F we write Aij for the deter-
minant of the (n − 1)× (n − 1) matrix formed by removing the ith row and
jth column from A. The n × n matrix whose (i, j)th entry is (−1)i+jAji is
called the ‘adjugate matrix’ of A and written as adj(A).

So far as we are concerned the only purpose of introducing the adjugate is
to prove the last two parts of the following theorem.

Theorem 3.15 (i) If A is an n× n matrix then

A adj(A) = adj(A)A = (detA)I.

(ii) If A is an n× n matrix then A is invertible if and only if detA 6= 0.
(iii) An endomorphism α of a finite dimensional vector space V over F

is an automorphism (i.e. an isomorphism of V with itself) if and only if
detα 6= 0.

Before returning, in the next section, to the subject of eigenvalues we
look down a couple of by-ways.

Lemma 3.16 Suppose that in Theorem 2.22 we take n = m. Then (∗) has
a unique solution for all b if and only if detA 6= 0.

16



If A is an n × m matrix with entries aij the transposed matrix AT is the
m× n matrix with entries aji.

Theorem 3.17 (i) If A is an n × m matrix and B an m × p matrix then
(AB)T = BTAT .
(ii) If A is an n× n matrix then detAT = detA.
(iii) If A is an invertible n×n matrix so is AT and then (AT )−1 = (A−1)T .
(iv) The row and column rank of a matrix are identical.

In Theorem 6.10 we give a ‘natural’ proof of part (iv) by using the idea of
an adjoint map.

4 The Characteristic Polynomial

Definition 4.1 (i) If α is an endomorphism of an n dimensional space over
F we define its characteristic polynomial Pα : F → F by

Pα(t) = det(tι− α).

(ii) If A is an n×n matrix over F we define its characteristic polynomial
PA : F → F by

PA(t) = det(tI − A).

Lemma 4.2 If α an endomorphism of a finite dimensional vector space V
over F is associated to a matrix A with respect to some basis then PA = pα.

Theorem 4.3 Let α be an endomorphism of an n dimensional space V over
F.
(i) Pα is a polynomial of degree exactly n.
(ii) λ ∈ F is an eigenvalue if and only if Pα(λ) = 0.
(iii) It is a necessary (but not, if n ≥ 2, a sufficient) condition for α to

be diagonalisable that Pα factorises completely into linear factors over F.
(iv) It is a sufficient (but not, if n ≥ 2, a necessary) condition for α to

be diagonalisable that Pα has n distinct roots in F.
(v) If F = C then α has at least one eigenvalue (and so has an eigenvec-

tor).

The following definition may help illuminate parts (iii) and (iv) of Theorem
4.3.
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Definition 4.4 Let α be an endomorphism of a finite dimensional vector
space over F.
(i) We say that an eigenvalue λ has algebraic multiplicity k if (t− λ)k is

a factor of Pα(t) but (t− λ)k+1 is not.
(ii) We say that an eigenvalue λ has geometric multiplicity k if α − λι

has nullity k, i.e.

dim{e ∈ V : αe = λe} = k.

Lemma 4.5 The geometric multiplicity of an eigenvalue can not exceed its
algebraic multiplicity.

Lemma 4.6 Let α be an endomorphism of an finite dimensional vector space
over F. The following statements about α are equivalent.
(i) α is diagonalisable.
(ii) The sum of the geometric multiplicities of its eigenvalues equals the

dimension of V .
(iii) (a) the sum of the algebraic multiplicities of its eigenvalues is the

dimension of V and (b) the algebraic multiplicity of each eigenvalue equals
its geometric multiplicity.

Although we can not always diagonalise an endomorphism of a finite
dimensional vector space over C (see Example 3.4) we can find a basis with
respect to which its matrix is triangular.

Theorem 4.7 (i) If α is an endomorphism of an n dimensional vector space
V over C then we can find a basis v1, v2, . . . , vn of V such that

αvj ∈ span{v1, v2, . . . , vj}.

(ii) If A is an n×n matrix over C we can find an invertible n×n matrix
P such that B = P−1AP is (upper) triangular (i.e. bij = 0 if i > j).

Our method of proof will be induction on the dimension of V starting from
the observation that an endomorphism of a complex vector space always has
an eigenvector. This method of proof will recur in the course P4. We note a
profound difference between the real and complex cases.

Example 4.8 If we work over R the the matrix

A =

(

1 1
−1 1

)

has no eigenvectors and so, in particular we can not find an invertible P such
that P−1AP is triangular.
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We now turn to the study of the characteristic polynomial for its own sake.
By direct calculation, or by using Lemma 4.2 we know that PQ−1AQ = PA
whenever Q is invertible. Thus if we write

PA(t) =
n
∑

r=0

cr(A)t
r

we know that the coefficients cr(A) are ‘matrix conjugacy class invariants’ in
the sense that cr(Q

−1AQ) = cr(A). We can readily identify three of these
invariants: cn(A) = 1 (which is not very interesting), c0(A) = (−1)

n detA
(which we already knew to be invariant) and cn−1(A) = −

∑n

i=1 aii.

Definition 4.9 If A is an n× n matrix over F then we define the trace trA
of A by

trA =
n
∑

i=1

aii.

The trace of an endomorphism on a finite dimensional space is defined to be
the trace of any associated matrix.

In the sense made precise by the next lemma, trace is the only linear matrix
conjugacy class invariant.

Lemma 4.10 ∗ Consider the collection Mn(F) of n× n matrices over F.
(i) tr :Mn(F)→ F is a linear map.
(ii) If T : Mn(F) → F is a linear map such that T (P−1AP ) = T (A) for

all A ∈Mn(F) and all invertible P ∈Mn(F) then T = (T (I)n−1)tr.

If f : Rn → R is smooth the Laplacian of f is the trace of its Hessian.
It should be noted that the characteristic polynomial, informative as it

is, does not tell us everything about the associated matrix or endomorphism.

Example 4.11 The matrices
(

0 0
0 0

)

,

(

0 1
0 0

)

have the same characteristic polynomial, yet have different ranks. Further
one is diagonalisable and the other is not.

If we write out the characteristic polynomial of an endomorphism of a
finite dimensional vector space V as

Pα(t) =
n
∑

r=0

cr(α)t
r
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we see that we may define Pα(β) for any endomorphism β of V by

Pα(β) =
n
∑

r=0

cr(α)β
r.

Observe that Pα(β) is itself an endomorphism. If Pα(β) is the zero endomor-
phism we say that β satisfies the characteristic equation of α. In exactly the
same way if A and B are n×n matrices over F we can define an n×n matrix
PA(B). If PA(B) is the zero matrix we say that B satisfies the characteristic
equation of A.

Example 4.12 Consider the two 2× 2 matrices

A = I =

(

1 0
0 1

)

, B =

(

1 0
0 0

)

.

The characteristic polynomial of A is PA(t) = t2−2t+1 = (t−1)2 so PA(B)
is the non-zero 2× 2 matrix

(

0 0
0 1

)

so that B does not satisfy the characteristic equation of A although det(BI−
A) is the scalar 0.

Lemma 4.13 (The Cayley-Hamilton Theorem for Triangular Matrices) If
A is an n× n triangular matrix over F with diagonal entries aii then

det(tI − A) = (t− a11)(t− a22) . . . (t− ann)

and

(A− a11I)(A− a22) . . . (A− annI) = 0.

At first sight the result just proved seems very special but in Theorem 4.7
we showed that any endomorphism of a finite dimensional vector space over
C can be represented (with respect to an appropriate basis) by a triangular
matrix. We can thus extend the Cayley-Hamilton Theorem to a wide range
of cases.

Corollary 4.14 (i) If V is a finite dimensional vector space over C then
any linear map α : V → V satisfies its own characteristic equation.
(ii) Any n× n matrix over C satisfies its own characteristic equation.
(iii) Any n× n matrix over R satisfies its own characteristic equation.
(iv) If V is a finite dimensional vector space over R then any linear map

α : V → V satisfies its own characteristic equation.
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We bring together the results of the corollary as a theorem.

Theorem 4.15 (The Cayley-Hamilton Theorem) (i) Any n×n matrix over
F satisfies its own characteristic equation.
(ii) If V is a finite dimensional vector space over F then any linear map

α : V → V satisfies its own characteristic equation.

There are many different proofs of the Cayley-Hamilton Theorem but (so far
as I know) no totally trivial ones. If you invent a new proof, first check it
against Example 4.12 and then get your supervisor to check it.

5 Jordan Forms

It is unsatisfactory to leave non-diagonalisable endomorphisms (and matri-
ces) over F unexamined. In this section we show that they can be fully
classified using the Jordan normal form. Although some of the material is
more or less explicitly starred some is not and the development is pretty and
instructive.
Our first steps are unstarred. Suppose V is a finite dimensional vector

space over C and α is an endomorphism of V . The Cayley Hamilton theorem
tells us that there is a monic polynomial. Pα with Pα(α) = 0. It follows that
there must be a monic polynomial of least degree which anhilates α.

Definition 5.1 If V is a finite dimensional vector space over C and α is
an endomorphism of V the monic polynomial Q of least degree such that
Q(α) = 0 is called the minimal polynomial of α.

Lemma 5.2 Suppose that V is a finite dimensional vector space over C and
α is an endomorphism of V . The minimal polynomial divides (i.e. is a factor
of) every polynomial P with P (α) = 0. In particular the minimal polynomial
divides the characteristic polynomial.

Example 5.3 Suppose that V is a finite dimensional vector space over C
and α is an endomorphism of V which may be diagonalised with associated
diagonal matrix D. If the distinct diagonal entries of D are d1, d2, . . . , dk
then the minimal polynomial Qα of α is given by

Qα(t) =
k
∏

j=1

(t− dj).

In particular the characteristic and minimal polynomials coincide if and only
if k = n.
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The next results may or may not be starred but are sufficiently important
that everyone should know them.

Lemma 5.4 Let P (t) =
∑n

j=0 ajt
n be a polynomial with coefficients in F If

P (t) = 0 for n + 1 distinct values of t ∈ F then a0 = a1 = · · · = an =
0. In particular P (α) = 0 and P (A) = 0 whenever α is an appropriate
endomorphism or A an appropriate matrix.

Theorem 5.5 (Bezout’s Theorem for polynomials) If R1, R2, . . . Rk

are polynomials with highest common factor 1 (i.e. if no non-constant poly-
nomial divides all of R1, R2, . . . Rk) then we can find polynomials P1, P2,
. . . , Pk such that

k
∑

j=1

PjRj = 1.

We now apply the last two results to the minimal polynomial.

Theorem 5.6 Suppose that V is a finite dimensional vector space over C
and α is an endomorphism of V . with minimal polynomial Q. If we write
Q(t) =

∏k

j=1 Qj where Qj(t) = (t − λj)
n(j) with nj ≥ 1 and the λj distinct

and set

Rj(t) =
∏

i6=j

Qj

we can find polynomials P1, P2, . . . , Pk such that

k
∑

j=1

Pj(α)Rj(α) = ι.

Further, if we write Vj = Rj(α)V the following facts are true.
(i) Vj = Qj(α)

−1(0).
(ii) α(Vj) ⊆ Vj.
(iii) V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

Lemma 5.7 With the notation of the preceeding theorem suppose Ej is a
basis for Vj. If α|EJ considered as an endomorphism of Vj (see (ii) in the
preceeding theorem) has matrix AJ with respect to Ej, then the matrix of

α with respect the basis E =
⋃k

j=1 Ej (see (iii) in the preceeding theorem)
consists of the square matrices Aj along the diagonal with all other entries 0.

22



Thus we have reduced the problem
Problem∗ Find a basis for which an endomorphism α has a nice matrix.
to a rather simpler problem
Problem∗∗ Suppose that the endomorphism α of V has the property that
(α−λι)m = 0. Find a basis for which an endomorphism α has a nice matrix.
If we observe that whenever α has matrix A with respect to a certain

basis then α− λι has matrix A− λI we can make the further reduction to
Problem∗∗∗ Suppose that the endomorphism α on V has the property that
αm = 0. Find a basis for which an endomorphism α has a nice matrix.
This suggests the following definition.

Definition 5.8 An endomorphism α of a vector space is called nilpotent if
we can find an m ≥ 0 with αm = 0.

To solve the problems just stated we need the notion of a Jordan ma-
trix. We write J(λ, n) for the n × n matrix with λ’s down the diagonal, 1’s
immediately below and zero every where else so that

J(λ, n) =



















λ 0 0 · · · 0 0 0 0
1 λ 0 · · · 0 0 0 0
0 1 λ · · · 0 0 0 0
...
...
...

...
...
...
...

0 0 0 · · · 0 1 λ 0
0 0 0 · · · 0 0 1 λ



















.

We call J(λ, n) a Jordan matrix.
We can now solve Problem∗∗∗.

Theorem 5.9 Suppose that V is a finite dimensional vector space over C
and α is a nilpotent endomorphism of V . Then there is basis for V such
that α has matrix A (relative to this basis) which consists of zeros except for
Jordan matrices J(0, ni) [1 ≤ i ≤ s]. down the diagonal.

The only proofs that I know of Theorem 5.9 are hard and in my view the
only reason it is included is to show that your lecturers are cleverer than you
are. The proof is starred but not the statement of the theorem. You should,
however, convince yourselves that the result is plausible.
It is now easy to solve Problem∗∗.

Lemma 5.10 Suppose that V is a finite dimensional vector space over C
and α is an endomorphism of V with the property that (α− λι)m = 0. Then
there is basis for V such that α has matrix A (relative to this basis) which
consists of zeros except for Jordan matrices J(λ, ni) [1 ≤ i ≤ s]. down the
diagonal.
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We can now solve our original problem, Problem∗.

Theorem 5.11 (Jordan Normal Form) Suppose that V is a finite di-
mensional vector space over C and α is an endomorphism of V . Then there
is basis for V such that α has matrix A (relative to this basis) which consists
of zeros except for Jordan matrices J(λi,mij) [1 ≤ mij ≤ mi, 1 ≤ i ≤ s]. We
may demand that the λi be distinct and that mi,1 ≥ mi, 2 ≥ . . . .

A little thought shows that the Jordan form is uniques up to shuffling the
diagonal blocks.
The flowing observation is trivial but worth making.

Lemma 5.12 With the notation of Theorem 5.9 α has characteristic poly-
nomial

Pα(t) =
s
∏

i=1

mi
∏

j=1

(t− λi)
mij

and minimal polynomial

Pα(t) =
s
∏

i=1

(t− λi)
mi1 .

The algebraic multiplicity of λi is
∑mi

j=1 mij. and the geometric multiplicity
is max1≤j≤mi

mij.

In Course C1 you saw how the Jordan normal form was used to classify
the solution of two simultaneous first order differential equations in two un-
knowns. The extension to n simultaneous first order differential equations in
n unknowns is obvious.

6 Dual Spaces

We saw in Theorem 2.8 that the linear maps from one vector space U to
another vector space V form a vector space L(U, V ). In the two previous
sections we investigated the special case when U = V . Now we look at the
case when V is one dimensional.

Definition 6.1 If U is a vector space over F the vector space of linear maps
u′ : U → F is called the dual space of U and denoted by U ′.

Thus for example the trace map is in the dual space of Mn(F).
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Example 6.2 Let C∞(R) be the space of infinitely differentiable functions
f : R → R. If we fix x ∈ R and set

J(f) =

∫ 1

−1

f(t)dt, δx(f) = f(x), δ′x(f) = f ′(x)

then J , δx and δ
′
x are all in the dual space of C

∞(R).

As the example indicates analysts are very interested in objects which belong
to dual spaces whilst algebraists are interested in dual objects in general.
However, at this level, we can only say interesting things about the duals of
finite dimensional spaces.

Lemma 6.3 Suppose that V is a vector space over F with basis e1, e2, . . . , en.
Then the dual space V ′ has the same dimension as V and may be given a
basis (the so called dual basis) E1, E2, . . . , En with Ei(ej) = δij.

Lemma 6.4 Let V be a finite dimensional vector space. If we write

Φ(v)(v′) = v′(v)

for all v ∈ V , v′ ∈ V ′ then Φ : V → V ′′ is an isomorphism.

We already knew from Lemma 6.3 that dimV = dimV ′ = dimV ′′ but Φ gives
us a ‘natural isomorphism’ defined without reference to some particularly
chosen basis. The ‘standard convention’ is to write v = Φ(v), i.e. to identify
V and V ′′ via Φ.

Definition 6.5 If U is a non-empty subset of a vector space V then we define
the annihilator U ◦ of U to be the subset of U given by

U◦ = {v′ ∈ V ′ : v′(u) = 0 for all u ∈ U}.

Lemma 6.6 If U is a non-empty subset of a vector space V then U is a
subspace of V ′. If, further, V is finite dimensional and U is a subspace of V
then
(i) dimU + dimU ◦ = dimV .
(ii) Φ(U) = U ◦◦ so, using the standard convention, U ◦◦ = U .

We conclude the section and the course by looking at the notion of the
adjoint of a linear map.
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Lemma 6.7 If U and V are vector spaces over F and α ∈ L(U, V ) then the
equation

α′(v′)(u) = v′(αu)

for all v′ ∈ V , u ∈ U defines an α′ ∈ L(V ′, U ′). (We call α′ the dual, or the
adjoint, of α).

Lemma 6.8 If U and V are finite dimensional vector spaces and α has
matrix A with respect to given bases of U and V then α′ has matrix AT with
respect to the dual bases.

Lemma 6.9 If U , V and W are vector spaces over F and α ∈ L(U, V ),
β ∈ L(V,W ) then (βα)′ = α′β′.

If we choose appropriate bases we recover the matricial formula (BA)T =
ATBT for matrices of appropriate sizes.

Theorem 6.10 If U and V are finite dimensional vector spaces. If we adopt
the standard convention of identifying U ′′ with U and V ′′ with V then, if
α ∈ L(U, V ),
(i) α′′ = α.
(ii) (αU)◦ = (α′)−1(0).
(iii) r(α) = r(α′)
(iv) The row rank and the column rank of any matrix are equal.

We have thus fulfilled our promise to prove the equivalence of row and column
rank in a natural context.

Lemma 6.11 If α is an endomorphism of a finite dimensional vector space
V the α′ is an endomorphism of V ′ and detα′ = detα.
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