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1 Rings

The same ideas and proofs occur in the study of the integers (number theory),
polynomials (leading to algebraic geometry), parts of the theory of matrices
and in the theory of Abelian groups. They may be unified by using the
theory of commutative rings and modules following a programme laid out by
Emmy Noether and others. We start by looking at commutative rings with
one.

Definition 1 We say that (R,+, .) is a commutative ring with a one if
(i) (R,+) is an Abelian group.
(ii) a(bc) = (ab)c for all a, b, c ∈ R. [Associative law of multiplication.]
(iii) a(b+ c) = ab+ ac, (b+ c)a = ba+ ca for all a, b, c ∈ R. [Distributive

law.]
(iv) There exists a 1 ∈ R such that 1a = a1 = a for all a ∈ R. [Existence

of a multiplicative identity.]
(v) ab = ba for all a, b ∈ R. [Commutative law of multiplication.]

Rules (iii) and (iv) could be shortened using rule (v). We usually write 0 for
the identity of the group (R,+) and call 0 the zero of R.

Rule (iv) is made easier to use by the following simple remark.

Lemma 2 (Uniqueness of multiplicative identities) If (M, .) is an ob-
ject with multiplication and 1, 1′ ∈M are identities in the sense that

1a = a1 = a and 1′a = a1′ = a for all a ∈M ,

then 1 = 1′.

Thus R has a unique multiplicative identity 1. (We shall usually refer to 1
as ‘one’. It is sometimes called ‘the unit element of R’ but the word ‘unit’
means something different in the context of this course, see Definition 42.)
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There are important examples of non-commutative rings (that is systems
obeying all the rules in Definition 1 except (v) the commutative law of mul-
tiplication) such as the set of n × n matrices with the usual addition and
multiplication [n ≥ 2]. However, there are many beautiful results which are
only true for commutative rings. Rule (iv) (the existence of a one) is less
important. It gives some of our theorems and proofs a more elegant form
but commutative rings without one are not much harder to deal with.
In this course we shall only deal with commutative rings with 1 and ‘ring’

will mean ‘commutative ring with 1’.
Rings have many of the properties of the ‘ordinary number systems’ with

which we are familiar from school. The integers Z with the usual operations
form one of the most important examples. Note that the equation 2m = 1
has no solution in Z (in other words 2 has no multiplicative inverse). The
system (Zn,+,×) of the integers modulo n is another example. (The reader
is certainly familiar with this system but definition freaks will find a neat
definition using ring theory in Definition 16.) Note that in Z12

3 6= 0 and 4 6= 0 yet 3× 4 = 0

(we call 3 and 4 divisors of zero) and

2 6= 6 yet 2× 3 = 6× 3

(thus we can not use cancellation to get from a× b = a× c to b = c). In Z81

we have 3 6= 0, 32 6= 0, 33 6= 0 yet 34 = 0 (we say that 3 is nilpotent). These
examples suggest that when dealing with rings we should first try methods
and ideas which work for ‘ordinary number systems’ but be prepared to
modify or, if the worst comes to the worst, abandon those parts which depend
on division or cancellation.

However we have access to another fertile source of inspiration. We have
already met two examples of abstract algebraic systems:- groups and vector
spaces. Techniques and ideas which were useful for these are likely to be
useful for rings.

Here are a few definitions and results along familiar lines.

Definition 3 Let (R,+, .) be a ring. If S is a subset of R such that
(i) a− b ∈ S and ab ∈ S whenever a, b ∈ S,
(ii) 1 ∈ S,

then we call S a subring of R.

(Condition (ii) excludes the possibility S = {0}.)
Lemma 4 Let (R,+, .) be a ring and S subring of R. Then S equipped with
the addition and multiplication inherited from R is itself a ring.

3



Lemma 5 Let (A,+A,×A) and (B,+B,×B) be rings. If we define addition
and multiplication on A×B by

(a1, b1) + (a2, b2) =(a1 +A a2, b1 +B b2)

(a1, b1)× (a2, b2)a =(a1 ×A a2, b1 ×B b2)

then (A×B,+,×) is a ring.
We often write A⊕B for the ring just defined and call it the external direct
sum.

Definition 6 Let R and S be rings with multiplicative identities 1R and 1S.
We say that a map α : R → S is a homomorphism (more precisely a ring
homomorphism) if
(i) α(r1 + r2) = α(r1) + α(r2), α(r1r2) = α(r1)α(r2) for all r1, r2 ∈ R
(ii) α(1R) = 1S.

(Condition (ii) excludes the possibility α(r) = 0 for all r ∈ R.)
Lemma 7 Let R and S be rings and α : R → S a homomorphism. Then
α(R) is a subring of S.

We often write imα = α(R) and call it the image of α.

Definition 8 Let R and S be rings and α : R → S a homomorphism. If α
is a bijection we say that α is an isomorphism (more exactly a ring isomor-

phism) and that R and S are isomorphic. We write R
α∼= S (R is isomorphic

to S by the map α) and R ∼= S (R is isomorphic to S).

Lemma 9 Isomorphism is an equivalence relation. That is
(i) R ∼= R.
(ii) If R ∼= S, S ∼= T then R ∼= T .
(iii) If R ∼= S then S ∼= R.

2 Ideals, quotients and the isomorphism the-

orem

In many ways subrings are less important for ring theory than ideals.

Definition 10 Let (R,+, .) be a ring. If I is a non-empty subset of R such
that
(i) a− b ∈ I whenever a, b ∈ I,
(ii) ab ∈ I whenever a ∈ R and b ∈ I,

then we call I an ideal of R.
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We observe that I is a subgroup of (R,+) the ring R considered as an
Abelian group under addition. We take over from group theory the idea of
a coset

r + I = {r + s : s ∈ I}
and observe that the first part of the proof of Lagrange’s theorem shows that
the cosets form a disjoint cover of R.

Lemma 11 Let I be an ideal of a ring R. Then
(i)
⋃

r∈R(r + I) = R.
(ii) If r, s ∈ R then either (r + I) ∩ (s+ I) = ∅ or r + I = s+ I.

The remarkable thing is that we can define addition and multiplication
of cosets in a natural way.

Lemma 12 If I is an ideal of a ring R and

r1 + I = r2 + I, s1 + I = s2 + I

then
(r1 + s1) + I = (r2 + s2) + I, r1s1 + I = r2s2 + I.

Definition 13 If I is an ideal of a ring R we write R/I for the set of cosets
of I and define addition and multiplication on R/I by

(r + I) + (s+ I) = (r + s) + I, (r + I)(s+ I) = rs+ I.

Lemma 14 If I is an ideal of a ring R then R/I with addition and multi-
plication as in the previous definition is a ring.

We call R/I a quotient ring.
The idea of a quotient ring gives a clean definition of arithmetic modulo

m.

Lemma 15 If m ∈ Z then

mZ = {mr : r ∈ Z}

is an ideal of Z.

Definition 16 If m ≥ 2 we write

Zm = Z/mZ.

The reader will readily identify Z/mZ for all m ∈ Z.
The next example warns us to stick to Definition 13.
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Example 17 The set I = {0, 2} is an ideal of the ring Z4. We have

(0 + I)(0 + I) = 0 + I

but {rs : r, s ∈ I} = {0} 6= I.

Quotient rings as closely linked with homomorphisms.

Definition 18 If R and S are rings and φ : R→ S is a homomorphism we
write

kerφ = φ−1(0) = {r ∈ R : φ(r) = 0}
and call kerφ the kernel of φ.

Lemma 19 Suppose that R and S are rings and φ : R → S is a homomor-
phism. Then
(i) kerφ is an ideal of R.
(ii) φ(r) = s has a solution r ∈ R if and only if s ∈ imφ.
(iii) If φ(r) = s then φ(r′) = s if and only if r′ ∈ r + kerφ.

We have just shown that every kernel of a homomorphism is an ideal.
The next remark shows that every ideal is the kernel of a homomorphism.

Lemma 20 Let I be an ideal of the ring R. Then the map π : R → R/I
given by

π(r) = r + I

is a homomorphism with kernel I.

The machinery is now in place to state and prove our first key theorem.

Theorem 21 (The isomorphism theorem) Suppose that R and S are
rings and φ : R→ S is a homomorphism. Then

R/ kerφ ∼= imφ.

3 Integral domains, fields and fractions

The fact that we can not necessarily cancel or divide in rings means that
they are too general for many purposes.

Definition 22 A ring (D,+, .) is called an integral domain if, whenever
ab = 0, we can deduce that a = 0 or b = 0.
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Definition 23 A ring (F,+, .) is called a field if (F \ {0}, .) is an Abelian
group.

Thus a ring (F,+, .) is a field if, whenever a ∈ F and a 6= 0 we can find
a−1 with aa−1 = 1. The element a−1 (unique by a simple argument from
elementary group theory) is called the multiplicative inverse of a.

Lemma 24 (i) If (D,+, .) is an integral domain and ab = ac with a 6= 0
then b = c.
(ii) Every field is an integral domain.
(iii) Every subring of an integral domain is an integral domain.

Lemma 26 below is not in the printed syllabus but this has not deterred
examiners from setting it in the past. We need definitions which, important
though they are in a more general context, are only included here in order
to allow us to state the lemma.

Definition 25 (i) We say that an ideal I of a ring R is maximal if I 6= R
but if J is an ideal with J ⊇ I and J 6= I then J = R.
(ii) We say that an ideal P in a ring R is prime if ab ∈ P implies a ∈ P

or b ∈ P .

Lemma 26 Suppose that I is an ideal in a ring R.
(i) I is maximal if and only if R/I is a field.
(ii) I is prime if and only if R/I is an integral domain.

We already know quite a lot of fields including R, C and Q. We also know
some finite fields.

Lemma 27 (i) If p is a prime then Zp is a field.
(ii) If m is not a prime then Zm is not an integral domain. [m ≥ 2]

We digress briefly to discuss characteristics. If R is a ring, n a strictly
positive integer and a an element of R let us write

na = a+ a+ · · ·+ a
︸ ︷︷ ︸

n

,

(−n)a = −na and 0a = a.

Lemma 28 Let R be a ring with multiplicative identity 1R.
(i) The map θ : Z→ R given by θ(m) = m1R is a homomorphism.
(ii) The set im θ of all elements of the form m1R is isomorphic to Z or

Zn for some n ≥ 2.
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Definition 29 With the notation of Lemma 28, if im θ is isomorphic to Zn
we say that R has characteristic n. If im θ is isomorphic to Z we say that R
has characteristic ∞ (or, in some texts characteristic 0).

There is another way of viewing this idea.

Lemma 30 If A is a subset of a ring R then there is a smallest subring B
containing A. (In other words there exists a subring B of R such that B ⊇ A
and if C is any subring of R with C ⊇ A then C ⊇ B.)

We call B the ring generated by A. If A = ∅ so that B is the smallest ring
in R we call B the prime subring of R. (Here prime is used as in ‘primal
scream’, the first or underlying scream.)

Lemma 31 With the notation of Lemma 28, im θ is the smallest subring of
R. Thus the primal ring of R is isomorphic to Z or Zn for some n ≥ 2.

It is natural to identify the prime subring with Z or Zn and write m =
θ(m) = m1R.

The notion of characteristic is most useful when applied to integral do-
mains.

Lemma 32 (i) The characteristic of an integral domain is either a prime
or ∞.
(ii) The prime subring of an integral domain may be identified with Z or

Zp where p is a prime.
(iii) If (R,+, .) is an integral domain then every non-zero element of the

additive group (R,+) has order the characteristic of the integral domain.

Later on we shall see that polynomials provide important examples of
integral domains which are not fields. For the moment the only obviously
interesting example we know of an integral domain which is not a field is Z.
However this is such an important example that it justifies by itself all the
work we shall do in the remainder of this section.

From the point of view of late nineteenth century mathematics we shall
be showing that the rationals can be constructed from the integers. ‘God
created the integers, all the rest is the work of man.’ As a bonus we find that
the same proof gives the more modern sounding result that ‘every integral
domain can be embedded in a field’. (From the point of view of the ‘plain
man’ we are just describing fractions with a great deal of caution.)

Lemma 33 If (D,+, .) is an integral domain write D∗ = D \ {0}. The
relation ∼ defined on D ×D∗ by

(r1, s1) ∼ (r2, s2) if r1s2 = r2s1
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is an equivalence relation.
If (r1, s1) ∼ (r2, s2) and (u1, v1) ∼ (u2, v2) then

(r1v1 + s1u1, s1v1) ∼ (r2v2 + s2u2, s2v2) and (r1u1, s1v1) ∼ (r2u2, s2v2).

Lemma 34 Continuing with the assumptions and notation of Lemma 33 let
us write k for the set D/ ∼ of equivalence classes

r

s
= {(r′, s′) ∈ D ×D∗ : (r′, s′) ∼ (r, s)}.

Then we may define addition and multiplication on k by

r

s
+
u

v
=
rv + su

sv
and

r

s

u

v
=
ru

sv
.

With this addition and multiplication, (k,+, .) is a field.
If we define θ : D → k by

θ(r) =
r

1

then θ is an injective homomorphism and so D̃ = im θ is a subring of k
isomorphic to D.

It is natural to identify D̃ with D by writing

r =
r

1

for each r ∈ D. We call k the field of fractions of D.
We have thus characterised integral domains.

Lemma 35 A ring D is an integral domain if and only if it is isomorphic
to a subring of a field.

If we use the natural identification of D̃ with D we can restate Lemma 35 in
a more striking manner.

Lemma 36 A ring D is an integral domain if and only if it embeds in a
field.

The naturalness of our construction is emphasised by the Lemma 38 be-
low. We need a preliminary remark.

Lemma 37 If A is a subset of a field F then there is a smallest subfield B
containing A. (In other words there exists a subfield B of F such that B ⊇ A
and if C is any subfield of F with C ⊇ A then C ⊇ B.)
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We call B the field generated by A. If A = ∅ so that B is the smallest field
in R we call B the prime subfield of R.

Lemma 38 Suppose that (F,+, .) is a field and D a subring of F. Let Q
be the smallest subfield of F containing D. Then there is an isomorphism
φ : Q→ k such that φ(r) =

r

1
for all r ∈ D.

Lemma 32 (ii) tells us that the prime subring of a field may be identified
either with Z or Zp where p is a prime. If the prime subring is Zp then it is
also a field and so the prime subfield of F. If the prime subring is Z we may
use Lemma 38 to identify the prime subfield.

Lemma 39 The prime subfield of a field may be identified in a natural man-
ner with Q or Zp where p is a prime.

So far as the syllabus is concerned this concludes the section. What
follows is easy but not on the syllabus.

If we start withD = Z the construction above yields k = Q as a field. But
mathematicians are also interested in order. Recall that there is a relation
> on Z. We say that a > b if b− a > 0. The properties of > follow from the
following rules

(A) If a ∈ Z then exactly one of the following is true: a = 0 or a > 0 or
−a > 0.

(B) If a, b ∈ Z, a > 0 and b > 0 then a+ b > 0 and ab > 0.

Lemma 40 Let D = Z in Lemma 33. If (r1, s1) ∼ (r2, s2) and r1s1 > 0 then
r2s2 > 0.

Lemma 41 Let D = Z in Lemma 34. Then we may define a relation > on
k = Q by the conditions

r

s
>
u

v
if

r

s
− u

v
> 0

and
r

s
> 0 if rs > 0.

The following results hold
(A) If a ∈ Q then exactly one of the following is true: a = 0 or a > 0 or

−a > 0.
(B) If a, b ∈ Q, a > 0 and b > 0 then a+ b > 0 and ab > 0.

In the language of the analysis course C9, Q is an ordered field.
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4 Unique factorisation, Euclidean and prin-

cipal ideal domains

In this section I shall give a rather cold blooded and abstract treatment of
factorisation in rings. Historically the subject was an exciting and confusing
one. There are several theorems in number theory and elsewhere, in par-
ticular the Wiles-Taylor theorem (formerly Fermat’s last theorem), which
looked easy to prove provided ‘the obvious factorisation theorem holds’ and
very distinguished mathematicians fell into the trap of assuming that which
is obvious is true. On the other hand when unique factorisation did indeed
hold, it provided a very powerful tool. We give a simple example by proving
an elegant theorem of Fermat (Theorem 57) via unique factorisation at the
end of this section.

There are two immediate problems, the first obvious and easily overcome,
the second less so. The easy problem is illustrated when we try to extend
the unique factorisation theorem from N (which is, of course, not a ring) to
the ring Z. We observe that

−15 = (−3)× 5 = 3× (−5)

and that
15 = (−3)× (−5) = 3× 5

so some restatement of the theorem is necessary. We set up the machinery
to deal with this in the next definition and the lemma that follows.

Definition 42 Let R be a ring. We say that u ∈ R is a unit if there exists
an v ∈ R such that uv = 1. (Thus u is a unit if it has a multiplicative
inverse). We say that r and s are associates if there exists a unit u with
r = su.

We extend a standard notation of elementary number theory to any ring R.
If a, b, c ∈ R and a = bc we say that ‘b divides a’ and write b|a.
Lemma 43 (i) Consider a ring R. The relation r is an associate of s is an
equivalence relation on R.
(ii) Consider an integral domain D. Two elements a, b ∈ D are associates

if and only if a|b and b|a.
As examples we note that all non-zero elements in a field are units and so all
pairs of non-zero elements are associates. In Z the units are 1 and −1 and
the only associate of n is −n.

The second problem is clearly marked by the two definitions that follow
together with Example 47
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Definition 44 Let R be a ring. We say that q ∈ R is irreducible if it is not
a unit and whenever a|q then a is either a unit or an associate of q.

Definition 45 Let R be a ring. We say that p ∈ R is prime if it is neither
0 nor a unit and whenever p|ab [a, b ∈ R] then p|a or p|b.

Lemma 46 Any prime is irreducible.

Unfortunately there exist rings in which not all irreducible elements are
prime.

Example 47 Let
r = {n+m

√
(−5) : n,m ∈ Z}

and let N : R→ Z+ be given by

N(n+m
√
(−5)) = |n+m

√
(−5)|2 = n2 + 5m2.

(i) R is a subring of C so an integral domain.
(ii) N(ab) = N(a)N(b) for all a, b ∈ R.
(iii) The units of R are 1 and −1.
(iv) 6 = 2× 3 = (1 +

√
(−5))× (1−√(−5)).

(v) The elements 2, 3, (1 +
√
(−5)) and (1−√(−5)) are irreducible.

In the development of the theory of factorisation for Z (strictly speaking
for N, which is not a ring) carried out in Course C3 we showed that every
irreducible element is prime by using Bezout’s theorem. Fortunately there
exist a large class of integral domains for which something rather close to
Bezout’s theorem holds — the so called principal ideal domains.

Definition 48 If R is a ring we say that an ideal I of R is principal if it is
generated by a single element a, in other words

I = aR = {ar : r ∈ R}.

We also write I = (a).

Definition 49 An integral domain D is said to be a principal ideal domain
if every ideal I of D is principal.

Lemma 50 In a principal ideal domain every irreducible element is prime.

Lemma 51 In a principal ideal domain every element which is neither a
unit nor 0 is the product of a finite number of irreducible elements.
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Once we have Lemmas 50 and 51 the same easy, if slightly tedious, argu-
ments that we used to prove unique factorisation for the integers in Course C3
give us a unique factorisation theorem for principal ideal domains.

Theorem 52 Let D be a principal ideal domains.
(i) If r ∈ D is non-zero we can find a unit u and irreducible elements a1,

a2, . . .an such that
r = ua1a2 . . . an.

(ii) Suppose that u and v are units and a1, a2, . . .an, b1, b2, . . . bm are
irreducible with

ua1a2 . . . an = vb1b2 . . . bm.

Then m = n and by renumbering we can ensure that aj and bj are associates
for all 1 ≤ j ≤ n.

I said that principal ideal domains are common but I have given no tech-
nique for proving that a domain is a principal ideal domain. Not surprisingly,
one way is to seek an analogue of Euclid’s algorithm from Course C3.

Definition 53 We say that an integral domain D is a Euclidean domain if
we can find a function φ : D \ {0} → Z+ (called a Euclidean function) such
that
(i) if a|b then φ(a) ≤ φ(b),
(ii) given a ∈ R and b ∈ R with b 6= 0 we can find q and r such that

a = qb+ r and either r = 0 or φ(r) < φ(b).

Lemma 54 If D is a Euclidean domain with Euclidean function φ then u is
a unit of D if and only if u 6= 0 and φ(u) = φ(1).

Theorem 55 Every Euclidean domain is a principal ideal domain.

We are now in position to give the reader a genuinely novel example of a
domain with unique factorisation.

Example 56 (The Gaussian integers) Consider

R = {n+mi : n,m ∈ Z}

and let φ : R→ Z+ be given by

φ(n+mi) = |n+mi|2 = n2 +m2.

(i) R is a subring of C so an integral domain (called the Gaussian inte-
gers).
(ii) φ is a Euclidean function, so R is a Euclidean domain.
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It is quite hard to give examples of a principal ideal domains which are
not Euclidean (presumably, not because they are uncommon but because it
is hard to show that no Euclidean function could possibly exist). However,
they exist and are given, or at least referenced, in the heavier algebra texts.

The remainder of this section is not on the syllabus. In it we use factori-
sation in the Gaussian integers to prove a theorem of Fermat.

Theorem 57 (Fermat) We work in N. An odd prime p can expressed as
the sum of the squares of two integers

p = n2 +m2

if and only if p is of the form 4N + 1 for some integer N .

The only if part is easy, but to prove the if part we need the following lemma
on Gaussian integers.

Lemma 58 We work in N except in part (i). Suppose that p is a prime such
that we can find integers x and y and an integer c coprime to p such that
x2 + y2 = cp. Then
(i) p is not a prime for the Gaussian integers,
(ii) there exist integers n and m such that p = n2 +m2.

Combining this with the following simple consequence of Wilson’s theorem
(Course C3) we obtain Fermat’s theorem (Theorem 57).

Lemma 59 Suppose that p is of the form 4N + 1 for some integer N .
(i) We can solve the congruence x2 ≡ −1 mod p.
(ii) We can find an integer x with 1 ≤ x ≤ p/2 such that x2 + 12 ≡ 0

mod p.

5 Polynomials over rings

The definition of polynomials over rings is complicated by the phenomenon
illustrated in the next example.

Example 60 Let f : Z2 → Z2 be defined by f(x) = x2 + x. Then f(x) = 0
for all x.

We must thus decide whether to define a polynomial by its values (which is
what an analyst would do) or by its coefficients. As algebraists we decide to
define it by its coefficients and enshrine our choice in the following definition.
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Definition 61 The polynomial ring R[X] over R is the collection of se-
quences

r = (r0, r1, r2, . . . )

where each rj ∈ R and only finitely many of the rj are non-zero. We define

r+ s = (r0 + s0, r1 + s1, r2 + s2, . . . )

and
rs = t

where tj =
∑j

k=0 rjsk−j.

Neither the next lemma nor its proof present any surprises.

Lemma 62 The polynomial ring R[X] over R is a ring.

Finally we remove the mask of the mysterious stranger and write

r =
∞∑

j=0

rjX
j =

N∑

j=0

rjX
j

where N is any integer sufficiently large that rj = 0 for all j ≥ N . Of course,
the Xj are simple place holders (we call X an ‘indeterminate’). If we want to
talk about the value of a polynomial we need a simple homomorphism (the
pont evaluation map).

Lemma 63 (Point evaluation) If x ∈ R the map δx : R[X]→ R given by

δx

(
N∑

j=0

rjX
j

)

=
N∑

j=0

rjx
j

is a homomorphism.

As might be expected, we write δxp = p(x). The degree of a polynomial is
defined in the obvious manner.

Definition 64 If

p(X) =
N∑

j=0

rjX
j

and rN 6= 0 then we say that p has degree N and write ∂p = N . If p = 0 we
write ∂p = −∞.

In this course we confine ourselves to polynomials over integral domains.
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Lemma 65 If D is an integral domain then so is the polynomial ring D[X].

Lemma 66 If p and q are polynomials over an integral domain then
(i) ∂(p+ q) ≤ max(∂p, ∂q),
(ii) ∂(pq) = ∂p+ ∂q.

If we restrict ourselves still further to fields we can use a very powerful
result.

Theorem 67 (Euclidean division) If a and b are polynomials over a field
F and b 6= 0 then we can find polynomials q and r such that a = qb + r and
∂r < ∂a.

As an immediate corollary we have a key result.

Lemma 68 The polynomial ring over a field is a Euclidean domain and so
a principal ideal domain.

Notice that Lemma 68 does not extend even to such a well behaved integral
domain as Z.

Example 69 The ideal generated by 2 and X is not principal in Z.

In the next section we shall see how this problem can be partially overcome by
embedding the integral domain in its quotient field. A rather trivial example
of this technique is used to derive Lemma 71 from Lemma 70 (iii) below.

Lemma 70 Let us work in the ring of polynomials over a field F.
(i) If p is a polynomial and p(a) = 0 for some a ∈ F then we can find a

polynomial q such that p(X) = (X − a)q(X).
(ii) If p is a polynomial and p(a1) = p(a2) = · · · = p(am) = 0 for some

distinct a1, a2, . . . , am ∈ F then we can find a polynomial q such that

p(X) = (X − a1)(X − a2) . . . (X − am)q(X).

(iii) A polynomial of degree n has at most n zeros in F.

Lemma 71 Suppose that D is an integral domain and p is a polynomial in
D[X] of degree n ≥ 0. Then there are at most n distinct solutions of p(x) = 0
with x ∈ D.
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So far as the syllabus is concerned this concludes the section. What
follows is easy but not on the syllabus.

Suppose we consider the particular field R. We know that the polynomials
on R form an integral domain but in this special case we can also define an
order. If p(X) =

∑n
j=0 ajX

j with an 6= 0 we say that p > 0 if an > 0. If p is
the zero polynomial we say that p ≯ 0. The following two rules are easy to
check.

(A) If p ∈ R[X] then exactly one of the following is true: p = 0 or p > 0
or −p > 0.

(B) If p, q ∈ R[X], p > 0 and q > 0 then p+ q > 0 and pq > 0.
If p, q ∈ R[X] we write p > q if p− q > 0.

Exactly as Lemmas 40 and 41 we can extend this order to the field of
quotients.

Lemma 72 Let D = R[X] in Lemma 33. If (r1, s1) ∼ (r2, s2) and r1s1 > 0
then r2s2 > 0.

Lemma 73 Let D = R[X] in Lemma 34. Then we may define a relation >
on k = K by the conditions

r

s
>
u

v
if

r

s
− u

v
> 0

and
r

s
> 0 if rs > 0.

The following results hold
(A) If a ∈ K then exactly one of the following is true: a = 0 or a > 0 or

−a > 0.
(B) If a, b ∈ K, a > 0 and b > 0 then a+ b > 0 and ab > 0.

In the language of the analysis course C9, K is an ordered field but of a type
rather different from Q and R.

Remember that Q and R obeyed the axiom of Archimedes. ‘If a, b > 0
then we can find an n ∈ Z+ such that

na = a+ a+ · · ·+ a
︸ ︷︷ ︸

n

> b.’

However, in K, we have X, 1 > 0 yet

n = n1 = 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n

≯ X
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for all n. In a more striking, but equivalent, formulation

1

n
>

1

X

for all n ∈ Z with n ≥ 1. Thus we have an ordered field containing Z
for which 1/n 9 0. Ordered fields like K which do not obey the axiom of
Archimedes are called non-Archimedean.

6 Unique factorisation for polynomials

Once we have a definition for the ring R[X] of polynomials over a ring R it is
easy to define the ring R[X1, X2, . . . , Xn] of polynomials in n indeterminates
X1, X2, . . . , Xn by using the inductive definition

R[X1, X2, . . . , Xk+1] = R[X1, X2, . . . , Xk][Xk+1].

It is not hard to see that this abstract definition corresponds to our intu-
itive picture of polynomials in several variables provided that we define the
polynomial by its coefficients rather than its values. The typical element of
R[X1, X2, . . . , Xn] can be written

P (X1, X2, . . . , Xn) =
N∑

i1=1

N∑

i2=1

· · ·
N∑

in=1

ai1,i2,...,inX
i1X i2 . . . X in

and addition, multiplication and point evaluation

P (x1, x2, . . . , xn) =
N∑

i1=1

N∑

i2=1

· · ·
N∑

in=1

ai1,i2,...,inx
i1xi2 . . . xin

for x1, x2, . . . , xn ∈ R. The details which echo the previous section are just
as trivial here as they were there and I shall omit them.

Simple induction using Lemma 62 and Lemma 65 gives the appropriate
version of those lemmas.

Lemma 74 If R is ring then so is R[X1, X2, . . . , Xn].

Lemma 75 If D is an integral domain then so is D[X1, X2, . . . , Xn].

Unfortunately, although Lemma 68 tells us that the polynomial ring F[X]
over a field F is a Euclidean domain and so a principal ideal domain this
result does not extend to polynomials in several indeterminates.
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Example 76 If F is a field and we work in the ring F[X1, X2] then the ideal
generated by X1 and X2 is not principal.

In spite of this, it turns out that unique factorisation still holds for
F[X1, X2, . . . , Xn]. If we reflect on how we might prove this, it seems natural
to use induction on n. In order to set out the induction it is natural to make
the following definition based on the statement of Theorem 52

Definition 77 Let D be an integral domain. We say that D is a unique
factorisation domain if the following two statements hold.
(i) If r ∈ D is non-zero we can find a unit u and irreducible elements a1,

a2, . . .an such that
r = ua1a2 . . . an.

(ii) Suppose that u and v are units and a1, a2, . . .an, b1, b2, . . . bm are
irreducible with

ua1a2 . . . an = vb1b2 . . . bm.

Then m = n and by renumbering we can ensure that aj and bj are associates
for all 1 ≤ j ≤ n.

The following point should be noted.

Lemma 78 In a unique factorisation domain every irreducible is a prime
(so the two terms are synonymous).

Our aim would be achieved if we could prove the following theorem.

Theorem 79 If D is a unique factorisation domain then so is D[X].

Simple induction gives the next result.

Theorem 80 If D is a unique factorisation domain then so is D[X1, X2, . . . , Xn].

By Theorem 52 every principal ideal domain is a unique factorisation domain
and we have a very strong result.

Theorem 81 If D is a principal ideal domain then D[X1, X2, . . . , Xn] is a
unique factorisation domain.

How might we prove Theorem 79? Consider the special case when D = Z.
We know nothing about Z[X] but we do know that Z embeds naturally in
its field of fractions Q and that unique factorisation holds for Q[X] (by The-
orem 52). Since Z[X] embeds naturally in Q[X] we can proceed as follows.
Suppose we have a polynomial 6X3 +24X2 +24X +6 in Z[X]. We may not
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be able to factorise it in Z[X] but we can certainly factorise it in Q[X]. Take
one such factorisation

6X3 + 24X2 + 24X + 6 =
42

25

(
5

2
X +

5

2

)(
10

7
X2 +

30

7
X +

10

7

)

.

By clearing fractions and cancelling (Z is, after all, the quintessential integer
domain) we arrive at

6X3 + 24X2 + 24X + 6 = 2.3(X + 1)(X2 + 3X + 1)

and a little thought shows that if ( 5
2
X + 5

2
) and (10

7
X2 + 30

7
X + 10

7
) were

irreducible in Q[X] then (X +1) and (X2 +3X +1) are irreducible in Z[X].
Although the proof of Theorem 79 given below is quite complicated it

is my belief that any one seeking to develop the idea just given into a cast
iron proof of the uniqueness of factorisation for Z[X] would be lead almost
inevitably to something like it. One the proof is written down it is a simple
matter to replace Z by a general unique factorisation domain.

Definition 82 Let A be a subset of a ring R, such that A contains a non-zero
element. We say that a is a highest common factor of A if
(i) a|x for all x ∈ A,
(ii) if a′|x for all x ∈ A then a′|a.

Lemma 83 Any finite subset A of a unique factorisation domain such that
A contains a non-zero element has a highest common factor.

In fact the following is true though we shall not use it.

Lemma 84 Any subset A of a unique factorisation domain such that A con-
tains a non-zero element has a highest common factor.

In what follows we work under the following standing hypothesis.
Standing hypothesis We have a unique factorisation domain D embedded
in its field of fractions F . We use the natural embeddings of D in F , F in
F [X], D[X] in F [X] and D in D[X].

We say that a polynomial p(X) =
∑n

j=1 ajX
j in D[X] is primitive if 1 is

a highest common factor of {aj : 0 ≤ j ≤ n}. We observe that any q ∈ D[X]
can be written as q = γp with γ ∈ D and p primitive.

Lemma 85 Under our standing hypothesis,
(i) The units of D[X] are precisely the units of D.
(ii) Any q ∈ F [X] can be written as q = γp with γ ∈ F and p a primitive

polynomial in D[X].
(iii) If p, p′ are primitive polynomials in D[X] and γp = γ ′p′ for some

γ, γ′ ∈ F then p and p′ are associates in D[X], that is there exists a unit
ε ∈ D such that p = εp′.
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Lemma 86 Under our standing hypothesis, if p and q are primitive polyno-
mials in D[X] so is pq.

Lemma 87 (Gauss’ lemma) Under our standing hypothesis, a polynomial
p ∈ D[X] is irreducible if and only if it is either (a) an irreducible element
of D or (b) it is primitive in D[X] and irreducible in F [X].

Theorem 88 Under our standing hypothesis, D[X] is a unique factorisation
domain.

Theorem 88 is just Theorem 79 so we are done. We cease working under the
standing hypothesis.

The reader may suspect that it is hard to establish if a particular poly-
nomial is irreducible. She is right1. One useful tool is due to Eisenstein. We
give it for Q[X] though it can be generalised.

Lemma 89 (Eisenstein’s criterion) Suppose that

P (X) = a0 + a1X + a2X
2 + · · ·+ anX

n

is a polynomial in Z[X] (i.e. P has integral coefficients). If there exists a
prime number p such that p 6 |an, p|an−1, p|an−2, . . . , p|a0 but p

2 6 |a0, then P
is irreducible over Q[X].

As an example of how it used consider the following.

Lemma 90 If p is prime then 1 +X +X2 + · · · +Xp−1 is irreducible over
Q[X].

The trick here is to make the substitution Y = X−1 and to base our algebra
on the recollected formula

1 + x+ x2 + · · ·+ xp−1 =
xn − 1

x− 1
=

(y − 1)p − 1

y
,

from the days before we did abstract algebra.
The formula

(X − 1)(X3 +X2 +X + 1) = X4 − 1

= (X2 − 1)(X2 + 1)

= (X − 1)(X + 1)(X2 + 1)

shows us that (X3 + X2 + X + 1) = (X + 1)(X2 + 1) and suggests how to
prove the converse.

Lemma 91 If n is composite then 1+X+X2+ · · ·+Xn−1 is not irreducible
over Q[X].

1At least, as far as human beings are concerned. There is an algorithm which will
always work and computer algebra programs can handle quite complicated cases.
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7 Fields and their simple extensions

We already know that it may be useful to embed a field in a larger field. Not
all polynomials are soluble in R but they are in the larger field C. In this
section we study other extensions.

We begin with a couple of examples.

Example 92 Consider Q as a subfield of C.
(i) Let γ be a transcendental number. Then Q(γ) the smallest subfield of

C containing Q and γ is isomorphic to the field of fractions of Q[X].
(ii) Let ω be a root of z2 + z + 1 = 0 in C. Then each element of Q(ω)

the smallest subfield of C containing Q and ω may be written in exactly one
way as a+ bω with a, b ∈ Q.

Of course, we may not be in the happy position of Example 92 and find
our extension ‘ready made’ as a subfield of some larger field.

Definition 93 We say that L is an extension of a field K if there is an
injective homomorphism φ : K → L (i.e. if K is isomorphic to a subfield of
L).

Having made this definition we shall usually ignore it and treat K as a
subfield of L with the natural identification k = φ(k) for k ∈ K. However,
there are one or two points where we need to act more cautiously.

Definition 94 We say that L is a simple extension of a field K if we can
find an element u ∈ L such that u and K generate L. We write L = K(u).

We now see that choices of Example 92 are, in some sense, typical.

Definition 95 Suppose that L is a simple extension of K with L = K(u).
If u satisfies a polynomial equation

un + an−1u
n−1 + an−2u

n−2 + · · ·+ a0 = 0

with aj ∈ K we say that u is algebraic and that L = K(u) is an algebraic
extension of K. If not we say that u is transcendental and that L = K(u)
is a transcendental extension of K.

Lemma 96 If K(u) is a transcendental extension of a field K then K(u) is
isomorphic to k the field of fractions of K[X] under the natural isomorphism
θ : k→ K(u) which has θ(a) = a for all a ∈ K and θ(X) = u.

The more interesting case of algebraic extension is dealt with in a series
of simple but important lemmas.
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Lemma 97 If K(u) is an algebraic extension of a field K then u is the zero
of one and only one monic irreducible polynomial p in K[X]. If q ∈ K[X]
and q(u) = 0 then q = hp for some h ∈ K[X] (that is q is in the ideal (p)
generated by p).

Definition 98 With the notation and hypotheses of Lemma 97 we say that
p is the minimal polynomial of u. If p has degree n we say that u has degree
over K of value n. We also write [u : K] = n.

Lemma 99 With the notation and hypotheses of Lemma 97 the mapping
φ : K[X]→ K(u) given by

φ(f) = f(u)

is a surjective homomorphism with kernel (p).

Lemma 100 With the notation and hypotheses of Lemma 97 K(u) is iso-
morphic to K[X]/(p). Thus every algebraic extension of K is isomorphic to
the quotient of K[X] by the ideal generated by some irreducible polynomial.

It is interesting to ask what happens to p when we factorise it in K(u)[X].
Since p(u) = 0 we know that X − u is a factor of p(X) (by the ‘remainder
theorem’ Lemma 70 (i)) so p will have linear factors. We shall discuss this
in detail in the next section but for the moment we just give an example
to show that, even in K(u)[X], p may not factorise completely into linear
factors.

Example 101 Consider Q as a subfield of C. Let p ∈ Q[X] be given by
p(X) = X4 − 3.
(i) The polynomial p is monic and irreducible over Q[X].
(ii) If L is the field generated by Q and 31/4 (the positive fourth root of 3

then L = Q(31/4) and p(31/4) = 0. In Q(31/4), p factors into irreducibles as

p(X) = (X − 31/4)(X + 31/4)(X2 + 31/2).

(iii) If L is the field generated by Q and 31/4i then L = Q(31/4i) and
p(31/4i) = 0. In Q(31/4i), p factors into irreducibles as

p(X) = (X − 31/4i)(X + 31/4i)(X2 − 31/2).

We complete the unstarred part of this section with another simple but
useful observation.
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Lemma 102 (i) If K is a subfield of L then L can be considered as a vector
space of K in a natural manner.
(ii) If L is a transcendental extension of K then L is infinite dimensional

as a vector space over K.
(iii) If L = K(u) and u is algebraic of degree n then L has dimension n

as a vector space over K. The elements 1, u, . . . , un−1 form a basis for L.

If K is a subfield of L we write [L : K] for the dimension (possibly ∞) of L
as a vector space over K. We call [L : K] the degree of L over K.

Lemma 103 (Tower law) If K is a subfield of L and L is a subfield of M
then [M : K] = [M : L][L : K].

The rest of this section is not on the syllabus and, even if time allows
to be covered, will only be sketched. Details may be found in the opening
chapters of most texts on Galois theory (e.g. Chapter 6 of [4]).

We know that we stand on the shoulders of giants. The only question to
be answered is whether we see any further. Our work so far enables us to
solve two geometric problems that the Greeks were unable to solve. Both deal
with ruler and compass constructions. The Greeks asked which constructions
were possible with a ruler and compass alone. More prosaicly, but essentially
equivalently we ask which points (x, y) ∈ R2 can be constructed starting
from (0, 0) and (0, 1) using ruler and compass alone.

Lemma 104 Consider a ruler and compass construction starting from (0, 0)
and (0, 1) in which the point (xj, yj) is obtained at the jth step. If we write
R0 = Q and Rj = Rj−1(xj)(yj) (that is Rj is the smallest subfield of R2

containing Rj−1, xj and yj) then [Rj, Rj−1] takes the value 1 or 2. Thus, by
the tower law, [Rj,Q] = 2r for some integer r ≥ 0.

Theorem 105 (The Delian problem) (i) The polynomial X3 − 2 = 0 is
irreducible over Q.
(ii) If in Lemma 104 we have (xj, , yj) = (0, 21/3) then [Rj,Q] must be

divisible by 3.
(iii)We can not construct the point (0, 21/3) by ruler and compass con-

struction starting from (0, 0) and (0, 1).
(iv) It is impossible using ruler and compass alone to construct a cube

whose volume is double that of a cube of given edge.

There are many people for whom only the useful is worthwhile. Hogben
dismisses Plato, Eudoxus and Euclid as men who who treated ‘mathematics
as a respectable form of relaxation for the opulently idle’. Even Kline in his
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magisterial historyMathematical Thought from Ancient to Modern Times [6]
sometimes reminds one of a school teacher in charge of a class of brilliant
pupils who will persist in chasing the butterflies of pure mathematics rather
than applying themselves to the stern task of understanding the real world.
‘Come on master Gauss stop looking at those cyclotomic polynomials — you
have three orbits to compute before bedtime!’ Even if they understand the
thrill of seeing a problem solved that has baffled mankind for 2000 years they
see that thrill as a sinful diversion.

According to a story current in antiquity the Delians, suffering from pesti-
lence, sent to the oracle who told them to double the size of a particular cubic
altar to Apollo. They did as they were told by doubling the length of each
of its sides. When the plague continued they consulted Plato who explained
that the god wished his altar doubled in volume (preserving the cubic shape).
The god, continued Plato, demanded this not because he wanted or needed
such an altar but in order to censure the Greeks for their indifference to math-
ematics and lack of respect for geometry. The gods no longer punish societies
which reject the pursuit of knowledge for its own sake quite so directly but
perhaps such societies punish themselves.

Theorem 106 (The trisection problem) (i) We can construct the point
(cosπ/3, sin π/3) by ruler and compass construction starting from (0, 0) and
(0, 1).
(ii) If we could trisect every angle by ruler and compass construction we

could construct (cos π/9, sin π/9) by ruler and compass construction starting
from (0, 0) and (0, 1).
(iii) If γ = cos π/9 then 4γ3−3γ− 1

2
= 0. If τ = 2γ then τ 3−3τ −1 = 0.

(iv) The polynomial X3 − 3X − 1 = 0 is irreducible over Q.
(v)We can not trisect every angle by a ruler and compass construction.

The credit for these two theorems goes to Wantzel. Possibly if he had done
something romantic like being killed in a duel mathematicians would have
had the courtesy to attach his name to his theorems.

Suppose we could prove the following theorem.

Theorem 107 (Lindeman) The number π is transcendental.

Then we would be able to solve a third great problem of antiquity.

Theorem 108 (Impossibility of circle squaring) (i) It is impossible that
π ∈ Rj.
(ii) We cannot construct a square of area equal to a given circle by a ruler

and compass construction.
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There are now fairly short proofs of Theorem 107 (see, for example, Ian
Stewart’s beautiful Galois Theory [8] Chapter 6) but, so far as I know, no
easy ones.

If we consider a regular polygon with n sides inscribed in the unit circle
in such a way that one vertex is at (0, 1) we see that the vertices are at points
(xr, yr) given by xr + iyr = ωr where ω = exp(2πi/n) (so the ωr are the rth
roots of unity. The constructibility of a regular polygon with n sides by a
ruler and compass construction is thus closely linked to the polynomial

Xn − 1 = (X − 1)(1 +X +X2 + · · ·+Xn−1)

and so to the cyclotomic polynomial 1+X +X2 + · · ·+Xn−1. In particular,
though we shall not do it, it is not hard to get from Lemma 90 to the
statement that the regular p-gon (with p a prime) is only constructible by
a ruler and compass construction if p − 1 is a power of 2. As a very young
man, Gauss showed the reverse (if p − 1 is a power of 2 the regular p-gon
is constructible). It is said that it was this discovery that decided him on a
mathematical career. The details of the mathematics involved may be found
in [8], Chapter 17.

8 Splitting fields of polynomials

In Lemmas 96 to 100 we derived the properties of simple extensions but took
the simple extensions as given. Clearly, there always exists a transcendental
extension of a given field K since the field of fractions of K[X] is such an
extension. Moreover, Lemma 96 tells us that (up to isomorphism) this exten-
sion is unique. Does there always exist an algebraic extension corresponding
to a given irreducible polynomial and is it unique (up to isomorphism)?

The obvious way forward is pointed out by Lemma 100.

Lemma 109 If K is a field and p is irreducible in K[X] then L = K[X]/(p)
is a field containing (an isomorphic copy of) K. We can find u ∈ L such
that L = K(u) is simple algebraic extension of K and X − u is a factor of
p(X) in L.

The only problem here is to show that K[X]/(p) is a field and this follows
from the analogue of Bezout’s theorem for principal ideal domains. Unique-
ness is simple.

Lemma 110 Suppose that K is a field and p is irreducible in K[X]. If
K(u1) and K(u2) are simple algebraic extensions of K such that X − uj is
a factor of p(X) in K(uj) then there is an isomorphism θ : K(u1)→ K(u2)
with θ(a) = a for a ∈ K and θ(u1) = u2.
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Thus in Example 101 we know without further computation that Q(31/4) ∼=
Q(31/4i).

Repeated use of Lemma 109 gives the theorem which the last section lead
us to expect.

Theorem 111 If K is a field and p ∈ K[X] there exists a field L containing
(an isomorphic copy of) K such that [L : K] < ∞ and we can find A ∈ K,
α1, α2, . . . , αn ∈ L such that

p(X) = A(X − α1)(X − α2) . . . (X − αn)

We say that p splits over L. In order to obtain a uniqueness result we need
to tighten up the conditions of the theorem.

Definition 112 If K is a subfield of the field L and p ∈ K[X] we say that
L is a splitting field for p over K if
(i) p factorises into linear factors

p(X) = A(X − α1)(X − α2) . . . (X − αn)

over L.
(ii) If p factorises into linear factors over a subfield L′ of L then L′ = L.

Observe that condition (ii) can be replaced by the statement L = K(α1, α2, . . . , αn)
the field generated by K, α1, α2, . . .αn−1 and αn.

The uniqueness theorem is now easy to state.

Theorem 113 Suppose that K is a field and p ∈ K[X]. If L and L′ are
splitting fields of p then there is an isomorphism θ : L → L′ with θ(a) = a
for all a ∈ K.
There may be many different ways to go from K to a splitting field by
adjoining roots and Theorem 113 is slightly harder to prove than might be
expected.

The following lemma contains the key idea.

Lemma 114 Let K be a field, p ∈ K[X] and let L be a splitting field for
p over K. Suppose that L′ is a field containing a subfield K ′ isomorphic to
K under the isomorphism i such that i(p) splits in L′. (Here, if p(X) =
∑n

r=0 arX
r we write i(p)(X) =

∑n
r=0 i(ar)X

r.) Then there is an injective
homomorphism j : L→ L′ such that j|K = i.

This is as far as we shall go with the study of splitting fields but the
following remark (which is not on the syllabus) seems worth making. We
need results on countability from course C3.
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Lemma 115 (i) If K is a countable subfield of L and [L : K] < ∞ then L
is countable.
(ii) If K is a countable field we can find a countable field L containing

(an isomorphic copy of) K such that every polynomial p ∈ K[X] splits in
L[X].
(iii) If K is a countable field we can find countable fields Kj with

K = K0 ⊆ K1 ⊆ K2 ⊆ . . .

with Kj−1 a subfield of Kj such that every polynomial p ∈ Kj−1[X] splits in
Kj[X].
(iv) If K is a countable field we can find a countable field L containing

(an isomorphic copy of) K such that every polynomial p ∈ L[X] factors
completely into linear factors.

The same idea gives the following more striking result.

Lemma 116 There is a countable subfield F of C with F ⊇ Q such that
every polynomial in F[X] has a root in F.

Thus, from the point of view of a dyed in the wool algebraist, the construction
of the uncountable field C in order to have the fundamental theorem of
algebra is a reckless extravagance.

9 Finite fields

In this short but interesting section we find all finite fields explicitly.
Our first step is already substantial.

Lemma 117 If F is a finite field then F has characteristic p a prime (that is
F has prime field (an isomorphic copy of) Zp). The field F has pn elements
where [F : Zp] = n.

The second step is also remarkable.

Lemma 118 Let (F,+, .) be a field. If G is a finite subgroup of the multi-
plicative group (F \ {0}, .) then G is a cyclic group.

Notice that this result applies to general fields. The reader should identify
all possible G in the cases F = C and F = R. Our proof depends on a simple
result from the theory of commutative groups.

28



Lemma 119 If G is a finite Abelian group there exists an integer N and an
element h such that
(i) gN = e for all g ∈ G,
(ii) h has order exactly N .

Combining Lemmas 117 and 118, we see that all finite fields have a very
simple structure.

Theorem 120 If F is a finite field then F is (isomorphic to) the splitting
field of Xpn−1 − 1 over Zp for some prime p and some integer n ≥ 1.

(We can refer to the splitting field since Theorem 113 tells us that splitting
fields are unique up to isomorphism.)

Theorem 120 tells us the structure of a given finite field, if it exists, but
does not tell us if such a field exists. To obtain existence results we need to
investigate the polynomial Xpn−1 − 1 ∈ Zp[X]. We use a general result on
repeated roots.

Lemma 121 Let K be a field. Suppose that p(X) =
∑n

j=0 ajX
j ∈ K[X]

splits over K. Then p has (X − a)2 as a factor for some a ∈ K if and only
if the formal derivative

p′(X) =
n∑

j=1

jajX
j

and p[X] have a non-trivial common factor.

Lemma 122 Let K be a field of characteristic p a prime. If Xpn−1−1 splits
over K then all the linear factors are distinct.

Our results look nicer when stated in terms of Xpn −X.

Theorem 123 If p is a prime and n an integer the splitting field of Xpn−X
over Zp contains pn elements consisting of the pn distinct roots of Xpn −X.

We have now proved existence and uniqueness so we may make the fol-
lowing definition.

Definition 124 The finite field of order pn (p prime, n ≥ 1) is called the
Galois field of order pn and written GF(pn).

This triumph completes that part of this section which is on the syllabus.
However (strictly off the syllabus) we must admit that the triumph is not
quite as complete as it appears. Observe that Lemma 118 tells us that
the non-zero elements of GF(pn) form a cyclic group generated by a single
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element x say. As temporary notation let us call x a multiplicative generator
of GF(pn). Surely, we can not claim to understand GF(pn) unless we have
some short algorithm for finding a multiplicative generator for it. So far as
I know, no such algorithm has been found.

Of course since GF(pn) is finite, exhaustive search will eventually turn
up such a generator. We note also that quite a large proportion of the
elements of GF(pn) must be multiplicative generators (can you make this
statement more precise?) so properly random trial and error2 will rapidly
find a multiplicative generator x with arbitrarily low probability of failure.
Let us choose a basis u1, u2, . . . , un for GF(pn) as a vector space over Zp. We
then have

xr = a1(r)u1 + a2(r)u2 + · · ·+ an(r)un.

The n-tuple in
ar = (a1(r), a2(r), . . . , an(r))

thus runs through each element of Zp \ {0} exactly once as r runs from 0 to
pn − 1.

In a telepathy experiment, Albert and Bertha are placed in separate sealed
rooms. The experiment has already been running for a time 5N minutes
where N is unknown to them. A bell rings each 5 minutes and (supposing
it to be 5r minutes since they entered the room) they are asked to guess
an n-tuple of integers ar+N = (a1(r + N), a2(r + N), . . . , an(r + N)) with
0 ≤ aj(r +N) ≤ p− 1. If one of them guesses right he or she is told so and
presented with a paper star. Bertha has the advantage that she knows how ar
is constructed and in particular knows x. It is easy to see that initially Albert
and Bertha can only guess at random but that once Bertha has guessed right
she can lock in and give the correct answer each time.

One way of trying to hide a radio signal is to spread it as a large number
of weak signals at different frequencies and to change the choice of frequencies
at regular intervals. Of course the enemy may make a lucky choice of listening
frequencies and catch a brief part of the signal but the change of frequencies
should stymie him. On the other hand, our own side may not be able to
keep their timekeepers sufficiently synchronised with the transmitter during
long periods of silence. We begin to see how military men and others might
develop a deep interest in Galois fields.

2The ghastly modern educationalist’s jargon seeks to replace ‘trial and error’ by ‘trial
and improvement’ but here the failure of a guess results in no improvement.
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10 Modules

The theory of vector spaces is a well developed and powerful one. We have
seen examples of its use in this course in Lemma 117 which helped us classify
finite fields and in the definition of the degree [L : K] of an extension which
helped resolve the classical ruler and compass problems. From time to time
we come across structures like the ‘lattice’ Z2 which have a vector space
‘flavour’ without being vector spaces. It is thus natural to seek a theory
which generalises the notion of a vector space though though we may expect
the development of such a theory to be more intricate and the general results
to be less neat.

We proceed in the obvious way by replacing ‘field’ by ‘ring’ in the defini-
tion of a vector space.

Definition 125 Let R be a ring. We say that (M,R,+, .) is a module over
R if the following is conditions hold.
(i) (M,+) is an Abelian group.
(ii) There is a map θ : R×M →M written θ(r,m) = rm such that
(a) r(m1 +m2) = rm1 + rm2,
(b) (r1 + r2)m = r1m+ r2m,
(c) (r1r2)m = (r1(r2m),
(d) 1m =m,

for all r, r1, r2 ∈ R and m,m1,m2 ∈M .
We say that M is a module over R. Since the syllabus requires it to be
explicitly stated, we remark that a vector space over a field F is automatically
a module over F.

We have an immediate pleasant surprise.

Lemma 126 Let (G,+) be a commutative group. If we write

na = a+ a+ · · ·+ a
︸ ︷︷ ︸

n

,

(−n)a = −na and 0a = a [a ∈ G] then G is a module over Z.

However, this example shows us that the behaviour of modules, even over very
nice rings, is very different from that of vector spaces. (Precisians will worry
that not all the terms in the next example have been defined, everybody else
will welcome early warning of trouble.)

Example 127 Let C6 be the cyclic group generated by [1] and write n[1] =
[n]. Then if we take C6 as a module over Z, {[1]} is a minimal generating
set but so is {[2], [3]}.
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This should be contrasted with the theory of finite dimensional vector spaces
where every minimal generating set (in the language of Course P1, every
minimal spanning set) has the same number of elements. The reader may
care to reflect on the importance of division in the proof of the Steinitz
replacement lemma. For the moment we note that results which involve the
notion of basis or dimension explicitly or implicitly are unlikely to carry over
from vector spaces to general modules.

Our next example is not surprising.

Lemma 128 If S is a subring of a ring R then R is a module over S with
module multiplication defined to be ring multiplication in R. In particular R
is a module over itself.

Our final introductory example may seem a little strange but much of the
strangeness will vanish on reflection.

Lemma 129 Let V be a vector space over a field F and let α be an endo-
morphism of V (that is a linear map from V to V ). Then V is a module
over the ring of polynomials F[X] with module multiplication defined by the
following rule.
If p(X) =

∑n
j=0 ajX

j and v ∈ V then pv = p(α)v, that is

pv = a0v + a1α(v) + a2α
2(v) + · · ·+ anα

n(v).

The reader should note the implied convention α0 = ι. She should then
examine the definition when F = C and α is the linear map given, in turn,
by the matrices

(
0 0
0 0

)

,

(
1 0
0 0

)

,

(
1 0
0 2

)

,

(
2 0
0 2

)

,

(
0 1
0 0

)

.

If the situation described in Lemma 129 holds we talk of the F[X] module
constructed from V via α.

It is natural to ask whether a concept so general that it includes both
Abelian groups and the effect of polynomials of a given endomorphism on
a vector space is not too general to produce interesting mathematics. The
object of the last part of this course is to produce a theorem on modules
(Theorem 171) so powerful that it gives both a complete classification of
finite Abelian groups and of endomorphisms on finite dimensional vector
spaces over C.

Before moving directly to this topic we first produce some standard alge-
braic definitions, theorems and constructions parallelling those already pro-
duced in our studies of groups, vector spaces and rings.
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Definition 130 If M and N are modules over a ring R we say that φ :
M → N is a (module) homomorphism if

φ(r1m1 + r2m2) = r1φ(m1) + r2φ(m2)

for all r1, r2 ∈ R and m1,m2 ∈ M . If φ is a bijection we say that it is a
(module) isomorphism and that M and N are isomorphic.

Definition 131 If (M,R,+, .) is a module over a ring R we say that a subset
N of M is a submodule if N is a subgroup of (M,+) and rn ∈ N whenever
r ∈ R and n ∈ N .

The process of quotienting is familiar from our work with rings in Section 2
which we shall follow almost exactly. Since N is a subgroup of (M,+) we
may work with cosets u+N of N .

Lemma 132 Let N be a submodule of a module M over a ring R. Then
(i)
⋃

u∈M(u+N) = M .
(ii) If u, v ∈M then either (u+N) ∩ (v +N) = ∅ or u+N = v +N .

Lemma 133 If N is a submodule of a module M over a ring R and

u1 +N = u2 +N, v1 + I = v2 + I

then
(u1 + v1) + I = (u2 + v2) + I, ru1 + I = ru2 + I

for all r ∈ R.

Definition 134 If N is a submodule of a module M over a ring R we write
M/N for the set of cosets of N and define addition and multiplication on
M/N by

(u+N) + (v +N) = (u+ v) +N, r(u+N) = ru+N.

Lemma 135 If N is a submodule of a module M over a ring R then M/N
with module addition and multiplication as in the previous definition is a
module over R.

We call M/N a quotient module.
We continue along the sequence of Section 2.

33



Definition 136 If M and N are modules over a ring R and φ : M → N is
a homomorphism we write

kerφ = φ−1(0) = {r ∈ R : φ(r) = 0}

and call kerφ the kernel of φ.

Lemma 137 If M and N are modules over a ring R and φ : M → N is a
homomorphism then
(i) kerφ is a submodule of M .
(ii) φ(u) = v has a solution u ∈M if and only if v ∈ imφ.
(iii) If φ(u) = v then φ(u′) = v if and only if u′ ∈ u+ kerφ.

Lemma 138 Let N be an submodule of a module M over a ring R. Then
the map π : M →M/N given by

π(u) = u+N

is a homomorphism with kernel N .

Theorem 139 (The isomorphism theorem for modules) Suppose that
M and N are modules over a ring R and φ : R → S is a homomorphism.
Then

R/ kerφ ∼= imφ.

We have followed the same path to obtain the same isomorphism theorem
for rings and modules. There is a similar result for groups (but the key notion
is that of a normal subgroup that is of a subgroup H of a group G such that
g−1Hg = H for all g ∈ G). Clearly we ought to seek some ‘master theorem’
from which all these results could be derived. Such concerns are the subject
of Universal Algebra and its younger cousin Category Theory. In the context
of the present course, most readers will find the generalisation of vector
spaces to modules sufficiently hard without seeking to study a concept of
‘algebraic system’ which will include objects with a single non-commutative
multiplication (groups), objects with two commutative multiplications linked
by a distributive law (rings) and products of such objects with further links
(modules).

The research supervisor of the great probabilist Feller told him that the
best mathematics consists of the general embedded in the concrete. Feller
claimed that it was some years before he realised this was not an anti-
militarist slogan. Most mathematicians would agree with Feller’s supervisor.
Unfortunately they would differ widely on the proportion of general and con-
crete required and still more widely on what, precisely, is general and what
concrete.
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11 Linear relations in modules

So far, the results we have proved on modules have had a general algebraic
flavour. However, we deliberately chose the axioms for modules to echo those
for vector spaces and from now on we shall try to exploit that fact.

Lemma 140 If M is a module over a ring R and A a non empty subset of
M then the set N of elements

k∑

j=1

rjaj

with rj ∈ R, aj ∈ A and k a positive integer is a submodule of M . If N ′ is
any submodule of M with N ′ ⊇ A then N ′ ⊇ N .

We call N the submodule generated by A.

Definition 141 IfM is a module over a ring R andM generated by a single
element m we say that M is a cyclic module and write M = Rm.

If M1, M2, . . . , Mn are submodules of module M we write M1 +M2 +
· · · +Mn for the submodule generated by

⋃n
r=1Mr. We recall from vector

space theory that direct sums are more useful than sums.

Definition 142 If M is a module over a ring R and M1, M2, . . . , Mn are
submodules of M we say that M1 +M2 + · · · +Mn is a direct sum (more
specifically an internal direct sum) of M1, M2, . . . , Mn and write

M1 +M2 + · · ·+Mn = M1 ⊕M2 ⊕ · · · ⊕Mn

if the only solution to the equation m1 +m2 + · · · +mn = 0 with mj ∈ Mj

[j = 1, 2, . . . n] is mj = 0 [j = 1, 2, . . . n].

Lemma 143 Let M be a module over a ring R and M1, M2, . . . , Mn sub-
modules of M . The following conditions are equivalent.
(i) M1 +M2 + · · ·+Mn is a direct sum.
(ii) (

∑

i6=jMi) ∩Mj = {0} for each 1 ≤ j ≤ n.
(iii) Each m ∈ M1 +M2 + · · · +Mn can be written in only one way as

m =
∑n

j=1mj with mj ∈Mj [j = 1, 2, . . . n].

We can also define an external direct sum (analogous to the direct sum
of rings in Lemma 5).
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Lemma 144 Let M1, M2, . . . , Mn be modules over a ring R. If we define
addition and module multiplication on

∏n
j=1Mj by

(m1,m2, . . . ,mn) + (m′
1,m

′
2, . . . ,m

′
n) = (m1 +m′

1,m2 +m′
2, . . . ,mn +m′

n)

r(m1,m2, . . . ,mn) = (rm1, rm2, . . . , rmn)

for mj,m
′
j ∈Mj, r ∈ R then

∏n
j=1Mj is a module over R.

We write M1⊕M2⊕· · ·⊕Mn for the ring just defined and call it the external
direct sum. If the Mj are all submodules of the same module M then there
is a natural isomorphism between the internal and external direct sums and
no problems arise if we identify the two objects.

We shall need the following simple result.

Lemma 145 If M1 and M2 are submodules of a module M over a ring R
and M1 +M2 is a direct sum then

(M1 ⊕M2)/M2
∼= M1.

Our programme in the final part of the course is to show that reasonably
well behaved modules M over reasonably well behaved rings can be written
as the direct sumM1⊕M2⊕· · ·⊕Mn of submodulesMj each of which is well
behaved (in particular cyclic, so that Mj = Rmj). To place this programme
in context, note that that one of the fundamental theorems of vector space
theory can be written as follows.

Theorem 146 If V is module over a field F generated by a finite set then

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

where each submodule Vj is cyclic (and is isomorphic to F as a module over
F). Further, the number n is an invariant of V (that is, every such decom-
position requires exactly n submodules of the stated type).

We cannot evade consideration of one of the most striking ways that a
module like Z7 or Z21 over Z differs from a vector space.

Lemma 147 Let M be a module over a ring R. If m ∈M the set

o(m) = {r ∈ R : rm = 0}

is an ideal of R.
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Definition 148 (i) We call the ideal o(m) defined in Lemma 147 the order
ideal of m.
(ii) If o(m) 6= {0} we say that m is a torsion element.
(iii) If a module has no non-zero torsion elements we say that it is torsion

free.

Lemma 149 If M is a module over R and T is the set of torsion elements
in M then T is a submodule of M and M/T is a torsion free module.

We adopt a definition of linear independence which is taken directly from
vector spaces.

Definition 150 If M is a module over R we say that elements m1, m2, . . . ,
mn are linearly independent if the equation

n∑

j=1

rjmj = 0

with rj ∈ R [j = 1, 2, . . . , n] only has the solution r1 = r2 = · · · = rn = 0.

The next definition parallels the idea of a basis for a vector space

Definition 151 If M is a module over R generated by linearly independent
elements m1, m2, . . . , mn we say that the elements form a basis for M and
that they generate M freely. We say that M is a finitely generated free
module.

(More generally M is freely generated if it has a subset X which generates
M and is such that any non-empty finite subset of X is linearly independent.
We shall not make use of this idea.)

Lemma 152 If M is a module over R and m1, m2, . . . , mt ∈ M the fol-
lowing four statements are equivalent.
(i) The elements m1, m2, . . . , mt form a basis for M .
(ii) Any element m of M can be written in one and only one way as

m =
t∑

j=1

rjmj

with rj ∈ R.
(iii) The elements m1, m2, . . . , mt generate M and the following condi-

tion holds. If N is an R module and nj ∈ N then there exists a homomor-
phism φ : M → N with φ(mj) = nj [1 ≤ j ≤ t].
(iv) Each mj is torsion free (i.e. not a torsion element) and

M = m1R⊕m2R⊕ · · · ⊕mtR.
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Algebraists would prefer to use condition (iii) or something like it as the
definition of freely generated since it chimes in with their predeliction for
universal objects.

The following remark is more or less obvious.

Lemma 153 The module M over a ring R is freely generated by t elements
if and only if

M ∼= R⊕R⊕R⊕ · · · ⊕R
︸ ︷︷ ︸

t

.

The next remark is almost as obvious but will play a key role in the proof of
our module decomposition theorem (Theorem 171).

Lemma 154 If a module M over a ring R is finitely generated then we
can find a finitely generated free module F and an injective homomorphism
φ : F →M . (In other words, every finitely generated module is the image of
some finitely generated free module.)

In the case of a cyclic module, Lemma 154 can be sharpened.

Lemma 155 Suppose M is a cyclic module over a ring R generated by m.
Then

M ∼= R/o(m).

In particular two cyclic modules over R are isomorphic if and only if their
generating elements have the same order ideal.

Thus if M is a cyclic module generated by m it is natural to call o(m) the
order ideal of M .

12 Matrices and modules

There is no problem in extending the notion of an r×s matrix together with
the definitions of matrix addition, matrix multiplication and so forth from
fields to rings.

Lemma 156 Let M and N be finitely generated free modules over a ring R.
Suppose that M has basis m1, m2, . . . , mr and that N has basis n1, n2, . . . ,
ns. Then there is bijection α↔ A between homomorphisms α : M → N and
r × s matrices A = (aij) over R given by

α(mj) =
s∑

i=1

aijni.
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I repeat my warning that generalising results from vector spaces is the natural
way forward but that we must act as though we were walking on eggs. The
care required may not be obvious to the reader who looks only at the theorems
we do prove but will be obvious to anyone who asks about the theorems we
do not prove.

‘Is there any other point to which you would wish to draw my
attention?’ ‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’ ‘That was the curious
incident.’ remarked Sherlock Holmes.

Definition 157 We say that an s× s matrix A over R is invertible if there
exists an s× s matrix Ã with AÃ = ÃA = I.

The standard uniqueness argument shows that Ã, if it exists, is unique.

Lemma 158 The product of s × s invertible matrices is itself invertible.
(Thus the s× s invertible matrices over R form a group.)

Example 159 The matrix (
a b
c d

)

over Z is invertible if and only if ad− bc = ±1.

Lemma 160 Suppose that M is a finitely generated free module over a ring
R and that M has basis m1, m2, . . . , ms. If A = (aij) is an s× s invertible
matrix A over R and

m∗
j =

s∑

i=1

aijmi

then m∗
1, m

∗
2, . . . , m

∗
s is also a basis for M .

When we dealt with matrices over fields we used elementary row and
column operations and their associated matrices. We can do the same thing
here. First let us set out the corresponding elementary s× s matrices.

(i) Fij is the matrix obtained from the identity matrix by interchanging
row i and row j.

(ii) Gi(u) is the matrix obtained from the identity matrix by multiplying
row i by the unit u.

(iii) Hij(r) is the matrix obtained from the identity matrix by adding r
times row j to row i [i 6= j, r ∈ R].

(iv) H̄ij(r) is the matrix obtained from the identity matrix by adding r
times column j to column i [i 6= j, r ∈ R].
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We shall not use Gi(u) but we include it for completeness. Observe that
H̄ij(r) = Hji(r). Exactly as in the field case we have the following easy
remarks.

Lemma 161 (i) The effect of pre-multiplying a matrix of the appropriate
size

(1) by Fij is to interchange row i and row j,
(2) by Gi(u) is to multiply row i by the unit u,
(3) by Hij(r) is to add r times row j to row i.
(ii) The effect of post-multiplying a matrix of the appropriate size
(1) by Fij is to interchange column i and column j,
(2) by Gi(u) is to multiply column i by the unit u,
(3) by H̄ij(r) is to add r times column j to column i.
(iii) The matrices Fij, Gi(u), Hij(r) and H̄ij(r) are all invertible.

When we worked over fields we where able to reduce matrices to very
special forms by pre- and post-multiplication by invertible matrices.

Definition 162 Let A and B be s× t matrices over a ring R. We say that
A and B are equivalent if we can find an invertible s × s matrix P and an
invertible t× t matrix Q such that B = PAQ.

Lemma 163 (i) Equivalence of matrices is an equivalence relation.
(ii) LetM and N be finitely generated free modules over a ring R. Suppose

that M has basis m1, m2, . . . , ms and that N has basis n1, n2, . . . , nt.
Suppose that the homomorphism α : M → N corresponds to the matrix A
for these bases. If A is equivalent to B then we can find bases m∗

1, m
∗
2, . . . ,

m∗
s for M and n∗1, n

∗
2, . . . , n

∗
t for N such that α : M → N corresponds to

the matrix B for these bases.

We can not do very much over general rings but we can do a great deal
over Euclidean domains.

Lemma 164 If A is a non-zero s × t matrix over a Euclidean domain we
can find a sequence of elementary row and column operations which reduce
A to a matrix B with bi1 = 0 for 2 ≤ i ≤ s, b1j = 0 for 2 ≤ j ≤ t− 1 and b11
dividing every element bij of B.

Lemma 165 If A is a s × t matrix over a Euclidean domain we can find
a sequence of elementary row and column operations which reduce A to a
matrix D with dij = 0 for i 6= j (that is D is diagonal) and dii|d(i+1)(i+1) for
all 1 ≤ i ≤ min(s, t)− 1.
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We restate Lemma 165 as a theorem.

Theorem 166 If A is a s × t matrix over a Euclidean domain then A is
equivalent to a diagonal matrix D with dii|d(i+1)(i+1) for all 1 ≤ i ≤ min(s, t)−
1.

This result is ultimately due to Henry Smith who proved it for integer valued
matrices. Smith was a major pure mathematician at a time and place (19th
century Oxford) not particularly propitious for such a talent. He seems
to have been valued more as a good College and University man than for
anything else3.

In the next section we obtain the module decomposition theorem (The-
orem 171) as a direct consequence of Theorem 166 but for the moment we
just note a simple corollary.

Lemma 167 Let M be a finitely generated free module over a Euclidean
domain then all bases of M contain the same number of elements.

We call the number of elements in a basis of M the rank of M .
There are two important remarks to make.
(1) The results which we obtain for Euclidean domains can be extended

with a little more work to principal ideal domains. The details are given
in [5] Chapters 7 and 8. However all our applications will be to Euclidean
domains. (I remarked earlier on the difficulty of finding simple examples of
principal ideal domains which are not Euclidean.)

There is a further point. Our applications will be to modules over a
domain R where R is Z and C[X]. For both of these the Euclidean function φ
is such that given a ∈ R and a non-zero b ∈ R there is an algorithm for finding
c, r ∈ R such that a = cb + r and φ(r) < φ(b). The proof of Theorem 166
is thus algorithmic, that is we can actually calculate P , Q invertible and D
of the correct form such that PAQ = D. We are thus not doing abstract
algebra but concrete algebra which can be (and is) programmed for electronic
computers.

(2) We shall not give general uniqueness theorems corresponding to our
general decomposition theorems. Such results will again be found in [5]
Chapters 7 and 8. They are not very hard but a 24 hour course cannot
contain everything. In the concrete examples that we give uniqueness will
be more or less obvious.

3He even supervised on Sunday afternoon, telling his students that ‘It was lawful on
the Sabbath day to pull an ass out of the ditch’.
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13 The module decomposition theorems

We are now within sight of our module decomposition theorems. We need
three preliminary lemmas. The first is a simple consequence of Lemma 147.

Lemma 168 If M is a cyclic module over a principal ideal domain D then
M ∼= D/(d) for some d ∈ D. If D/(d) ∼= D/(d′) then d and d′ are associates.

We say that M is of order d.
The second requires a little work.

Lemma 169 Every submodule G of a finitely generated free module F over
a principal ideal domain D is itself a finitely generated free module. The rank
of G is no greater than the rank of F .

The third is routine abstract algebra.

Lemma 170 Let M be the internal direct sum

M = M1 ⊕M2 ⊕ · · · ⊕Ms

of submodules Mi. Suppose Ni is a submodule of Ni for each i and N =
N1 +N2 + · · ·+Ns. If ν is the natural homomorphism ν : M →M/N then

M/N = ν(M) = ν(M1)⊕ ν(M2)⊕ · · · ⊕ ν(Ms)

and ν(Mi) ∼= Mi/Ni.

Theorem 166 now gives us our first decomposition theorem.

Theorem 171 (Basic module decomposition theorem) IfM is a finitely
generated module over a Euclidean domain D then M may be written as an
internal direct sum

M = M1 ⊕M2 ⊕ · · · ⊕Ms

where Mi is a non-trivial cyclic submodule of order di [1 ≤ i ≤ s] and di|di+1

[1 ≤ i ≤ s− 1].

Let us note the following consequences.

Lemma 172 If M is a finitely generated module over a Euclidean domain
D then M = T ⊕ F where T is the torsion submodule and F is a finitely
generated free module.

Lemma 173 If M is a finitely generated torsion free module over a Eu-
clidean domain D then M is a finitely generated free module.
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Turning from the general to the concrete we obtain a structure theorem
for finitely generated Abelian groups.

Theorem 174 If G is a finitely generated Abelian group then (as a group)

G ∼= Zd1 ⊕ Zd2 · · · ⊕ Zdr ⊕ Zt

where di|di+1 [1 ≤ i ≤ r − 1].

(Note that this result can be stated entirely in group theoretic terms.)

Lemma 175 (We work with groups and group isomorphism.)
(i) If Zt ∼= Zt′ then t = t′.
(ii) If

Zd1 ⊕ Zd2 · · · ⊕ Zdr ∼= Zd′1 ⊕ Zd′2 · · · ⊕ Zd′r
with d′i|d′i+1 [1 ≤ i ≤ r′−1] and di|di+1 [1 ≤ i ≤ r−1] then r = r′ and d′i = di
for 1 ≤ i ≤ r.
(iii) The decomposition in Theorem 174 is unique.

Notice that we have provided an algorithm which presented with gener-
ators for an Abelian group together with relations between them can decide
if the largest group compatible with these relations is finite or infinite. It
has been shown (though the proof is book length) that no such algorithm
can exist for the non-Abelian case that is there exists no computer program
which presented with generators for a group together with relations between
them can decide if the largest group compatible with these relations is finite
or infinite. (This subject is known as the word problem for groups.)

Of course, the group Z6 can be decomposed still further as Z6 = Z2⊕Z3.
This fact suggests that we develop our decomposition theorem, Theorem 171,
as follows. Recall that a Euclidean domain is a principal ideal domain and so
a unique factorisation domain. Our main result echos the Chinese remainder
theorem.

Lemma 176 Let M be a cyclic module of order d over a principal ideal
domain D. If d has the prime factorisation d = upα1

1 pα2

2 . . . pαss with u a unit,
the pi non-associate primes and αi ≥ 1 then

M = M1 ⊕M2 ⊕ · · · ⊕Ms

where Mj is cyclic of order p
αj
j .

Cyclic modules of order pα with p a prime are called primary modules.
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Theorem 177 (Primary decomposition theorem) IfM is a finitely gen-
erated module over a Euclidean domain D then M may be written as an
internal direct sum

M = M1 ⊕M2 ⊕ · · · ⊕Ms

where Mi are primary modules or free cyclic modules.

It is worth noting that no further splitting is possible.

Definition 178 A non-trivial module over a ring R is called indecomposable
if whenever M = M1 ⊕M2 with M1, M2 submodules then either M1 = {0}
or M2 = {0}.

Lemma 179 (i) A primary module over a principal ideal domain is inde-
composable.
(ii) A free cyclic module over an integral domain is indecomposable.

Theorem 177 immediately gives a structure theorem for finitely generated
Abelian groups.

Theorem 180 If G is a finitely generated Abelian group then (as a group)

G ∼= Zpα1
1
⊕ Zpα2

2
· · · ⊕ Zpαrr ⊕ Zt

where pi is a prime and αi ≥ 1 [1 ≤ i ≤ r]. If we add the condition pαii ≤ p
αi+1

i+1

the decomposition is unique.

The following example shows that things are not so simple for non-finitely
generated Abelian groups (and so, certainly, for modules in general) as one
might at first imagine.

Example 181 (i) Consider the Abelian group Q. Any non-trivial finitely
generated subgroup is generated by a single element and is thus isomorphic
to Z. However Q is not finitely generated.
(ii) Consider the Abelian group Q/Z. Any non-trivial finitely generated

subgroup is a finite cyclic group. However Q/Z is not finitely generated.

Since a finite Abelian group is automatically finitely generated we have
a complete classification of all finite Abelian groups.

Theorem 182 If G is a finite Abelian group then

G ∼= Zpα1
1
⊕ Zpα2

2
· · · ⊕ Zpαrr

where pi is a prime and αi ≥ 1 [1 ≤ i ≤ r]. If we add the condition pαii ≤ p
αi+1

i+1

the decomposition is unique.
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The rest of this section is very much off the syllabus but gives a striking
application of Theorem 182. We write

T = {λ ∈ C : |λ| = 1}

and note that T is an Abelian group under multiplication. We write Dn for
the subgroup of T defined by

Dn = {ω ∈ T : ωn = 1}.

(Thus Dn is the multiplicative group of nth roots of unity.) We observe that
Dn is group isomorphic to Zn.

Definition 183 If G is a finite Abelian group and χ : G → T is a group
homomorphism we say that χ is a character of G.

Lemma 184 The collection Ĝ of characters of a finite group G form an
Abelian group under the multiplication rule (χ1χ2)(g) = χ1(g)χ2(g).

We call Ĝ the dual group of G. Once we have the classification theorem for
finite Abelian groups we can use the following easy result to give a corre-
sponding classification for their dual groups.

Lemma 185 If
G = Zpα1

1
⊕ Zpα2

2
· · · ⊕ Zpαrr

with ps is a prime and αs ≥ 1 [1 ≤ s ≤ r] then we may identify Ĝ with
Dp

α1
1
⊕Dp

α2
2
⊕ · · · ⊕Dpαrr as follows. If

ω = (ω1, ω2, . . . , ωr) ∈ Dpα1
1
⊕Dpα2

2
⊕ · · · ⊕Dpαrr

and
n = (n1, n2, . . . , nr) ∈ Zpα1

1
⊕ Zpα2

2
· · · ⊕ Zpαrr

then

ω(n) =
r∏

s=1

ωnss .

We shall only make use of the following consequences.

Lemma 186 If G is a finite Abelian group then Ĝ is a finite group with the
same number of elements. If g ∈ G there exists a χ ∈ Ĝ with χ(g) 6= 0.
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Lemma 187 Let G be a finite Abelian group with N elements. If g ∈ G but
g 6= e then

∑

χ∈Ĝ

χ(g) = 0.

If g = e
∑

χ∈Ĝ

χ(g) = N.

If G is a finite Abelian group let us write C(G) for the set of functions
f : G→ C. If f, h ∈ C(G) we write

〈f, h〉 = |G|−1
∑

x∈G

f(x)h(x)∗

where |G| is the number of elements of G and z∗ denotes the complex conju-
gate of z.

Lemma 188 If G is a finite Abelian group then C(G) equipped with the
usual pointwise addition and scalar multiplication is a vector space over C.
The operation 〈 , 〉 is an inner product on C(G). The characters of G form
an orthonormal basis for G.

It is thus natural to write
f̂(χ) = 〈f, h〉,

and call f̂ : Ĝ→ C the Fourier transform of an f ∈ C(G). Lemma 187 gives
us the required representation theorem.

Lemma 189 If G is a finite Abelian group and f ∈ C(G) then

f =
∑

χ∈Ĝ

f̂(χ)χ.

This small but perfectly formed Fourier theory for finite Abelian groups
is used in number theory and machine computation. Even more importantly
it suggests that we should look at Fourier theory in the context of groups
and this gives rise to representation theory both for finite non-Abelian groups
and for infinite groups satisfying reasonable ‘continuity’ conditions.
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14 Applications to endomorphisms

Throughout this section V will be a finite dimensional vector space over a
field F and α an endomorphism of V . We recall from Lemma 129 that V is a
module over the ring of polynomials F[X] with module multiplication defined
by pv = p(α)v. We observe that F[X] is a Euclidean domain. Further if V has
basis e1, e2, . . . en as vector space then e1, e2, . . . en generate V as a module
(though, of course they may not be linearly independent when V is considered
as a module). We note that every v ∈ V is a torsion element. We can thus
apply our module decomposition theorem (Theorem 171). Translated into
the language of vector spaces it takes the following form.

Lemma 190 Let V be a finite dimensional vector space over a field F and
α an endomorphism of V . Then V may be expressed a the direct sum of
subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

where each Vi is associated with a monic polynomial Pi ∈ F[X] of degree ni
and a vector vi as follows.
(i)′ Vectors of the form αkvi span Vi.
(ii) We have Pi(α)(v) = 0 for all v ∈ Vi.
(iii) If P ∈ F[X] and P (α)(v) = 0 for all v ∈ Vi then Pi|P .
(iv) Pi|Pi+1 for all 1 ≤ i ≤ s− 1.

We can immediately improve the form of this result.

Theorem 191 As for Lemma 190 but with (i)′ replaced by
(i) vi, α(vi), α

2(vi) . . . , α
ni−1(vi) is a basis for Vi.

It is worth noting that the subspace Vi are invariant in the sense that α(Vi) ⊆
Vi.

Forgetting about modules for the moment and working entirely in stan-
dard vector space theory we can translate Theorem 191 into statement about
matrices by choosing the obvious basis for V .

Theorem 192 (Rational canonical form) Let V be a finite dimensional
vector space over a field F and α an endomorphism of V . Then there is basis
for V such that α has matrix A (relative to this basis) which consists of zeros
except for s blocks consisting of ni × ni square matrices Ai [1 ≤ i ≤ s] down
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the diagonal satisfying the following conditions. Each

A(i) =












0 0 0 · · · 0 0 0 −a0(i)
1 0 0 · · · 0 0 0 −a1(i)
0 1 0 · · · 0 0 0 −a2(i)
...
...
...

...
...
...

...
0 0 0 · · · 0 1 0 −ani−2(i)
0 0 0 · · · 0 0 1 −ani−1(i)












and, if we write

Pi(X) = Xni +

ni−1∑

k=0

akX
k,

we have Pi|Pi+1 for all 1 ≤ i ≤ s− 1.

Definition 193 An n× n matrix of the form

A =












0 0 0 · · · 0 0 0 −a0

1 0 0 · · · 0 0 0 −a1

0 1 0 · · · 0 0 0 −a2
...
...
...

...
...
...

...
0 0 0 · · · 0 1 0 −an−2

0 0 0 · · · 0 0 1 −an−1












is called the companion matrix of the monic polynomial

p(X) = Xn +
n−1∑

k=0

akX
k.

Lemma 194 If A is the companion matrix of a monic polynomial P then

P (X) = det(XI − A).

(N.B. we have here a relation between coefficients with X an indeterminate.)
In other words P is the characteristic polynomial of A.

We can now grasp some of the implications of our results on endomor-
phisms.

Theorem 195 Let V be a finite dimensional vector space over a field F and
α an endomorphism of V . Let pi [1 ≤ i ≤ s] be the polynomials which appear
in Theorems 191 and 192.
(i)
∏s

i=1 pi is the characteristic polynomial of A (and so of α).
(ii) The polynomial ps is the minimal polynomial (more exactly the min-

imal annihilating polynomial) of α (and so of A). In other words ps(α) = 0
and if q ∈ F[X] satisfies q(α) = 0 then ps|q.
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Incidentally we have proved the Cayley Hamilton theorem for general fields.
(The proof via triangular matrices in Course P1 only works for C though
we can deduce the result for real matrices by considering them as complex
matrices.)

Theorem 196 (Cayley Hamilton) If V is a finite dimensional vector space
over a field F and α an endomorphism of V then α satisfies its own charac-
teristic equation.

We can also prove that the rational canonical decomposition is indeed canon-
ical.

Lemma 197 The matrix in Theorem 192 is uniquely determined by the given
conditions.

What about the Primary Decomposition Theorem (Theorem 177)? Work-
ing along the same lines as Theorem 191, we obtain the following result.

Lemma 198 Let V be a finite dimensional vector space over a field F and
α an endomorphism of V . Then V may be expressed a the direct sum of
subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

where each Vi is associated with a monic polynomial Pi ∈ F[X] of degree ni
and a vector vi as follows.
(i) vi, α(vi), α

2(vi) . . . , α
ni−1(vi) is a basis for Vi.

(ii) We have Pi(α)(v) = 0 for all v ∈ Vi.
(iii) If P ∈ F[X] and P (α)(v) = 0 for all v ∈ Vi then Pi|P .
(iv) Pi is a power of an irreducible polynomial (that is Pi = Qmi

i where
Qi is irreducible and mi ≥ 1).

Even such a simple field as R has both linear and quadratic irreducible
polynomials and even rather weighty tomes on algebra do not seek any use
for Lemma 198 in this case. However if the field is complete, that is every
polynomial has a root, then the only irreducible polynomials are linear and
we get a relatively simple result.

Theorem 199 Let V be a finite dimensional vector space over a complete
field F and α an endomorphism of V . Then V may be expressed a the direct
sum of subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

where each Vi is associated with a polynomial (X−λi)ni ∈ F[X] and a vector
wi as follows.
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(i) wi, (α− λiι)wi, (α− λiι)2wi, . . . , (α− λiι)ni−1wi form a basis for Vi.
(ii) We have (α− λiι)

ni(v) = 0 for all v ∈ Vi.
(iii) If P ∈ F[X] and P (α)(v) = 0 for all v ∈ Vi then (X − λi)

ni |P .

As with Theorem 191 the obvious choice of basis for V gives us a theorem
about matrices. We write J(λ, n) for the n × n matrix with λ’s down the
diagonal, 1’s immediately below and zero every where else so that

J(λ, n) =












λ 0 0 · · · 0 0 0 0
1 λ 0 · · · 0 0 0 0
0 1 λ · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 1 λ 0
0 0 0 · · · 0 0 1 λ












.

We call J(λ, n) a Jordan matrix.

Theorem 200 (Jordan normal form) Let V be a finite dimensional vec-
tor space over a complete field F and α an endomorphism of V . Then there
is basis for V such that α has matrix A (relative to this basis) which consists
of zeros except for Jordan matrices J(λi, ni) [1 ≤ i ≤ s] down the diagonal.

Standard vector space techniques complete the result.

Lemma 201 The matrix associated with α in Theorem 200 is unique up to
reordering the diagonal blocks.

Two and a half years ago in Course C1 we noted that the matrix

(
0 1
0 0

)

showed that not all square matrices are diagonalisable even over C. By ad
hoc techniques we showed that any 2× 2 matrix was conjugate to a matrix
of the form (

λ 1
0 λ

)

or

(
λ 0
0 µ

)

.

We noted that these forms were particularly useful in the study of differential
equations.

We complete the course by giving the full solution of the problem of
classifying square matrices under conjugation over any complete field and, in
particular, over C.
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Theorem 202 (Jordan normal form for matrices) If A is a n×n ma-
trix over a complete field then we can find an invertible n × n matrix P
such that JA = PAP−1 consists of zeros except for Jordan matrices J(λi, ni)
[1 ≤ i ≤ s] down the diagonal. The matrix JA so associated with A is unique
up to reordering the diagonal blocks.

15 Reading and further reading

Not all theorems in mathematics are hard to prove though some are. I would
hope that the reader will be able to prove many of the results in the notes
as exercises. Where she cannot, the results on rings, integral domains and
factorisation (sections 1 to 5) will be found in the standard algebra texts in
her College library and in the book of Hartley and Hawkes Rings, Modules
and Linear Algebra [5]. I have tried (but not very hard and with only partial
success) to follow the notation of Hartley and Hawkes. Whichever text she
follows she should note that our decision to use ring to mean commutative
ring with 1 is not standard.

The material in sections 6 to 9 belong to Galois theory. Garling’s A
Course in Galois Theory [4] is, not surprisingly, very much in tune with the
approach adopted in Cambridge but, again, most of the standard algebra
texts cover the material. The book of Hartley and Hawkes covers the re-
mainder of the course on modules and their decomposition theorems. (Since
we aim to get to the decomposition theorems as fast as possible and we do not
deal with uniqueness, Hartley and Hawkes contains somewhat more material.
Since most British algebraists under the age of 50 learnt their module theory
from Hartley and Hawkes the close relation between book and syllabus is no
accident.)

Turning specifically to some of the more general algebra texts we note that
Volume 1 of Cohn’s Algebra [2] covers most of the material including modules
is a typically efficient manner. Those who like to proceed from the general
to the particular will find their tastes catered for in MacLane and Birkhoff’s
Algebra [7]. Those who prefer the other direction will also prefer Birkhoff
and MacLane’s Introduction to Modern Algebra [1] but this covers much less
of the course. The syllabus also commends Fraleigh’s A First Course in
Modern Algebra [3] but, I must confess that like many American textbooks
it reminds me of the vegetables in an American supermarket, whose splendid
appearance does not compensate for their bland taste. In any case the reader
will do better to browse through several general texts rather than concentrate
on one.

The reader who wants to learn more about the topics treated in the course
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is in an unusually fortunate position. Most mathematicians treat textbook
writing in the same way that lawyers treat drafting legal documents and
believe that, once they have covered every possible contingency in the most
precise manner possible, their job is done. However, Ian Stewart’s (yes, the
man you saw on TV) first book Galois Theory [8] is a brilliantly written text
on a fascinating subject and a pleasure to read. He joined David Tall to
write Algebraic Number Theory [9] which gives the concrete number theory
which partners our abstract treatment of factorisation. Kline’s Mathematical
Thought from Ancient to Modern Times provides a picture of mathematical
progress from antiquity and thus a context for this course, and indeed the
whole Tripos.
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