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Introduction

Here is a miscellaneous collection of hints, answers, partial answers
and remarks on some of the exercises in the book. I have written
in haste in the hope that others will help me correct at leisure. I
am sure that they are stuffed with errors ranging from the TEXtual
through to the arithmetical and not excluding serious mathematical
mistakes. I would appreciate the opportunity to correct at least some
of these problems. Please tell me of any errors, unbridgeable gaps,
misnumberings etc. I welcome suggestions for additions.

ALL COMMENTS GRATEFULLY RECEIVED.

If you can, please use LATEX 2ε or its relatives for mathematics. If not,
please use plain text. My e-mail is twk@dpmms.cam.ac.uk. You
may safely assume that I am both lazy and stupid so that a message
saying ‘Presumably you have already realised the mistake in Exercise Z’
is less useful than one which says ‘I think you have made a mistake in
Exercise Z because you have have assumed that the sum is necessarily
larger than the integral. One way round this problem is to assume that
f is decreasing.’

When I was young, I used to be surprised when the answer in the
back of the book was wrong. I could not believe that the wise and
gifted people who wrote textbooks could possibly make mistakes. I am
no longer surprised.

To avoid disappointment note that Exercise Z∗ means that there
is no comment. Exercise Z? means that I still need to work on the
remarks. Note also that what is given is at most a sketch and often
very much less.

It may be easiest to navigate this document by using the table of
contents which follow on the next few pages.
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Exercise 1.1.1

y(cb)

ca
=
c(yb)

ca
=
yb

a
.
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Exercise 1.1.2

Under the new arrangement you end up with y(v + 1) − y = yv in
your pocket if the horse wins and you lose y if the horse loses. This is
the same as before.
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Exercise 1.1.3

You should get an upside down V shape.
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Exercise 1.1.4

If u1s < u2(Y − s), then

min
(
u1(s), u2(Y − s)

)
= u1s.

If t is small and strictly positive, we have

u1(s+ t) < u2(Y − (s+ t))

and

min
(
u1(s+ t), u2(Y − (s+ t))

)
= u1(s+ t)

> u1t

= min
(
u1s, u2(Y − s)

)
.

If u1s > u2(Y − s), then

min
(
u1(s), u2(Y − s)

)
= u2(Y − s).

If t is small and strictly positive (and u1s > u2(Y − s)), then

u1(s+ t) > u2(Y − (s+ t))

and

min
(
u1(s+ t), u2(Y − (s+ t))

)
= u1(Y − (s+ t))

< u1(Y − t)
= min

(
u1s, u2(Y − s)

)
.
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Exercise 1.1.6

(i) If s ≤ s∗, then

min
(
u1s
∗, u2(Y − s∗)

)
= u1s

∗ ≥ u1s ≥ min
(
u1s, u2(Y − s)

)
.

(ii) If s 6= s∗ then either s > s∗ or s∗ > s.

If s > s∗, then Y − s∗ > Y − s so

min
(
u1s
∗, u2(Y −s∗)

)
= u2(Y −s∗) > u2(Y −s) ≥ min

(
u1s, u2(Y −s)

)
.

If s < s∗, then

min
(
u1s
∗, u2(Y − s∗)

)
= u1s

∗ > u1s ≥ min
(
u1s, u2(Y − s)

)
.
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Exercise 1.1.8

If

u1y
∗
1 = u1y

∗
2 = · · · = uny

∗
n and y∗1 + y∗2 + · · ·+ y∗n = Y,

then, writing L = u1y
∗
1, we have

y∗j = Lu−1
j

so
L(u−1

1 + u−1
2 + · · ·+ u−1

n ) = y1 + y2 + · · ·+ yn = Y

and

L =
Y

u−1
1 + u−1

2 + · · ·+ u−1
n

so

y∗j =
Y u−1

j

u−1
1 + u−1

2 + · · ·+ u−1
n

and the solution, if it exists, is unique.

If we set

w∗j =
Y u−1

j

u−1
1 + u−1

2 + · · ·+ u−1
n

,

then

u1w
∗
1 = u1w

∗
2 = · · · = unw

∗
n and w∗1 + w∗2 + · · ·+ w∗n = Y

so we do indeed have a solution.
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Exercise 1.1.9

(i) If yj > y∗j for all j, then

Y = y1 + y2 + · · ·+ yn > y∗1 + y∗2 + · · ·+ y∗n = Y

which is impossible. Thus we can find a k with

yk ≤ y∗k

so
min
j
ujy

∗
j = uky

∗
k ≥ ukyk ≥ min

j
ujyj.

(ii) If there exists a k with

yk < y∗k

then
min
j
ujy

∗
j = uky

∗
k > ukyk ≥ min

j
ujyj.

Thus, under the conditions stated, yj ≥ y∗j .

If there exists a k with
yk > y∗k

then
Y = y1 + y2 + · · ·+ yn > y∗1 + y∗2 + · · ·+ y∗n = Y

which is impossible. Thus yj = y∗j for all j.
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Exercise 1.2.1

(1) You gain y if the horse loses, and lose vy if it wins.

(2) You gain y if the horse loses, and lose uy− y = (v+ 1)y− y = vy
if it it wins.

(3) You gain −yv + (y + 1)v = y if the horse loses, and lose vy if it
wins.
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Exercise 1.2.2

(i) Since

y∗1 + y∗2 + · · ·+ y∗n = Y and y1 + y2 + · · ·+ yn = Y,

there must be a k such that

yk ≥ y∗k

and so
max
j
ujy

∗
j = uky

∗
k ≤ ukyk ≤ max

j
ujyj.

(ii) If
max
j
ujy

∗
j = max

j
ujyj

then the argument of (i) shows that

yj ≥ y∗j

for all j. But

y∗1 + y∗2 + · · ·+ y∗n = Y and y1 + y2 + · · ·+ yn = Y,

so, if yk > y∗k for some k,

y∗1 + y∗2 + · · ·+ y∗n < y1 + y2 + · · ·+ yn,

which is impossible, so yj = y∗j for all j.

(iii) We minimise our maximum loss by taking

yj =∗j=
Y u−1

j

u−1
1 + u−1

2 + · · ·+ u−1
n

and our loss, whatever the outcome, is

L = Y − uj
Y u−1

j

u−1
1 + u−1

2 + · · ·+ u−1
n

= Y

(
1− 1

u−1
1 + u−1

2 + · · ·+ u−1
n

)
.

We lose if L < 0, that is to say, if

1− 1

u−1
1 + u−1

2 + · · ·+ u−1
n

< 0

ie if
1

u−1
1 + u−1

2 + · · ·+ u−1
n

< 1

ie if
u−1

1 + u−1
2 + · · ·+ u−1

n > 1.

The remaining statements follow similarly.
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Exercise 1.2.3

If ak 6= bk, then there is no loss in generality in supposing ak < bk
Thus

1

c1

+
1

c2

+ · · ·+ 1

cn
=

1

c1

+
1

c2

+ · · ·+ 1

ck−1

+
1

ck
+

1

ck+1

+ · · ·+ 1

cn

=
1

c1

+
1

c2

+ · · ·+ 1

ck−1

+
1

bk
+

1

ck+1

+ · · ·+ 1

cn

≤ 1

a1

+
1

a2

+ · · ·+ 1

ak−1

+
1

bk
+

1

ak+1

+ · · ·+ 1

an

<
1

a1

+
1

a2

+ · · ·+ 1

ak−1

+
1

ak
+

1

ak+1

+ · · ·+ 1

an
= 1

Thus betting with the first bookmaker when aj > bj and with the
second when aj ≤ bj is equivalent to betting with a bookmaker who
allows a certain profit (unless aj = bj for all j).
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Exercise 1.2.4

(i) The effective pay out multiplier is αuj so you can only make a
certain profit if

1

αu1

+
1

αu2

+ · · ·+ 1

αun
< 1

ie

1

u1

+
1

u2

+ · · ·+ 1

un
< α.

If you take then the effective pay out multiplier is uj/α so you can
only make a certain profit if

1

α−1u1

+
1

α−1u2

+ · · ·+ 1

α−1un
> 1

ie

1

u1

+
1

u2

+ · · ·+ 1

un
>

1

α
.

(ii) If you make bets you will bet on horse j with the bookmaker
with higher payout multiplier on that horse. By (i) you can only make
a certain profit if

1

max(a1, b1)
+

1

max(a2, b2)
+ · · ·+ 1

max(an, bn)
< α.

If you take bets you will bet on horse j with the bookmaker with
lowest payout multiplier on that horse. By (i) you can only make a
certain profit if

1

min(a1, b1)
+

1

min(a2, b2)
+ · · ·+ 1

min(an, bn)
>

1

α
.

(iii) If a ≥ b.

1

min(a, b)
− 1

max(a, b)
=

1

b
− 1

a
=

∣∣∣∣1a − 1

b

∣∣∣∣ .
If a < b.

1

min(a, b)
− 1

max(a, b)
=

1

a
− 1

b
=

∣∣∣∣1a − 1

b

∣∣∣∣ .
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Thus, by (ii), if we can make a certain profit both making a bet and
taking it∣∣∣∣ 1

a1

− 1

b1

∣∣∣∣+

∣∣∣∣ 1

a2

− 1

b2

∣∣∣∣+ · · ·+
∣∣∣∣ 1

an
− 1

bn

∣∣∣∣
=

(
1

min(a1, b1)
+

1

min(a2, b2)
+ · · ·+ 1

min(an, bn)

)
−
(

1

max(a1, b1)
+

1

max(a2, b2)
+ · · ·+ 1

max(an, bn)

)
>

1

α
− α =

(1− α2)

α
.

(iv) Suppose aj/bj ≥ 1/α2. If we bet 1 with the second bookmaker
that horse j will lose and

αb−1
j + 1

αaj + 1

with the first bookmaker that horse j will win, then if horse j wins we
win

αaj
αb−1

j + 1

αaj + 1
− 1 =

α2ajb
−1
j − 1

αaj + 1

and if horse j loses we win

αb−1
j −

αb−1
j + 1

αaj + 1
=
α2ajb

−1
j − 1

αaj + 1
.

In either case, since α2ajb
−1
j − 1 > 0 so we can guarantee to make

money.
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Exercise 1.4.1

(i) Our expected gain is

125× 1

216
×0+75× 1

216
×9

4
+15× 1

216
×3+1× 1

216
×4−1 =

871

864
−1 =

5

864
so the game is now favourable to us.

(ii) Our expected gain is

125× 1

216
× 0 + 75× 1

216
× 9

4
+ 15× 1

216
× 3 + 1× 1

216
× 10− 1 =

205

216
so the game remains favourable to the banker.

(iii) The players will all play hearts (since the dice are symmetric
but the rewards are not) but there expected gain is

125× 1

216
× 0 + 75× 1

216
× 9

4
+ 15× 1

216
× 3 + 1× 1

216
× 20− 1 =

215

216
so the game remains favourable to the banker.
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Exercise 1.5.1

A straight line sloping up if a1 > a2 and down if a2 > a1.
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Exercise 1.5.4

Observe that

anY − (a1y1 + a2y2 + · · ·+ anyn)

= (an − a1)y1 + (an − a2)y2 + · · ·+ (an − an)yn

≤ 0

with equality if and only if yj = 0 whenever aj > an.
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Exercise 1.5.5

(i) By our earlier discussion, I should bet on the horses for which
pjuj = pj/qj is a maximum.

(ii) I wish to maximise

Y −
n∑
j=1

yjpj/qj

subject to

Y =
n∑
j=1

yjpj/qj

and this is equivalent to minimising
∑n

j=1 yj/qj subject to the condition

Y =
∑n

j=1 yj/qj. By much the same arguments as before, I should I

should take bets on the horses for which pj/qj is a minimum and so
qj/pj is a maximum.
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Exercise 1.5.6

If A make a bet with B on the j th horse and B can take it if and
only if

αpj ≤ α−1q−1
j

ie
pj
qj
≥ 1

α2
.

Thus A can bet on some horse with B if and only if

max
j

pj
qj
≥ 1

α2
.

Similarly B can bet on some horse with A if and only if

max
j

qj
pj
≥ 1

α2
.
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Exercise 1.5.7

(i) The expected score with one die is

6∑
j=1

j Pr(throw j) =
1

6

6∑
j=1

j =
21

6
=

7

2
.

(ii) If the die shows 1, 2 or 3 our expected score of 7/2 with a new
throw is better than our expected score if we stick so we should throw.
If the die shows 4, 5 or 6 our expected score of 7/2 with a new throw
is less than our expected score if we stick so we should stick.

(iii) We can consider throwing a pair of dice to get X and Y . Our
score Z is given by Z = X if X ≥ 4 and Z = Y if X < 4. Our expected
score in High Dice with Free Turn is

EZ =
6∑
j=4

j Pr(X = j) +
3∑
j=1

6∑
i=1

Pr(X = j, Y = i)

=
15

6
+ Pr(X ≤ 3)× expected score with one die

5

2
+

1

2
× 7

2
=

17

4
.
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Exercise 1.5.8

Corrected by Nigel White and Liangpeng Zhang. (Two seperate
mistakes so the reader is warned there may be more)

(i) It is obviously stupid to rethrow a die with higher score than the
other so we need only look at a die with the lowest score. By Exercise
1.5.7 we should rethrow this dice if and only if it shows three or less.
We can consider throwing three of dice to get X, Y and Z. Our score
W is given by Z = X + Y if X, Y ≥ 4 and W = max{X, Y } + Z if
min{X, Y } < 4. Our expected score in High Dice with two dice is

W =
∑

i≥4,j≥4

(i+ j) Pr(X = i, Y = j) +
∑

i≥4,3≥j

(i+ k) Pr(X = i, Y = j, Z = k)

+
∑

3≥i,j≥4

(k + j) Pr(X = i, Y = j, Z = k)

+
∑

3≥i,j≥3

(max{i, j}+ k) Pr(X = i, Y = j, Z = k)

=
∑
i≥4

iPr(X = i) +
∑
j≥4

j Pr(y = j) + Pr(min{X, Y } ≤ 3)EZ

+
∑

i≤3,j≤3

max{i, j}Pr(X = i, Y = j)

= 2× 1

6
(6 + 5 + 4) +

3

4
× 72 +

(
5

36
× 3 +

3

36
× 2 +

1

36
× 1

)
=

593

72

(ii) If we play high dice with two dice and free turn the we throw
once and if the total shown exceeds the expected value of high dice
with two dice (in this case a total of 9 or greater) we do not throw
both dice (otherwise we throw both). If we do not throw both we now
look at the lowest die. If its value shown exceeds the value of high dice
with one die (in this case 4 or greater) we stop otherwise we throw.

(iii) If we play high dice with three dice we throw once, remove the
die with highest score and follow tactics for high dice with two dice
and free score. If we play high dice with three dice and free turn the
we throw once and if the total shown exceeds the expected value of
high dice with three dice we do not throw all three dice but remove
the highest die and play high dice with two die. (Otherwise we play
high dice with three dice.) Continuing we obtain best tactics for any
number of dice.
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Exercise 1.5.9

We should fix all dice showing 6 and throw the rest. (Clearly we
should fix the sixes.) If a large number of dice are thrown it is very
likely that a six will be thrown and (since we are happy to fix the six)
we are essentially playing a new game with fewer dice but the maximum
possible additional score.
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Exercise 1.5.10

If the second player’s first throw beats the first player’s final score
she should stick (since she has won). If the second player’s first is
beaten by the first player’s final score she can do no worse by throwing
her lowest die so she should. (If the player has final score 12 and she
has, say, (5, 5) the second player could chose to do nothing; we have
just given the simplest rule.)

If second player’s first score equals the first player’s final score then
she should throw the lowest dice again if and only if the probability of
strictly increasing the number shown (and winning) is greater than the
probability of strictly decreasing the number shown (and losing) so she
should throw again if and only if her lowest die shows 1, 2 or 3.
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Exercise 1.6.1

Unless pk = 0 you should place a very small sum of money on the
kth horse since you will then scoop the pool if it wins.

Exercise 1.6.4∗
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Exercise 1.6.5

(i) We have

f(y) = our expected profit

= −expected profit other bettors

= cost other bets− expected value other bets

= T −
(
p1t1(T + y)

t1 + y
+ p2(T + y)

)
(ii) We have

f(y) = (t1 + t2)−
(
p1t1(t1 + t2 + y)

t1 + y
+ p2(t1 + t2 + y)

)
= t1 + t2 − p1t1 − p2t1 − p2t2 − p2y −

p1t1t2
t1 + y

= p1t2 − p2y −
p1t1t2
t1 + y

.

Thus

f ′(y) = −p2 +
p1t1t2

(t1 + y)2

f ′′(y) = − 2p1t1t2
(t1 + y)3

< 0

Thus f ′ is strictly decreasing and f ′(y) > 0 for y < Y0 f
′(y) < 0 for

y > Y0 where
p1t1

(t1 + Y0)2
=
p2t2
t21

.

Thus f(y) is increasing as y increases from 0 (but at a decreasing
rate) to Y0 and then decreases.

(iii) Observe that

p1t2 −
p1t1t2
t1 + y

→ 0

but
−p2y → −∞

so f(y)→ −∞ as y →∞.

(iii) As we put more money on the first horse we drive the odds on
the first horse down and on the second horse up. Eventually we drive
the odds on the first horse below the correct odds and are now placing
worse and worse bets. The backers of the second horse watch with
fascinated pleasure as we use our money to drive the odds on their
favoured horse to astronomical heights.
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Exercise 1.6.6

(i) Suppose p1/t1 ≥ p2/t2. People will bet on the first horse until the
total z1 placed satisfies

p1

t1 + z1

=
p2

t2
.

Thereafter the sums z1, z2 bet on on the two horses will satisfy
p1

t1 + z1

=
p2

t2 + z2

so
t1 + z1

t2 + z1

=
p1

p2

.

and everybody’s expected winnings equal the amount they bet.

(ii) Once z2 > 0 the tote ratios are the probabilities, ie

tj + zj
T + Z

= pj

where Z = z1 + z2, T = t1 + t2

On the other hand if the syndicate bets y1, y2 the tote ratios are

tj
T + Y

=
(pjtj)

1/2

(p1t1)1/2 + (p2t2)1/2
.

(iv) In the first case the new bettors are (a) knowledgeable and (b)
competing against each other so the move the odds towards the true
odds.

In the second case the new bettors are (a) knowledgeable and (b)
wish to extract the most money from the early bettors so they move the
odds to those which give the early bettors smallest expected winnings.
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Exercise 1.6.7

(i) We have

f ′(q) = −A
q2

+
B

(1− q)2

=
A(1− q)2 −Bq2

q2(1− q)2

so f ′(q) < 0 for 0 < q < q0 and 0 < f ′(q) for q0 < q < 1 where q0 is the
positive solution of

A(1− q)2 = Bq2

and so
A1/2(1− q0) = B1/2q0

ie

q0 =
A1/2

A1/2 +B1/2
.

(taking positive square roots throughout).

Thus f has a unique minimum at q0 with value

f(q0) = A
A1/2 +B1/2

A1/2
+B

A1/2 +B1/2

B1/2
= (A1/2 +B1/2)2.

(ii) Let q = u−1
1 so

q +
1

u2

= 1

and u2 = (1− q)−1.

The bookmaker wishes to minimise

f(q) = u1p1t1 + u2p2t2 =
p1t1
q

+
p2t2

1− q
so, by the first part she should take

1

u1

=
(p1t1)1/2

(p1t1)1/2 + (p2t2)1/2
and

1

u2

=
(p2t2)1/2

(p1t1)1/2 + (p2t2)1/2
.
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Exercise 1.7.2

Write

a =
t1
p1

=
t2
p2

so

1 = p1 + p2 =
t1
a

=
t2
a

=
T

a
whence a = T . Set q = u−1

1 so that u1 = q−1, u2 = (1 − q)−1. Then
(using Exercise 1.6.7),

f(q) = p1t1u1 + p2t2u2

=
ap2

1

q
+

ap2
2

1− q

≥ ap2
1q0 +

ap2
2

1− q0

= a(p1 + p2)2 = a = T

with equality if and only if

q = q0 =
p1

p1 + p2

= p1

ie if and only if u1 = 1/p1 and u2 = 1/p2.
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Exercise 1.7.3

Write Y = y1 + y2. Using Exercise 1.7.2 with

u1 =
t1 + y1

T + Y
, u2 =

t2 + y2

T + Y

we see that our expected profit

p1t1
T + Y

t1 + y1

+ p2t2
T + Y

t2 + y2

≥ T

with equality if and only if

u1 =
1

p1

, u2 =
1

p2

ie
t1 + y1

T + Y
= p1,

t2 + y2

T + Y
= p2.

Now
tj + yj
T + Y

= pj ⇔ tj + yj = Tpj + Y pj

⇔ yj = Y pj

so the expected value of our bet is strictly greater than T unless yj =
Y pj.
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Exercise 1.7.5

Observe that if we take the expected value of our bet is

u1p1t1 + u2p2t2 + · · ·+ unpntn

and if we take tj = pjT

u1p1t1 + u2p2t2 + · · ·+ unpntn ≥ T

for all choices of uj.

If we choose particular tj, then we know that we can find uj > 0
with

u−1
1 + u−1

2 + · · ·+ u−1
n = 1.

and

u1p1t1 + u2p2t2 + · · ·+ unpntn = (p1t1)1/2 + (p2t2)1/2 + · · ·+ (pntn)1/2.

Now
d

dt
At1/2 +B(t0 − t)1/2 =

A(t0 − t)1/2 −Bt1/2

2t1/2(t0 − t)1/2

and by looking at the sign of the derivative we see that there is a unique
maximum for t0 > t > 0 when

A(t0 − t)1/2 = Bt1/2

ie
At−1/2 = B(t0 − t)1/2

so by our usual argument

u1p1t1 + u2p2t2 + · · ·+ unpntn

is maximised uniquely when

pj = atj

ie tj = pjT . Thus we should take tj = pjT .

Now suppose that

u−1
1 + u−1

2 + · · ·+ u−1
n = U.

If we set vj = Uuj then

v−1
1 + v−1

2 + · · ·+ v−1
n = 1

and the expected value of our bet is

U(v1p1t1 + v2p2t2 + · · ·+ vnpntn)

so the maximisation problem is unchanged.
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Exercise 1.7.6

(i) This was shown in Exercise 1.7.5. If tk = pkT the expected value
of the bet is

u1p1t1 + u2p2t2 + · · ·+ unpntn = u1p
2
1T + u2p

2
2T + · · ·+ p2

nT ≥ TK

with equality only if uj = p−1
j K when the value of the bet is TK.

(ii) This is essentially the same result as (i). The bookie should
choose uj = p−1

j K and then the bettor tk = pkT . The value of the bet
is TK.
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Exercise 1.7.7

(i) We are seeking to maximise

(1− α)
n∑
j=1

tj
T + Y

tj + yj
pj

which is the same as seeking to maximise
n∑
j=1

tj
T + Y

tj + yj
pj.

The recommendations are unaltered.

If we bet a small amount we are essentially offered a payout ratio on
the jth horse given by

uj = (1− α)
Y

yj
.

We can only make a profit if

maxujpj > 1.

Thus, if

(1− α)
Y

yj
< 1

for all j there is no way we can make a positive expected profit.

If we bet a small amount last we are essentially offered a payout ratio
on the jth horse given by

uj =
Y − b
yj

.

We should bet on the horse which has largest value of (Y − b)pj/yj ie
the largest value of pj/yj as before.

If we bet first we do not know the final payout ratios so as before we
should bet pjT on the jth horse.
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Exercise 1.7.8

(i) By Theorem 1.6.3 observing that T + Y is constant,
p1y1

t1 + y1

+
p2y2

t2 + y2

,

attains a unique maximum for y1 + y2 + Y and y1, y2 ≥ 0 at y1 = y∗1,
y2 = y∗2 = Y − y∗1 where

y∗1 = Y for
p1t1

(t1 + Y )2
≥ p2

t2

and, otherwise
p1t1

(t1 + y∗1)2
=

p1t2
(t2 + y∗2)2

.

(ii) As usual, we assume that a minimum is attained. By (i) this
maximum must be at yj = y∗j obeying the conditions

pjtj
(tj + y∗j )

2
≥ pk
tk

and y∗k = 0,

or
pjtj

(tj + y∗j + y∗k)
2
<
pk
tk

and
pjtj

(tj + y∗j )
2

=
pktk

(tk + y∗k)
2
.

(iii) Since
p1

t1
≥ p2

t2
≥ · · · ≥ pn

tn
we can find an r with 1 ≤ r ≤ n such that

p1t1
(t1 + y∗1)2

=
p2t2

(t2 + y∗2)2
= · · · = prtr

(tr + y∗r)
2

and, if r ≤ n− 1,

y∗r+1 = y∗r+2 = · · · = y∗n = 0, and
prtr

(tr + y∗r)
2
≥ pr+1

tr+1

.

(iv) Suppose
p1

t1
≥ p2

t2
≥ · · · ≥ pn

tn
Starting from zero slowly increase your bet y1 on the first horse until

p1t1
(t1 + y1)2

=
p2

t2

Now slowly increase your bets y1 and y2 on the first two horses in such
a way that

p1t1
(t1 + y1)2

=
p2t2

(t2 + y2)2

until
p1t1

(t1 + y1)2
=

p2t2
(t2 + y2)2

=
p3

t3
.
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Now slowly increase your bets y1, y2, y3 on the first three horses in
such a way that

p1t1
(t1 + y1)2

=
p2t2

(t2 + y2)2
=

p3t3
(t3 + y3)2

.

Once we are betting on all the horses we have

tj + yj = (pjtj)
1/2

so the expected value (to the other bettors) of their bet is

E =
n∑
j=1

pjtj
tj + yj

(T + Y ) = (T + Y )
n∑
j=1

(pjtj)
1/2

(
n∑
j=1

(pjtj)
1/2

)2

so our expected winnings are

n∑
j=1

tj −

(
n∑
j=1

(pjtj)
1/2

)2

independent of how much more we bet. There is no reason to bet more.
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Exercise 2.1.1

(i) Pr({ω}) =
∑

ρ∈ω p(ρ) = p(ω).

(ii) Pr(A) =
∑

ω∈A\B p(ω) +
∑

ω∈B p(ω) ≥
∑

ω∈B p(ω) = Pr(B).

(iii) Ω ⊇ A ⊇ ∅ so, by (ii),

1 = Pr(Ω) ≥ Pr(A) ≥ Pr(∅) = 0.

(iv) We have

Pr(A ∪B) =
∑

ω∈A∪B

p(ω) =
∑
ω∈A

p(ω) +
∑
ω∈B

p(ω) = Pr(A) + Pr(B).
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Exercise 2.1.2

Since [(r − 1)2−n, r2−n) is a translate of [0, 2−n) it should have the
same probability for each 1 ≤ r ≤ 2−n. Now

1 = Pr([0, 1)) = Pr

(
2n⋃
r=1

[(r − 1)2−n, r2−n)

)

=
2n∑
r=1

Pr
(
[(r − 1)2−n, r2−n)

)
= 2n Pr

(
[0, 2−n)

)
so

Pr
(
[(r − 1)2−n, r2−n)

)
= Pr

(
[0, 2−n)

)
= 2−n.

Since {ω} ⊂ [(r− 1)2−n, r2−n) for some r, 0 ≤ Pr({ω}) ≤ 2−n for all
n and so Pr({ω}) = 0 for all ω ∈ [0, 1).
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A A B B C C
B C C A A B
C B A C B A
D C D C B B

Table 1. Possible deals with 3 cards

A A A A A A B B C D C D B B C D C D B B C D C D
B B C D C D A A A A A A C D B B D C C D B B D C
C D B B D C C D B B D C A A A A A A D C D C B B
D C D C B B D C D C B B D C D C B B A A A A A A
D C D C B B D C D C B B D C D C B B A A A A A A
E E E E E E E E E E E E E E E E E E E E E E E E

Table 2. Possible deals with 5 cards, E last

Exercise 2.2.1

There are 24 deals with E last so there must be 24 deals with E in
rth place with r taking one of the 4 values 1, 2, 3, 4, 5 so 120 = 24× 5
deals in all.

Exercise 2.2.3∗
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Exercise 2.2.4

(i) Let B(n, r, b, g) be the number of ways that we can arrange the
cards if cards of the same colour are indistinguishable. Now suppose
we number the n cards so that they are all distinguishable. The red
cards can now be arranged in r! ways, the blue cards can be arranged
in b! ways and the green cards in g!. Thus the total number of ways
of arranging our cards without exchanging colours is r!b!g! and the
total number of ways of arranging our cards in any way we wish is
B(n, r, b, g)r!b!g!. But we already know that the total number of ways
of arranging our cards in any way we wish is n! so

B(n, r, b, g) =
n!

r!b!g!

as required.

(ii) Suppose we have mj cards of colour j and
∑k

j=1mj = n. Let

B(n,m) be the number of ways that we can arrange the cards if cards
of the same colour are indistinguishable. Now suppose we number
the n cards so that they are all distinguishable. The j colour cards
can now be arranged in nj! ways. Thus the total number of ways of
arranging our cards without exchanging colours is m1!m2! . . .mk! and
the total number of ways of arranging our cards in any way we wish is
B(n,m)m1!m2! . . .mk!. But we already know that the total number of
ways of arranging our cards in any way we wish is n! so

B(n,m) =
n!

m1!m2! . . .mk!
.
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Exercise 2.2.5

(i) We have

(x+ y)n = (x+ y)(x+ y)(x+ y) . . . (x+ y)

so the coefficient of xn−ryr is the number of ways we can select x from

r distinct terms (x+ y) ie

(
n

r

)
.

(ii) If r + b+ g 6= n the coefficient is 0.

If r + b+ g = n we have

(x+ y + z)n = (x+ y + z)(x+ y + z)(x+ y + z) . . . (x+ y + z)

so the coefficient of xrybzg is the number of ways we can select x from
r distinct terms (x+ y), y from b distinct remaining terms and z from
the g remaining so the coefficient is

n!

r!b!g!
.
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H H H H H H H H T T T T T T T T
H H H H T T T T H H H H T T T T
H H T T H H T T H H T T H H T T
H T H T H T H T H T H T H T H T

Table 3. *

Two-sided die thrown four times

A A A A B B B B C C C C D D D D
A B C D A B C D A B C D A B C D

Table 4. *

four-sided die thrown twice

Exercise 2.2.6

To get a four-sided die thrown thrice we need a first row consisting of
16 A’s followed by 16 B’s and so on with the table just given repeated
four times underneath.

Exercise 2.2.8∗

Exercise 2.3.1∗ (see Exercise 2.3.10)
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Exercise 2.3.3

A bet a times as large as another should be a times as valuable.

The sum of the values of two separate bets should be the same as
the value of the bets made together.

If every outcome of one bet is no worse than the outcome of the
other bet the value of the first bet cannot be less than the value of the
second.
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Exercise 2.3.7

IAc(ω) =

{
0 if ω ∈ A,

1 if ω /∈ A,

and

1− IA(ω) =

{
1− 1 = 0 if ω ∈ A,

1− 0 = 1 if ω /∈ A,

so
IAc(ω) = 1− IA(ω)

for all ω and so
IAc = 1− IA.

(1) Thus

I(A∪B)c = 1− IA∪B = 1− (IA + IB − IAIB)

= 1− IA − IB + IAIB) = (1− IA)(1− IB)

= IAcIBc = IAc∩Bc

and so (A ∪B)c = Ac ∩Bc.

(2) Similarly

I(A∩B)c = 1− IA∩B = 1− IAIB
= (1− IA) + (1− IB)− (1− IA)(1− IB)

= IAc + IBc − IAcIBc = IAc∪Bc

and so (A ∩B)c = Ac ∪Bc.

(3) Finally

I(Ac)c = 1− IAc = 1− (1− IA) = IA
so (Ac)c = A.

We could have obtained (2) from the (1) and (3) by the argument

A ∩B = (Ac)c ∩ (Bc)c = Ac ∪Bc.

We have

IA\B = IA∩Bc = IAIBc

= IA(1− IB) = IA − IAIB
and, noting that I2

C = IC ,

IA4B = I(A\B)∪(A\B) = IA\B + IB\A − IA\BIB\A
= IA − IAIB + IB − IAIB − (IA − IAIB)(IB − IAIB)

= IA + IB − 2IAIB + 0 = IA + IB − 2IAIB
(Or think what the answer should be and then verify.)
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By inspection, IΩ = 1 and I∅ = 0.
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Exercise 2.3.8

(i)
∑

ω∈Ω ID(ω) =
∑

ω∈D 1 = |D|.

(ii) We have

|A ∪B ∪ C| =
∑
ω∈Ω

IA∪B∪C(ω)

=
∑
ω∈Ω

(
IA(ω) + IB(ω) + IC(ω)

− IA∩B(ω)− IB∩C(ω)− IC∩A(ω) + IA∩B∩C(ω)
)

= |A|+ |B|+ |C|
− |A ∩B| − |B ∩ C| − |C ∩ A|+ |A ∩B ∩ C|.

(iii) The number of students who are mathematicians or wear glasses
or are musical (or any combination) is the number of mathematicians
plus the number of glasses wearers plus the number of musicians cor-
recting for counting those with two of those properties twice by sub-
tracting the number of musical mathematicians plus the number of
mathematical glasses wearers plus the the number of goggled musi-
cians correcting for the fact that those who have all three properties
have been counted three times and then subtracted three times by
adding them in again.

(iv) If n has a factor r then n = rs with r ≤ n1/2 and/or s ≤ n1/2.
Thus if n is composite it has a prime factor no greater than n1/2. If
p < 49 and p is not divisible by 2, 3 or 5 it must be prime. Let Aq be
the set of strictly positive integers less than 49 divisible by q. Then

|A2| = 24, |A3| = 16, |A5| = 9,

|A2 ∩ A3| = |A6| = 8, |A3 ∩ A5| = |A15| = 3, |A2 ∩ A5| = |A10| = 4,

|A2 ∩ A3 ∩ A5| = |A30| = 1.

Thus

|A2 ∪ A3 ∪ A5| = 24 + 16 + 9− 8− 3− 4 + 1

and there are 35 integers between 1 and 48 divisible by at least one of
2, 3 or 5. Thus 48 − 35 − 1 = 12 integers between 2 and 48 are not
divisible by 2, 3 or 5. Since 2, 3 and 5 are prime it follows that there
are 15 primes less than 49.
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(v) We have

I⋃4
i=1 Ai

= 1− I(
⋂4

i=1 Ai)c

= 1−
4∏
i=1

IAc
i

= 1−
4∏
i=1

(1− IAi
)

=
4∑
i=1

IAi
−
∑
i<j

IAi
IAj

+
∑
i<j<k

IAi
IAj

IAk
+ IA1IA2IA3IA4

=
4∑
i=1

IAi
−
∑
i<j

IAi∩Aj

+
∑
i<j<k

IAi∩Aj∩Ak
− IA1∩A2∩A3∩A4 .

Thus

∣∣∣∣∣
4⋃
i=1

Ai

∣∣∣∣∣ = EI⋃4
i=1 Ai

=
4∑
i=1

EIAi
−
∑
i<j

EIAi∩Aj

+
∑
i<j<k

EIAi∩Aj∩Ak
− EIA1∩A2∩A3∩A4

=
4∑
i=1

|Ai| −
∑
i<j

|Ai ∩ Aj|

+
∑
i<j<k

|Ai ∩ Aj ∩ Ak| − |A2 ∩ A2 ∩ A3 ∩ A4|

(vi) If n has a factor r then n = rs with r ≤ n1/2 and/or s ≤ n1/2.
Thus if n is composite it has a prime factor no greater than n1/2. If
p ≤ 100 and p is not divisible by 2, 3, 4 or 7 it must be prime. Let Aq
be the set of strictly positive no greater than than 100 divisible by q.
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Then

|A2| = 50, |A3| = 33, |A5| = 20, |A7| = 14

|A2 ∩ A3| = |A6| = 16, |A2 ∩ A5| = |A10| = 10 |A2 ∩ A7| = |A14| = 7,

|A3 ∩ A5| = |A15| = 6, |A3 ∩ A7| = |A21| = 4, |A5 ∩ A7| = |A35| = 2,

|A2 ∩ A3 ∩ A5| = |A30| = 3, |A2 ∩ A3 ∩ A7| = |A42| = 2,

|A2 ∩ A5 ∩ A7| = |A70| = 1, |A3 ∩ A5 ∩ A7| = |A105| = 0

|A2 ∩ A3 ∩ A5 ∩ A7| = 0

Thus

|A2∪A3∪A5∪A7| = 50+33+20+14−16−10−7−6−4−2+3+2+1 = 78

and there are 78 integers between 1 and 100 divisible by at least one
of 2, 3, 5 or 7. Thus 100− 78− 1 = 21 integers between 2 and 100 are
not divisible by 2, 3, 5 or 7. Since 2, 3, 5 and 7 are prime it follows
that there are 25 primes less than 100.
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Exercise 2.3.10

(i) Paint the cards numbered i, j and k blue and the rest red.

(ii) A1∩A2∩A3 is the event that the first card dealt is 1, the second
2and the third 3.

Pr(A1 ∩ A2 ∩ A3) =
1

n
× 1

n− 1
× 1

n− 2
.

(iii) There are n× (n−1)× (n−2) of choosing three distinct integers
in some order and (

n

3

)
=
n× (n− 1)× (n− 2)

3!

of obtaining three distinct integers in a particular order so∑
i<j<k

Pr(Ai ∩ Aj ∩ Ak) =
∑
i<j<k

1

n
× 1

n− 1
× 1

n− 2
=

1

3!
.

(iv) The number of ways of choosing integers i1, i2, . . . , ir with 1 ≤
i1 < i2 < · · · < ir ≤ n is

(
n
r

)
.

If 1 ≤ i1 < i2 < · · · < ir ≤ n

Pr(Ai1 ∩ Ai2 ∩ · · · ∩ Air) =
1

n
× 1

n− 1
× · · · × 1

n− r + 1
.

Thus∑
i1<i2<···<ir

Pr(Ai1∩Ai2∩· · ·∩Air) =

(
n

r

)
1

n
× 1

n− 1
×· · ·× 1

n− r + 1
=

1

r!

Using the inclusion-exclusion formula

Pr

(⋃
i

Ai

)
=
∑
i

Pr(Ai)−
∑
i<j

Pr(Ai ∩ Aj) +
∑
i<j<k

Pr(Ai ∩ Aj ∩ Ak)− . . .

=
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!
.

(v)
⋃
iAi is the event that at least one card is dealt in the same place

as the number it bears. Thus the probability that no card is dealt in
the same place as the number it bears is

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
.
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(vi) Let pn be the probability that no card from a pack of n is dealt
in the same place as the number it bears. Then (to the number of
places shown)

p1 = 0

p2 = .50000

p3 = .33333

p4 = .37500

p5 = .36667

p6 = .36806

Setting x = −1 in Exercise A.10 (iv) we obtain

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
≈ e−1

for large n. We observe that

e−1 = 0.36788

to the number of places shown.

(vii) To a very good level of approximation the probability that no
pair will consist of identical cards is e−1 and the probability that at
least one pair will consist of identical cards is

1− e−1 ≈ .63212

(viii) The probability that the first k cards will be dealt in their
correct place and the remainder will all be misplaced is

1

n
× 1

n− 1
× · · · × 1

n− k − 1
× Pr(a pack of n− k cards will be dealt out of order)

≈ 1

n
× 1

n− 1
× · · · × 1

n− k − 1
e−1.

By symmetry the probability that a particular k cards will be dealt in
their correct place and the remainder will all be misplaced is approxi-
mately

1

n
× 1

n− 1
× · · · × 1

n− k − 1
e−1.

There are
(
n
k

)
ways of choosing k cards so the probability that some

set of k cards will be dealt in their correct place and the remainder will
all be misplaced is approximately(

n

k

)
× 1

n
× 1

n− 1
× · · · × 1

n− k − 1
e−1 =

e−1

k!
.
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Exercise 2.3.11

(i) Let Ai be the event that the committee can meet on the ith date.

Pr(committee can meet) = Pr

(
n⋃
i=1

Ai

)
∑

1≤i≤n
Pr(Ai)−

∑
1≤i<j≤n

Pr(Ai ∩Aj) +
∑

1≤i<j<k≤n
Pr(Ai ∩Aj ∩Ak)− . . .

=

(
n

1

)
Pr(A1)−

(
n

2

)
Pr(A1 ∩A2) +

(
n

2

)
Pr(A1 ∩A2 ∩A3)− . . .

+

(
n

1

)
pm −

(
n

2

)
p2m + . . .+ (−1)n−1

(
n

n

)
pnm

We have

P (1/2, 8, 30) =
30∑
r=1

(−1)r−1ar

with

ar =

(
30

r

)
28r =

(
30

r

)
(256)−1

so ar > 0 and ar+1/ar ≤ 30/256 < 1. Thus

P (1/2, 8, 30) ≈
k∑
r=1

(−1)r−1ar

with error less in magnitude less than ar+1. (Truncating an alternating
decreasing sum produces an error less than the first term neglected.

Now a1 ≈ 0.117 and a2 ≈ 0.006 so P (1/2, 8, 30) ≈ .12.

(ii) As before

Pr(committee can meet) = Pr

(
n⋃
i=1

Ai

)

=

(
n

1

)
Pr(A1)−

(
n

2

)
Pr(A1 ∩ A2) +

(
n

2

)
Pr(A1 ∩ A2 ∩ A3)− . . .

=

(
n

1

)(
k

n

)m
−
(
n

2

)(
k(k − 1)

n(n− 1)

)m
+

(
n

3

)(
k(k − 1)(k − 2)

n(n− 1)(n− 2)

)m
− · · ·+ (−1)k−1

(
n

k

)(
k(k − 1)(k − 2) . . . 1

n(n− 1)(n− 2) . . . (n− k + 1)

)m
.

Observe that if m(n − k) < n then there must be a possible meet-
ing so Q(k,m, n) = 1, but if p < 1 then there is always a strictly
positive probability that the y cannot meet so P (p,m, n) < 1. Thus
P (k/n,m, n) 6= Q(k,m, n) whenever m(n − k) < n. (Of course even
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if m(n − k) > n the inequality will usually hold but this is harder to
prove.) [Thanks to Nigel White for a correction.]

If k = 15, m = 8, n = 30 then it is still true that the terms are
decreasing in size and alternating in sign so the first term (which is
the same) dominates. Essentially the terms which are affected by non-
independence are very small.
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Exercise 2.4.3

Pr(A) = Pr(B) = Pr(two heads or two tails in succession)

= 1/4 + 1/4 = 1/2.

We have

Pr(A ∩B) = Pr(three heads or three tails)

= 1/8 + 1/8 = 1/4 = Pr(A) Pr(B)

so A and B are independent.
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Exercise 2.4.4

(i) Since (Ac ∩B) ∩ (A ∩B) = ∅ and (Ac ∩B) ∪ (A ∩B) = B,

Pr(Ac ∩B) + Pr(A ∩B) = Pr(B)

Thus if A and B are independent

Pr(Ac ∩B) = Pr(B)− Pr(A ∩B) = Pr(A)− Pr(A) Pr(B)

= (1− Pr(A)) Pr(B) = Pr(Ac) Pr(B)

so Ac and B are independent.

Since B and Ac are independent so are Bc and Ac.

(ii) If A and B are independent then, by (i), so are Ac and Bc. If
further A ∪B = Ω then Ac ∩Bc = ∅ so

0 = Pr(Ac ∩Bc) = Pr(Ac) Pr(Bc)

and at least one of Ac and Bc has probability 0 and so at least one of
A and B has probability 1.

(iii) Let pj = Pr({ωj}). If A and B have the properties stated

p3 = Pr(A ∩B) = pq

so
p4 = Pr(B)− p3 = (1− p)q

and, by independence of complements

p5 = Pr(Ac ∩Bc) = Pr(Ac) Pr(Bc) = (1− p)(1− q).

Reversing our arguments we see that if we set p1 = p2 = p(1− q)/2,
p3 = pq, p4 = (1− p)q and p5 = (1 − p)(1 − q) they satisfy the stated
conditions. (And indeed we could have guessed the solution if we had
been awake.)

In Lemma 2.4.2, writing |X| for the number of elements in X,

|Ω| = |U | × |V | ≥ |A| × |B|.
and this is not true here.
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Exercise 2.4.6

(i) Just as in Exercise 2.4.3,

Pr(A) = Pr(B) = Pr(C) = 1/2

Pr(A ∩B) = 1/4 = Pr(A) Pr(B), Pr(B ∩ C) = 1/4 = Pr(B) Pr(C),

Pr(C ∩ A) = 1/4 Pr(C) Pr(A).

However, if A and B occur, then all the throws are heads or all the
throws are tails so C occurs. Thus

A ∩B ∩ C = A ∩B
and

Pr(A ∩B ∩ C) = 1/4 6= 1/8 = Pr(A) Pr(B) Pr(C).

(ii) Let pr = Pr({ωr}). Then

p4 = Pr(A ∩B ∩ C) = Pr(A) Pr(B) Pr(C) = 1/27

and

p2 + p4 = Pr(A ∩B) = Pr(A) Pr(B) = 1/9,

p3 + p4 = Pr(A ∩ C) = Pr(A) Pr(C) = 1/9

so
p2 = p3 = 2/27.

Now

p1 + p2 + p3 + p4 = Pr(A) = 1/3

p2 + p4 + p5 = Pr(B) = 1/3

p3 + p4 + p6 = Pr(C) = 1/3

so
p1 = 5/27, p5 = p6 = 2/9

whilst since
p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

we have p7 = 5/27.

Since all the pj are positive and the working is reversible we have
found an appropriate set of probability Pr (and it is unique). We
observe that

Pr(B ∩ C) = p4 = 2/27 6= 1/9 = Pr(B) Pr(C).
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Exercise 2.4.7

If A, B and C are independent then we know that they are indepen-
dent in pairs so (see eg Exercise 2.4.4) A, B and Cc are independent
in pairs. Further

Pr(A ∩B ∩ Cc) = Pr(A ∩B)− Pr(A ∩B ∩ C)

= Pr(A) Pr(B)− Pr(A) Pr(B) Pr(C)

= Pr(A) Pr(B)
(
1− Pr(C)

)
= Pr(A) Pr(B) Pr(Cc)
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Exercise 2.4.8

We seek to prove that if U , V and W are probability spaces with
associated probabilities PrU , PrV and PrV then we can define a prob-
ability Pr on Ω = U × V ×W in such a way that

Pr({(u, v, w)}) = PrU({u})PrV ({v})PrW ({w})
for all (u, v, w) ∈ Ω. Further, with this choice of Pr, if E ⊆ U , F ⊆ V
and G ⊆ W the events

E × V ×W, U × F ×W, U × V ×G
are independent.

To this end observe that∑
(u,v,w)∈Ω

PrU({u})PrV ({v})PrW ({w})

=
∑
u∈U

PrU({u})
∑
v∈V

PrV ({v})
∑
w∈W

PrW ({w})

and PrU({u})PrV ({v})PrW ({w}) ≥ 0 for all (u, v, w) ∈ Ω so Pr is
indeed a probability.

Further

Pr(E × V ×W ∩ U × F ×W ∩ U × V ×G) = Pr(E × F ×G)

=
∑

(u,v,w)∈E×F×G

PrU({u})PrV ({v})PrW ({w})

=
∑
u∈E

PrU({u})
∑
v∈F

PrV ({v})
∑
w∈G

PrW ({w})

= Pr(E × V ×W ) Pr(U × F ×W ) Pr(U × V ×G)

and independence in pairs can be proved similarly. Thus the events

E × V ×W, U × F ×W, U × V ×G
are indeed independent.

Exercise 2.4.12∗
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Exercise 2.4.13

The argument is not very different to that of Lemma 2.4.2.

Observe that Pr({ω(j,k)}) = pjqk ≥ 0 and∑
ω∈Ω

Pr({ω}) =
J∑
j=1

K∑
k=1

pjqk =
J∑
j=1

pj

K∑
k=1

qk = 12 = 1

Pr(X = c, Y = d) =
∑

cj=c, dk=d

Pr({ω(j,k)})

=
∑

cj=c, dk=d

pjqk =
∑
cj=c

pj
∑
dk=d

qk

= Pr(X = c) Pr(Y = d)

so X and Y are independent and EXEY = EXY .

EX is the value the bet on the first race if we place 1 unit. EY is
the value the bet on the second race if we place 1 unit. EXY is the
value of our bet if we place 1 unit on it and the bet our winnings on
the second race.
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Exercise 2.4.14

EX = EY = 1
2
× 1 + 1

2
× 0

Now
X(ω1)Y (ω1) = X(ω2)Y (ω2) = 0

so XY = 0 and
EXY = 0 6= 1

4
= EXEY

On the other hand X2 = X so

EX2 = 1
2
6= 1

4
= (EX)2.
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Exercise 2.4.15

Pr(X = 0, Y = 0) = Pr({ω5}) =
1

5

6= 1

25
= Pr({ω5})2 Pr(X = 0) Pr(Y = 0)

so X and Y are not independent.

Pr(XY = 1) = Pr({ω1, ω4}) =
2

5

Pr(XY = −1) = Pr({ω2, ω3}) =
2

5

Pr(XY = 0) = Pr({ω5}) =
1

5

EX = EY = EXY
2

5
× 1 +

2

5
× (−1) = 0

so EXY = EXEY .
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Exercise 2.4.16

(iii) Paint the high cards red and the low cards blue. The probability
asked for in (i) is the probability that if I deal 3 cards from a pack of
4 red and 4 blue cards I get all blue or all red ie

2× Pr(all blue) = 2× 4

8
× 3

7
× 2

6
=

1

7
.

The probability asked for in (i) is the probability that if I deal 6
cards from a pack of 4 red and 4 blue cards I get 3 blue and 3 red. The
probability of any particular hand of this type (say RRRBBB) is

4

8
× 3

7
× 2

6
× 4

5
× 3

4
× 2

3
=

1

14
× 2

5
=

1

35
There are (

6

3

)
=

6× 5× 4

3× 2× 1
= 20

such hands so the probability that the hand will contain three of the
four smallest cards and three of the four largest cards is 20/35 = 4/7.
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Exercise 2.4.17

(i) Write

A = {ω ∈ Ω : X(ω) ∈ U} and B = {ω ∈ Ω : Y (ω) ∈ V }.

Then

Pr(A ∩B) =
∑

X(ω)∈U, Y (ω)∈V

Pr({ω})

=
∑

u∈U, v∈V

Pr(X(ω) = u, Y (ω) = v)

=
∑

u∈U, v∈V

Pr(X(ω) = u) Pr(Y (ω) = v)

=
∑
u∈U

Pr(X(ω) = u)
∑

v ∈ V Pr(Y (ω) = v)

= Pr(A) Pr(B)

(ii) Suppose s, t ∈ R. Then, using (i) and writing

f−1(s) = {x : f(x) = s}, g−1(t) = {y : g(y) = t},

we have

Pr(f(X)(ω) = s, g(Y )(ω) = t) = Pr
(
X(ω) ∈ f−1(s), Y (ω) ∈ g−1(t)

)
= Pr

(
X(ω) ∈ f−1(s)

)
Pr
(
Y (ω) ∈ g−1(t)

)
= Pr(f(X)(ω) = s) Pr(g(Y )(ω) = t)

(iii) If X1, X2, . . . , Xn are independent random variables and U1,
U2, . . . , Un are subsets of R then the events {ω ∈ Ω : Xj(ω) ∈ Uj} are
independent.

We can prove this by induction on n. It is certainly true for n = 1.
If it is true for all n ≤ m − 1 then the result for n = m follows from
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the observation that

Pr

(
m⋂
j=1

X−1
j (Uj)

)
=

∑
Xj(ω)∈Uj for all j

Pr({ω})

=
∑

uj∈Uj for all j

Pr(X1(ω) = u1, X2(ω2) = u2, . . . , Xm(ω) = um)

=
∑

uj∈Uj for all j

m∏
j=1

Pr(Xj(ω) = uj)

=
∑
u1∈U1

∑
u2∈U2

· · ·
∑

um∈Um

m∏
j=1

Pr(Xj(ω) = uj)

=
m∏
j=1

∑
uj∈Uj

Pr(Xj(ω) = uj)

=
m∏
j=1

Pr
(
X−1
j (Uj)

)
.

If X1, X2, . . . , Xn are independent random variables and fj : R→ R
then the sets

{ω ∈ Ω : fj(Xj)(ω) = tj} = {ω ∈ Ω : Xj(ω) ∈ f−1
j (tj)}

are independent and so the random variables fj(Xj) are independent.
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Exercise 2.4.21

Pr(X = 1) = Pr(initial head) = 1/2

Pr(X = −1) = Pr(initial tail) = 1/2

Pr(Y = 2) = Pr(initial head) = 1/2

Pr(Y = −2) = Pr(initial tail) = 1/2

Pr(Z = 1) = Pr(second head) = 1/2

Pr(Z = −1) = Pr(second tail) = 1/2

Pr(W = 1) = Pr(HH) + Pr(TT) = 1/4 + 1/4 = 1/2

Pr(W = −1) = Pr(TH) + Pr(HT) = 1/4 + 1/4 = 1/2

Pr(V = 1) = Pr(HHH) + Pr(TTT) = 1/8 + 1/8 = 1/4

Pr(V = −1) = 1− Pr(W = 1) = 3/4

Thus

Pr(X = 1) = Pr(Z = 1) = Pr(W = 1) = 1/2;

Pr(X = −1) = Pr(Z = −1) = Pr(W = −1) = 1/2;

Pr(X = 1) = 1/2 6= 0 = Pr(Y = 1);

Pr(X = 1) = 1/2 6= 1/4 = Pr(V = 1);

Pr(V = 1) = 1/4 6= 0 = Pr(Y = 1)

and the results follow.
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Exercise 2.4.22

(i) If 2 ≤ r ≤ 7

Pr(throw r) =
r−1∑
s=1

Pr(first die s, second r − s)r − 1

36
.

By symmetry, if 7 ≤ r ≤ 12,

Pr(throw r) =
13− r

36
.

(ii) We have

(x+ x2 + x3 + x4 + x5 + x6)× (x+ x2 + x3 + x4 + x5 + x6) =

x2 + x3 + x4 + x5 + x6 + x7

+x3 + x4 + x5 + x6 + x7 + x8

+x4 + x5 + x6 + x7 + x8 + x9

+x5 + x6 + x7 + x8 + x9 + x10

+x6 + x7 + x8 + x9 + x10 + x11

+x7 + x8 + x9 + x10 + x11 + x12 =

x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 5x8 + 4x9 + 3x10 + 2x11 + x12

(iii) Let X = Y + Z with Y the throw on the first die, Z on the
second.

Pr(X = 3) = Pr(Y = 2, Z = 1) = Pr(Y = 2) Pr(Z = 1) = 6/36

Pr(X = 4) = Pr(Y = 3, Z = 1) = Pr(Y = 3) Pr(Z = 1) = 2/36

Pr(X = 6) = Pr(Y = 5, Z = 1) = Pr(Y = 5) Pr(Z = 1) = 2/36

Pr(X = 7) = Pr(Y = 2, Z = 5) = Pr(Y = 2) Pr(Z = 5) = 3/36

Pr(X = 14) = Pr(Y = 7, Z = 7) = Pr(Y = 7) Pr(Z = 7) = 1/36

Pr(X = 15) = Pr(Y = 7, Z = 8) = Pr(Y = 7) Pr(Z = 8) = 1/36
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and

Pr(X = 8) = Pr(Y = 2, Z = 6) + Pr(Y = 3, Z = 5) + Pr(Y = 7, Z = 1)

= Pr(Y = 2)Pr(Z = 6) + Pr(Y = 3)Pr(Z = 5)

+ Pr(Y = 7)Pr(Z = 1) = 6/36

Pr(X = 9) = Pr(Y = 2, Z = 7) + Pr(Y = 3, Z = 6)

= Pr(Y = 2)Pr(Z = 7) + Pr(Y = 3)Pr(Z = 7) = 4/36

Pr(X = 10) = Pr(Y = 2, Z = 8) + Pr(Y = 5, Z = 5) + Pr(Y = 7, Z = 3)

= Pr(Y = 2)Pr(Z = 8) + Pr(Y = 5)Pr(Z = 5)

+ Pr(Y = 7)Pr(Z = 3) = 5/36

Pr(X = 11) = Pr(Y = 3, Z = 8) + Pr(Y = 5, Z = 6)

= Pr(Y = 3)Pr(Z = 8) + Pr(Y = 5)Pr(Z = 6) = 2/36

Pr(X = 12) = Pr(Y = 5, Z = 7) + Pr(Y = 7, Z = 5)

= Pr(Y = 5)Pr(Z = 7) + Pr(Y = 7)Pr(Z = 5) = 2/36

Pr(X = 13) = Pr(Y = 7, Z = 6) + Pr(Y = 5, Z = 8)

= Pr(Y = 7)Pr(Z = 6) + Pr(Y = 5)Pr(Z = 8) = 2/36

(iv) Exactly the same calculations show that

(3x2 + x3 + x5 + x7)(2x+ x5 + x6 + x7 + x8)

= 6x3 + 2x4 + 2x6 + 3x7 + 6x8 + 4x9 + 5x10

+ 2x11 + 2x12 + 2x13 + x14 + x15

(v) We have

(x+ x2 + x3 + x4 + x5 + x6)2

= x(1 + x)(1 + x2 + x4)x(1 + x+ x2)(1 + x3)

= x(1 + x3)(1 + x2 + x4)x(1 + x)(1 + x+ x2)

= (x+ x3 + x4 + x5 + x6 + x8)(x+ 2x2 + 2x3 + x4)

so using the parallelism between coefficient and probability calculations
(or just rechecking) we find that (1, 3, 4, 5, 6, 8), (1, 2, 2, 3, 3, 4) are non-
standard dice with the same probabilities for totals as standard dice.

(vi) A non-standard pair of dice correspond to a pair of polynomials
P and Q each of degree 5 with positive integer coefficients such that

P (x)Q(x) = (1 + x+ x2 + x3 + x4 + x5)2

Now

(x− 1)2P (x)Q(x) = (x6 − 1)2 =

(
6∏

k=1

(x− ωk)

)2

so

P (x)Q(x) =

(
5∏

k=1

(x− ωk)

)2
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with ω = exp(πi/3).

The non-real roots of a real polynomial occur in conjugate pairs so
P (x) and Q(x) must be products of x+1, (x−ω)(x− ω̄) = (x2 +x+1)
and (x−ω2)(x−ω̄2) = (x2−x+1). By working through the possibilities,
we see that the only choices for P and Q are those that have already
been considered in (v).



76

Exercise 2.4.23

Suppose such a die exists.

We must have

11−1 = Pr(total 2) = Pr(throw (1, 1)) = p2
1

Thus p1 = 11−1/2. Similarly p6 = 11−1/2. Thus

Pr(total 7) ≥ Pr(throw (1, 6) or (6, 1))

= p1p6 + p6p1 = 2/11

Thus no such die exists.
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Exercise 2.4.24

My proposed solution was wrong (and I think I underestimated the
work involved). Here with my thanks is a solution from Matthew Tow-
ers.

The player, P, and the banker, B, draw cards uniformly at random
with replacement from the set {2, 3, 4}. Each gets one card face up. P
may continue to draw more cards, up to a total of 3. When they stop,
B must draw if they have 2 or 3 and must not draw if they have a 4.
The scoring is then

• If P has a total of at least 7 they get −1, regardless of B’s score.
• If P has < 7 and B has at least 7, P gets 1.
• If both P and B have less then 7 then if the scores are equal P

gets 0, otherwise P gets 1 if they have the higher score and -1
if they have the lower score.

We then have the following payoffs and expected values:

B’s 1st card
2 3 4 P’s EV if B’s 1st card is
B’s next card

P stops at 2 3 4 2 3 4 2 3 4
3 −1 −1 −1 −1 −1 1 −1 −1 −1/3 −1
4 0 −1 −1 −1 −1 1 0 −2/3 −1/3 0
5 1 0 −1 0 −1 1 1 0 0 1
6 1 1 0 1 0 1 1 2/3 2/3 1
> 7 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

P’s first card could be 2, 3, or 4.

• P’s first card is 2. They should draw again, getting 4, 5, or 6.
Suppose they have 4.

– If B has 4 then stopping gets 0 and drawing gets an ex-
pected value of (1/3) · 1 + (2/3) · (−1) = −1/3 so P should
stop.

– If B has 3, stopping has expected value −1/3 (from the
table) and drawing has expected value
(1/3)·(expected score if B has 3 and P stops at 6)+(2/3)·
(−1) = −4/9 so P shold hold.

– If B has 2, stopping has an expected value of −2/3 from
the table and drawing has expected value
(1/3)(expected score if B has 2 and P stops at 6) + (2/3) ·
(−1) = −4/9 so P should draw.
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Now suppose P has 5 after the second draw. It can’t make
sense to draw again, so their expectation is 1/3 (conditioning
on the three possibilities for B’s card) Finally if P has 6 after
the 2nd draw, they should not draw again. The expected score
is 7/9 = (1/3)(2/3) + (1/3)(2/3) + (1/3)(3/3) from the table.

Following this strategy, with first card 2 P has an EV of
(1/3)((1/3)·0+(1/3)(−4/9)+(1/3)(−1))+(1/3)(1/3)+(1/3)(7/0) =
23/81.
• P’s first card is 3. If B has 2 or 4 then clearly P must draw. If

B has 3 then stopping has expectation (1/3)(−1)+(1/3)(−1)+
(1/3) · 1 = −1/3 and drawing expects (1/3) · 0 + (1/3)(2/3) +
(1/3)(−1) = −1/9 from the table, so P should draw in this case
too. Their expectation is (1/3)(expectation if they stop at 5)+
(1/3)(expectation if they stop at 6)+(1/3)(expectation if they stop at 7)
which from the table is (1/3)(1/3) + (1/3)(7/9) + (1/3)(−1) =
1/27.
• P’s first card is 4. Stopping has an expected value of −2/3 if

B has 2, −1/3 if B has 3, and 0 if B has 4. If P draws, the
expectations are as in the first bullet point when P had 4 after
their second draw. Thus P should stop if B has 3 or 4, expecting
−1/3 and 0), and draw if B has 2, expecting −4/9. Their
expected score is (1/3)(−4/9)+(1/3)(−1/3)+(1/3)·0 = −7/27.

Overall the expected score for P is (1/3)(23/81) + (1/3)(1/27) +
(1/3)(−7/27) = 5/243.

(ii) If the player follows the rule ‘draw if your hand is 4 or less’, she
will usually end up with a 6 and the banker will usually end up with a
6, so the player will usually win.
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Exercise 2.4.25

(i) You should attack all the questions with pj = 1 first (since your
probability of losing is 0) and all the questions with pj = 0 last.

(ii) Let Xr be your expected winnings from the r th question in oder.
Your probability of actually answering the rth question correctly is

pj(1)pj(2) . . . pj(r)

so
EXr = pj(1)pj(2) . . . pj(r)aj(r)

and your total expected winnings is

E
n∑
r=1

Xr =
n∑
r=1

EXr

=
n∑
r=1

pj(1)pj(2) . . . pj(r)aj(r).

(iii) From (ii)

eA − eB = qpiai + qpipjaj − qpjaj + qpjpiai

= q
(
pi(1− pj)ai − pj(1− pi)aj

)
We prefer plan A to plan B if eA − eB > 0 so if

q
(
pi(1− pj)ai − pj(1− pi)aj

)
> 0

so if
aipi

1− pi
>

ajpj
1− pj

.

The remaining cases follow the same pattern.

(iv) If we do not follow this strategy, part (iii) shows there is a better
strategy.

(v) If p1 = p2 = · · · = pn then pj we should choose the questions in
decresing order of the aj. This is reasonable since the probability of
sucessfully answering exactly r questions does not depend on order so
we wish to get the largest rewards first.

If a1 = a2 = · · · = an we should choose the questions in decreasing
order of pj. This is reasonable since we are now trying to make the
game last as long as possible.

If the pj are very small then we should choose the question for which
ajpj is largest. This is reasonable since we are very unlikely to get the
chance to answer more than one question.
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Exercise 2.5.1

The probability of a hand with three aces in specified places and the
remainder non aces (for example AAANNNNNNNNNN where A is
an ace and N a non-ace) is

4

52
× 3

51
× 2

50
× 48

49
× 47

48
× · · · × 38

39
=

24× 38

52× 51× 50× 49

and there are (
13

3

)
=

13× 12× 11

3× 2
= 13× 22

such hands. The probability of exactly three aces is thus

13× 22× 24× 37

52× 51× 50× 48
≈ 0.0412.
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Exercise 2.5.2

If some one stakes 1 probability of winning is 1/32 and if they win
they get 28 so the expected gain is

28× 1

32
− 1 =

7

8
− 1 = −1

8
(ie ‘they lost one eighth part of all the money they played for’).

Pr(point comes up in 22 games)

= 1− Pr(point does not come up up in 22 games)

= 1−
(

Pr(point does not come up up in one game)22

= 1−
(

31

32

)22

≈ 0.5027

Thus the Master of the Balls is betting at favourable odds. (But not
very favourable, he must much prefer his standard game.)
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Exercise 2.5.4

Since f is increasing f(a) ≥ f(x) for x ≥ a. Since f(x) > 0 and
f(a), it follows that 1 ≤ f(x)/f(a) for x ≥ a and 0 ≤ f(x)/f(a) for all
x < a. Thus

I(a,∞)(x) ≤ f(x)

f(a)
for all x.

It follows that

Pr(X ≥ a) = EI(a,∞)(X)

≤ E
(
f(X)

f(a)

)
=

Ef(X)

f(a)
.



83

Exercise 2.5.8

Observe that Pr(ωj) ≥ 0 and

Pr(ω1) + Pr(ω2) + Pr(ω3) = 1.

EX = 0(1− p) + ap/2− ap/2 = 0

and
varX = EX2 = 0(1− p) + a2p/2− a2p/2 = a2.

Thus

Pr(|X − EX|) = Pr(ω2) + Pr(ω3) = p =
varX

a2
.
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Exercise 2.5.10

(i) Observe that

E(X − a)2 = E
(
(X − EX) + (EX − a)

)2

= E
(
(X − EX)2 + 2(EX − a)(X − EX)(EX − a)2

)2

= E
(
X − EX)2 + 2(EX − a)E(X − EX) + E(EX − a)2

= E
(
X − EX)2 + 2(EX − a)0 + E(EX − a)2

== varX + (EX − a)2.

Thus E(X − a)2 is minimised by taking a = EX.

(ii) We have

varX + varY = varX + var(−1)X = varX + (−1)2 varX = 2 varX.

and
var(X + Y ) = var 0 = 0.

Since X and Y are not independent Lemma 2.5.9 (iv) is not relevant.

(iii) We have

var(X + Y ) = E
(
X + Y − E(X + Y )

)2
= E(X + Y − EX − EY )2

= E
(
X2 + Y 2 + (EX)2 + (EY )2 + 2XY − 2(EX)X − 2(EY )X

− 2(EX)Y − 2(EY )Y + 2(EX)(EY )
)

= EX2 + EY 2 + (EX)2 + (EY )2 + 2(EX)(EY )

− 2(EX)2 − 2(EX)(EY )

− 2(EX)(EY )− 2(EY )2 + 2(EX)(EY )

= EX2 − EX2 + EY 2 − EY 2

= varX + varY.
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Exercise 2.5.11

Write AX = E|X − EX| and BX = E(X − EX)4

(i) Both carry over since

(X + a)− E(X + a) = X − EX,
so A(X + a) = AX and B(X + a) = BX.

(ii) Similar formulae.

AaX = E|aX − aEX| = E|a||X − EX| = |a|AX.
BaX = E(aX − aEX)4 = Ea4(X − EX)4 = |a|BX.

(iii) There do not seem to be appropriate formulae.

(iv) No direct carry over. If Pr(X = 2) = 1/3, Pr(X = −1) = 2/3,
Pr(Y = 1) = Pr(Y = −1) = 1/2 and X and Y are independent then

Pr(X + Y = 3) = 1/6, Pr(X + Y = 1) = 1/6, Pr(X + Y = 0) = 1/3

Pr(X + Y = −2) = 1/3

We have EX = EY = 0, so E(X + Y ) = 0, and

AX = E|X| = 2× 1/3 + 1× 2/3 = 4/3

AY = E|Y | = 2× 1/2 = 1

and

A(X + Y ) = E|X + Y | = 3× 1/6 + 1× 1/6 + 0× 1/3 + 2× 1/3

= 4/3 6= AX + AY

BX = EX4 = 16× 1/3 + 1× 2/3 = 6

BY = EY 4 = 2× 1/2 = 1

and

B(X + Y ) = E(X + Y )4

= 81× 1/6 + 1× 1/6 + 0× 1/3 + 4× 1/3

= 89/6 6= BX + BY.
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Exercise 2.5.12

Use induction or direct calculation. Let aj = EXj and set Yj =
Xj − aj. The Yj are independent and EYj = 0. Thus

var(
n∑
j=1

Xj) = var

(
n∑
j=1

Xj −
n∑
j=1

aj

)
)

= var

(
n∑
j=1

Yj

)

= E

(
n∑
j=1

Yj

)2

= E

(
n∑
j=1

Y 2
j + 2

∑
1≤j<i≤n

YiYj

)

=
n∑
j=1

EY 2
j + 2

∑
1≤j<i≤n

E(YiYj)

=
n∑
j=1

EY 2
j + 2

∑
1≤j<i≤n

EYiEYj

=
n∑
j=1

E varYj + 2
∑

1≤j<i≤n

0 =
n∑
j=1

E varXj



87

Exercise 2.5.14

Set
Z = (Y1 + Y2 + · · ·+ Yn)− (µ1 + µ2 + · · ·+ µn)

Then

EZ = (EY1 − µ1) + (EY2 − µ2) + · · ·+ (EYn − µn) = 0

and

varZ = var(Y1 + Y2 + · · ·+ Yn) = varY1 + varY2 + · · ·+ varYn ≤ nσ2.

Thus by Tchebychev’s inequality

Pr(|Z| ≥ n1/2a) ≤ varZ

(n1/2a)2
≤ σ2

a2

and this is the required inequality.
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Exercise 2.5.15

Set Zj = Yj − EYj. Then EZj = 0, varZj = varYj ≤ σ2 and
Zj ≤ Yj − µ. Thus

Pr
(
Y1 + Y2 + · · ·+ Yn > (1− c)nµ

)
= Pr

(
(Y1 − µ) + (Y2 − µ) + · · ·+ (Yn − µ) > −cnµ

)
≥ Pr

(
Z1 + Z2 + · · ·+ Zn > −cnµ

)
= 1− Pr

(
Z1 + Z2 + · · ·+ Zn) ≤ −cnµ

)
≥ 1− Pr

(
|Z1 + Z2 + · · ·+ Zn| ≥ cnµ

)
≥ 1− nσ2

(cnµ)2
= 1− c2σ2

nµ2
≥ 1− b

whenever

n ≥ bc2σ2

µ2
.

So take

N = 1 + integer part of
bc2σ2

µ2

If we take a long series of similar bets with return greater than a
certain proportion of our stake then with high probability the average
return over a long series of bets will not be much smaller than that
proportion.
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Exercise 2.5.17

Let Ω = {0, 1}n with

Pr(a) =
n∏
j=1

(1− 2−j)1−aj2−jaj .

and
Xj(a) = aj2

j.



90

Exercise 2.5.18

(i) EXj = p× 1 + (1− p)× 0 = p and EX2
j = EXj = p so

varXj = (EXj)
2 − EX2

j = p− p2 = p(1− p).
Since the Xj are independent

var(X1 +X2 + · · ·+Xn) = np(1− p).

(ii) Completing the square

p(1− p) = p− p2 = 1
4
− (p− 1

2
)2 ≤ 1

4

with equality if and only if p = 1
2
.

(iii) We thus have, using Tchebychev’s inequality,

Pr(|X̄ − p| ≥ a)

= Pr
(
|X1 +X2 + · · ·+Xn

− EX1 − EX2 + · · ·+ EXn| ≥ na
)

≤ np(1− p)
(na)2

=
p(1− p)
na2

≤ 1

4a2

(iv) Set a = 1/10, n = 1000 in (iii).

(v) We must take n = 4000.
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Exercise 2.5.19

(i) Observe that

0 ≤
m∑
r=1

(pr −m−1)2 =
m∑
r=1

(p2
r − 2m−1pr +m−2)

=
m∑
r=1

p2
r − 2

m∑
r=1

pr +m−1 =
m∑
r=1

p2
r −m−1

with equality only if pr = m−1 for each r.

(ii) If you choose the jth grotto

Z =
n∑
k=1

Xjk

= number others at jth grotto

= number others at your grotto

as required.

Since Y and Xjk are independent

EYjXjk = EY EXjk = p2
j

and so

EZ = E
m∑
j=1

n∑
k=1

YjXjk

=
m∑
j=1

n∑
k=1

EYjXjk =
m∑
j=1

np2
j

= n

m∑
j=1

p2
j .

By part (i)

EZ = n

m∑
j=1

p2
j ≥

n

m

with equality only if pr = m−1 for each r, which is the desired result.

If m > 1 the expected number of hermits at your grotto including
yourself is

1 + EZ ≥ 1 +
n

m
>
n+ 1

m
the average number of hermits per grotto. You are more likely to choose
a popular grotto and popular grottos are more likely to have crowds of
hermits.
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Exercise 2.5.20

(i) Observe that Xj = 1 if and only if exactly one child at the jth
desk has the sniffles at the beginning of the day. Thus

Pr(Xj = 1) = 2p(1− p), Pr(Xj = 0) = 1− 2p(1− p).

Thus

EXj = EX2
j = 2p(1− p)

and

varXj = EX2
j − (EXj)

2

= 2p(1− p)
(
1− 2p(1− p)

)
= 2p(1− p)(1− 2p+ 2p2).

It follows that

EX =
n∑
j=1

EXj = 2np(1− p)

and, since the Xj are independent,

varX =
n∑
j=1

varXj = np(1− p)(1− 2p+ 2p2).

Since

p(1− p) = p− p2 = 1
4
− (p− 1

2
)2

it follows that µp,n takes its largest value when p = 1/2.

(ii) Observe that so

Pr(Y1 = 1) = Pr(exactly one of the two children starts with sniffles)

= 2
k

2n
× 2n− k

2n− 1
=
k(2n− k)

n(2n− 1)

and

EY1 = EY 2
1 = Pr(Y1 = 1) =

k(2n− k)

n(2n− 1)

Thus using symmetry

EY =
n∑
j=1

EYj = nEY1 =
k(2n− k)

2n− 1

Next observe that Y1Y2 takes the values 0 and 1 and that Y1Y2 = 1
if and only if exactly one child at each of the two desks starts with the
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sniffles. Thus

EY1Y2 = Pr(Y1Y2 = 1)

= 4× k(2n− k)

2n(2n− 1)
× (k − 1)(2n− k − 1)

(2n− 2)(2n− 3)

=
k(k − 1)(2n− k)(2n− k − 1)

n(n− 1)(2n− 1)(2n− 3)

Now, using symmetry,

EY 2 = E

(
n∑
j=1

Yj

)2

= E

(∑
j

Y 2
j +

∑
i 6=j

YiYj

)
=
∑
j

EY 2
j +

∑
i 6=j

EYiYj

= nEY 2
1 + n(n− 1)EYiYj

=
2k(2n− k)

2n− 1
+
k(k − 1)(2n− k)(2n− k − 1)

(2n− 1)(2n− 3)

Thus

varY = EY 2 − (EY )2

=
2k(2n− k)

2n− 1
+
k(k − 1)(2n− k)(2n− k − 1)

(2n− 1)(2n− 3)
−
(
k(2n− k)

2n− 1

)2

=
k(2n− k)

2n− 1

(
4 +

(k − 1)(2n− k − 1)

2n− 3
− k(2n− k)

2n− 1

)
(iii) Writing p = k/2n we have

EY = n
2p(1− p)

1− (2n)−1
6= EX

so that µ̃k,n 6= µk/2n,n if 2n− 1 ≥ k ≥ 1.

On the other hand, setting pn = kn/2n, we have

µ̃kn,n
n

=
2pn(1− pn)

1− (2n)−1
→ 2p(1− p)

and
µp,n
n

= 2p(1− p)
so

µ̃kn,n
µp,n

→ 1.
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Exercise 2.6.1

n = 5 10 20 30
2−n ≈ 3.1× 10−2 9.8× 10−4 9.5× 10−7 9.3× 10−9

(11/5)n ≈ 5.1× 10 2.7× 102 7.1× 106 1.9× 1010

(11/10)n ≈ 1.6 2.5 6.7 1.7× 10
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Exercise 2.6.3

(i) Observe that Yj depends only on the jth throw and the tosses are
independent.

(ii) If Z1, Z2, . . .Zn are independent so are f(Z1), f(Z2), . . . f(Zn).

(iii) Tchebychev’s inequality.

(iv) logXn =
∑n

j=1 log Yj.

(v) Take a = δ, N > σ̃2δ−2ε−1.

(vi) If we take δ = log k, then∣∣∣∣ logXn

n
− µ̃

∣∣∣∣ < δ ⇔ µ̃− δ < logXn

n
< µ̃+ δ

⇔ log(k−1L) <
logXn

n
< log(kL)

⇔ (k−1L)n < Xn < (kL)n

and the result follows.
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Exercise 2.6.5

(i) Since tB is a strict maximum for the function

f(t) = p log
(
1 + (u− 1)t)

)
+ (1− p) log(1− t)

Choose δ > 0 with

f(tB)− 3δ > f(tA), f(tB).

By Theorem 2.6.2, there exists an N such that

Pr

(∣∣∣∣ logXn

n
− f(tA)

∣∣∣∣ ≥ δ

)
< ε/3

Pr

(∣∣∣∣ logXn

n
− f(tB))

∣∣∣∣ ≥ δ

)
< ε/3

Pr

(∣∣∣∣ logXn

n
− f(tC))

∣∣∣∣ ≥ δ

)
< ε/3

for all n ≥ N . Thus

Pr(Xn, Zn < Yn) = Pr(logXn, logZn < log Yn)

≥ Pr

(∣∣∣∣ logXn

n
− f(tA)

∣∣∣∣ , ∣∣∣∣ log Yn
n
− f(tB))

∣∣∣∣ ,∣∣∣∣ logZn
n
− f(tC)

∣∣∣∣ ≤ δ

)
≤ 1− Pr

(∣∣∣∣ logXn

n
− f(tA)

∣∣∣∣ ≥ δ

)
− Pr

(∣∣∣∣ log Yn
n
− f(tB)

∣∣∣∣ ≥ δ

)
− Pr

(∣∣∣∣ logZn
n
− f(tC)

∣∣∣∣ ≤ δ

)
> 1− ε.

[Thanks to Nigel White for corrections.)

(ii) Since f is strictly increasing on [0, tB] we can find a δ > 0 such
that f(tA) > 2δ. We can find an N such that, if n ≥ N

Pr

(∣∣∣∣ logXn

n
− f(tB)

∣∣∣∣ ≥ δ

)
< ε

and so

Pr(Xn > 1) ≥ 1− Pr

(∣∣∣∣ logXn

n
− f(tB)

∣∣∣∣ ≥ δ

)
< ε.

(iii) Observe that f is strictly decreasing (and continuous) on [tB, 1)
with f(t)→ −∞ as t→ 1−. Since tB > 0 there is a tD with 1 > tD >
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tB such that

f(t)


> 0 for tB ≤ t < tD,

= 0 if t = tD,

< 0 for tD ≤ t < 1.

The stated result follows using the arguments of (ii).
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Exercise 2.6.6

A Kelly bettor never bets with u ≤ 1 so u− 1 > 0 and we have

pu− 1

u− 1
≤ pu− p

u− 1
= p.
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Exercise 2.6.7

We have

t =
(11/10)− 1

(11/5)− 1
=

1

12
.

With this choice

Pr(Yj = .9) = Pr(Yj = .1.12) = 1/2

µ̃ = E log Yj ≈ 0.00419

σ̃2 = var(log Yj) = E(log Yj)
2(E log Yj)

2 ≈ 0.00831

Thus

E
175∑
j=1

log Yj ≈ log 2.

Rest of calculation needs redoing so continue at your own risk.

If we take n = 500 and try our Tchebychev estimate we get

Pr (|log Y1 + log Y2 + · · ·+ log Y500 − 1.99| ≥ 1.3) ≤ 500× σ̃2

1.32
≈ 3.5

which tells us nothing.

If we take n = 5000 and try our Tchebychev estimate we get

Pr (|log Y1 + log Y2 + · · ·+ log Y5000 − 19.9| ≥ 19) ≤ 5000× σ̃2

192
≈ 0.16.

Thus

log Y1 + log Y2 + · · ·+ log Y5000 − 19.9 > 19

and so

log Y1 + log Y2 + · · ·+ log Y5000 > log 2

with probability at least .74. In fact the situation is rather better than
this but Exercises 2.6.1 and 2.6.7 show that it is hard for individuals
to make a living by gambling at only slightly favourable odds.
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(ii) We have

µ̃ = E log Y1

=
1

2
log
(
tu+ (1− t)

)
+

1

2
log(1− t)

=
1

2

(
log
(
1 + (u− 1)t

)
+ log(1− t)

)
=

1

2

(
log
(
1 + (u− 1)t

)
+ log(1− t)

)
=

1

2

(
(u− 1)t− (u− 1)2t2

2
− t− t2

2
+ . . .

)
=

1

2

(
(u− 2)t− (u− 1)2t2

2
− t2

2
+ . . .

)
=

1

2

(
2(u− 1)t2 − (u− 1)2t2

2
− t2

2

)
=

1

2
(u− 1

2
(u− 2)2)t2 + . . .

so µ̃ behaves like t2 for small t.

Also

EY 2
1 =

1

2

(
log
(
tu+ (1− t)

))
+

1

2

(
log
(
tu+ (1− t)

))
=

1

2

((
(u− 1)t

)2
+ t2 + . . .

)
=
u2 − 2u+ 2

2
t2

so EY 2
1 and thus σ̃2 behave like t2 and when t is small the the standard

deviation is very much bigger than the difference of the mean from zero.
It is going to take a very large number of throws for the law of large
numbers in our form (or indeed in any form) to give us any certainty.
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Exercise 2.6.8

Kelly suggests gambling 4/5 of your fortune at each go.

n = 20 19 18 17 16 15 14
probability .122 .270 .285 .095 .045 .015 .004
(i) gives 3325.3 1108.4 369.5 123.2 41.1 13.7 4.6
(ii) gives 127482.3 14164.7 1573.9 174.9 19.4 2.2 .23
(iii) gives 1048576.0 0 0 0 0 0 0
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Exercise 2.6.9

Can write out more or less generally. The following is on the less
general side.

Let T < 1. Suppose that we are presented with a series of indepen-
dent bets with probability pj of success and our jth bet has payout
ratio uj < U with

pjuj − 1

uj − 1
< T

] Suppose we start with ! we bet a proportion tj of our fortune on each
go with tj < T . Then our fortune satisfies X0 = 1 and

Xj+1 =

{
Xj(tju+ (1− tj)) if the jth throw is heads,

Xj(1− t) if the jth throw is tails.

We set

Yj+1 =
Xj+1

Xj

=

{
tjuj + (1− tj) if the jth throw is heads,

1− tj if the jth throw is tails.

Observe that

var log Yj ≤ (log(1− T ))2 + (log T + logU)2

so we may apply Tchebychev’s theorem to tell us that when n is very
large the probability that

logXn

n
=

log Y1 + log Y2 + · · ·+ log Yn
n

differs greatly from

E log Y1 + E log Y2 + · · ·+ E log Yn
n

is small.

Since maximising n−1 logXn is equivalent to maximising Xn, I wish
to maximise E log Yj and so follow the Kelly criterion.

More generally (with much the same proof) offered the a sequence
of bets which multiply my fortune by Yj or Zj on the jth go, then
provided

var log Yj, var logZj < K

and
E log Yj ≥ kE logZj

for some fixed K and some fixed k > 1, I should choose Yj to maximise
my fortune (in the long run with high probability).
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Exercise 2.6.10

Write Zj = 1 if the jth throw is heads, Zj = 0 if tails. Observe that

EZj = p, varZj = p(1− p) = 1
4
− (p− 1

2
)2 ≤ 1

4
.

(i) If pu < 1, then using Tchebychev’s inequality,

Pr(Xn(t) < Xn(0)) = Pr

(
n∑
j=1

tuZj − tn < 0

)

= Pr

(
n∑
j=1

Zj < 0

)

≥ Pr

(∣∣∣∣∣
n∑
j=1

(Zj − EZj)

)
< np

)

≥ 1− 1

n2p2
var

(
n∑
j=1

Zj

)

≥ 1− 1

4np2
≥ 1− ε

for n > 4−1ε−1p−2.

(ii) If pu > 1, then using Tchebychev’s inequality,

Pr(Xn(t) < Xn(1)) = Pr

(
n∑
j=1

u(1− t)Zj − (1− t)n > 0

)

= Pr

(
n∑
j=1

uZj − n > 0

)

≥ Pr

(∣∣∣∣∣
n∑
j=1

(Zj − EZj)

)
≤ n(p− u−1)

)

≥ 1− 1

n2(p− u−1)2
var

(
n∑
j=1

Zj

)

≥ 1− 1

np2
≥ 1− ε

for n > 4−1ε−1(p− u−1)−2.
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Exercise 2.7.1

(i) If the first horse wins, she gets back

u2

u1 + u2

× u1 =
u1u2

u1 + u2

=
1

u−1
1 + u−1

2

= K.

A similar calculation works for the second horse.

(ii) If the jth horse wins X = pjuj for the Kelly bettor. Thus

E logX = p1 log p1u1 + p2 log p2u2

= p1 log p2 + p2 log p2 + p1 log u1 + p2 log u2.

If we set t = K−1u−1
1 , we have u−1

2 = K−1(1− t) and

F (u1, u2) = f(t)

with

f(t) = logK + p1 log p2 + p2 log p2 − p1 log t− p2 log(1− t).
Since

f ′(t) = −p1

t
+

p2

1− t
=

t− p1

t(1− t)
f(t) attains a strict maximum for 0 < t < 1 when t = p1.

Thus
E logX = F (u1, u2) ≥ F (Kp1, Kp2) = logK

with equality only when uj = Kp−1
j .

(iii) Without loss of generality, suppose u1p1 ≥ u2p2. For the maxi-
mum expectation bettor,

EX = u1p1

=
u1

u1 + u2

× u1p1 +
u2

u1 + u2

× u1p1

≥ u1

u1 + u2

× u2p2 +
u2

u1 + u2

× u1p1

=
u1u2

u1 + u2

= K

with equality only when uj = Kp−1
j .
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Exercise 2.7.2

(i) We have

g′(x) =
d

dx

(
pi log

(
(uisi + sn+1) + uix

)
− pj log

(
(ujsi + sn+1) + ujx

))
piui

(uisi + sn+1) + uix
− pjuj

(ujsj + sn+1) + ujx

If si, sj 6= 0 we must have g′(0) = 0 so

piui
uisi + sn+1

=
pjuj

ujsj + sn+1

,

If sj = 0 we must have sn+1 6= 0 (otherwise we lose our entire fortune)
and g′(0) ≥ 0 so

piui
uisi + sn+1

>
pjuj
sn+1

.

If si = 0 and sj > 0 we must have g′(0) < 0 which is impossible.
Thus if si = 0 we have sj = 0.

(ii) Let

h(x) = f(s1 + x, s2, . . . , sn+1 − x)

Then

h′(x)

=
d

dx

p1 log
(
(u1 − 1)x+ u1s1 + sn+1

)
+

n∑
j=2

pj log(ujsj + sn+1 − x)


=

p1(u1 − 1)

(u1 − 1)x+ u1s1 + sn+1
−

n∑
j=2

pj
ujsj + sn+1 − x

so

h′(0) =
p1(u1 − 1)

u1s1 + sn+1

−
n∑
j=2

pj
ujsj + sn+1

If s1 6= 0 and sn+1 6= 0 then h′(0) = 0 and we have

(C)
p1

u1s1 + sn+1

+
p2

u2s2 + sn+1

+ · · ·+ pn
unsn + sn+1

=
p1u1

u1s1 + sn+1

.

If sn+1 = 0 we must have h′(0) ≥ 0 and so

(B)
1

u1

+
1

u2

+ · · ·+ 1

un
≤ 1 and sn+1 = 0.
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If s1 = 0 (so sj = 0 for 1 ≤ j ≤ n and sn+1 = 1) by our earlier
results, we must have h′(0) ≤ 0 so

n∑
j=1

pj ≥ p1u1

ie p1u1 ≤ 1 (case A).

(iii) In case (A) we have sj = 0 for 1 ≤ j ≤ n so we do not bet. In
case (B) sn+1 so we bet everything and by (i)

pj
sj

=
pi
si

for all 1 ≤ i, j ≤ n so si = αpi for some α. Summing, α = 1 and so
si = αpi

(iv) In case (C) parts (i) and (ii) tells us that that there is an m with
1 ≤ m < n and a k > 0 such that

pjuj
ujsj + sn+1

= k for 1 ≤ j ≤ m,

sj = 0,
pjuj
sn+1

≤ k for m+ 1 ≤ j ≤ n

and
p1

u1s1 + sn+1

+
p2

u2s2 + sn+1

+ · · ·+ pn
unsn + sn+1

= k.

Thus
pjuj = kujsj + ksn+1

and
sj = k−1pj − sn+1u

−1
j

for 1 ≤ j ≤ m, sj = 0.

The equation
p1

u1s1 + sn+1

+
p2

u2s2 + sn+1

+ · · ·+ pn
unsn + sn+1

= k

yields
k

u1

+
k

u2

+ · · ·+ k

um
+
pm+1

sn+1

+ · · ·+ pn
sn+1

= k

so

sn+1 = k−1 1− p
1− T

where p = p1 + p2 + · · ·+ pm and

T =
1

u1

+
1

u2

+ · · ·+ 1

um
.

But
s1 + s2 + · · ·+ sn+1 = 1
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so
k−1p− Tsn+1 + sn+1 = 1

and k = 1. Hence

sj =

{
pj − sn+1

uj
for 1 ≤ j ≤ m,

0 for m+ 1 ≤ j ≤ n

and

sn+1 =
1− p
1− T

.
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Exercise 3.1.1

(i) We have
EX = 1

2
× 1

2
+ 1

2
× 2 = 5

4

and
E log Y = −1

2
log 2 + 1

2
log 2 = 0.

(ii) We have
EX = 1

2
× 0 + 1

2
× 11

4
= 11

8
> 5

4

and
E log Y = −1

2
log 1 + 1

2
log 5

4
= 0 = 1

2
log 5

4
> 0.
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Exercise 3.2.1

(1−x)(1 + x+ x2 + · · ·+ xm)

= (1 + x+ x2 + · · ·+ xm)− (x+ x2 + x3 + · · ·+ xm+1)

= 1− xm+1

so provided x 6= 1 we can divide by x− 1 to get

1 + x+ x2 + · · ·+ xm =
1− xm+1

1− x
.
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Exercise 3.2.2

If I start with x, I will have k(x−1) just before the second withdrawal
so I need

k(x− 1) = x

ie

x =
k

k − 1
.

The working is reversible.
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Exercise 3.2.3

l =
k

k − p
so kl − pl = k and

p = k
l − 1

l

The figures given suggest

p ≈ 1.04× 11

12
≈ .95.
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Exercise 3.2.4

If you want to draw a fixed income for the rest of your life and leave
your present fortune to your children you can only enjoy an income
a/(a+ b) times as much as if you bought an annuity and left nothing.

(In C.S. Forster’s The African Queen the heroine’s father leaves her
nothing because he has put his little money into an annuity.)

If b is large, then there is a high chance of your dying soon so the
annuity company can be generous. If b is small, the annuity company
expects to be paying out for many years and will pay close to bank
interest.

Perhaps a = b = 1/25. These figures are plucked out of the air but
it is easy to find bank interest rates and not hard to find annuity rates.
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Exercise 3.2.5

E cost =
N−1∑
j=0

(j + 1) Pr(die in j-th year)

=
N−1∑
j=0

(j + 1)/N = N−1

N∑
j=1

j

= (N + 1)/2
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Exercise 3.2.6

(i) We have, by differentiation

1 + 2x+ · · ·+mxm−1 =
1− xm+1

(1− x)2
− (m+ 1)xm

1− x

so differentiating again

(1× 2)+(2× 3)x+ (3× 4)x2 · · ·+m(m− 1)xm−2

=
d

dx

(
1− xm+1

(1− x)2
− (m+ 1)xm

1− x

)
= 2

1− xm+1

(1− x)3
− 2

(m+ 1)xm

(1− x)2
− m(m+ 1)xm

1− x
.

(ii) (Corrected by Nigel White.) We have

12 + 22x+ 32x2 · · ·+ (m− 1)2xm−2

= (1× 2) + (2× 3)x+ (3× 4)x2 · · ·+m(m− 1)xm−2

− 1− 2x− · · · − (m− 1)xm−2

= 2
1− xm+1

(1− x)3
− 2

(m+ 1)xm

(1− x)2
− m(m+ 1)xm

1− x
+

1− xm

(1− x)2
− mxm−1

1− x

= 2
1− xm+1

(1− x)3
− (2m+ 1)xm + 1

(1− x)2
− m(mx− x+ 1))xm−1 − 1

1− x
.

(iii) The probability that there is a payout at the beginning of year
j is

1− Pr(both dead at beginning of j) = 1− j2/N2

= N−2(N2 − j(j − 1)− j)

so the expected value of the annuity is

N−1∑
j=0

N−2(N2 − j(j − 1)− j)

= N +N−2

N−1∑
j=0

(
(j + 1)j(j − 1)− j(j − 1)(j − 2)

)
/3

−
(
(j + 1)j − j(j − 1)

)
/2

= N −N−1(N + 1)(N − 1)/3−N−1(N + 1)/2

= N − 2N2 − 3N + 1

6N
.



115

If k 6= 1, the expected value of the annuity is
N−1∑
j=0

N−2(N2 − j2k−1)

which can be computed by (ii).
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Exercise 3.2.7

(i) We have

Ar = 1 + k−1qr,r+1 + k−2qr,r+2 + · · ·+ k−Nqr,N

= 1 + k−1pr + k−2prqr+1,r+2 + · · ·+ kr−Nprqr+1,N

= 1 + k−1pr(1 + k−1qr+1,r+2 + · · ·+ kr+1−Nqr+1,N)

= 1 + prk
−1Ar+1

If I want to pay an annuity of 1 unit a year to someone of age r, I can
pay them 1 now and bank k−1prk

−1Ar+1. At the end of the year with
probability pr they will still be alive and I will have prAr+1 to buy an
annuity then.

(ii) Since

qr,s = prpr+1 . . . pr+s−1, and qr,s+1 = pr+1 . . . pr+s

we have
pr+s = qr,s+1/qr,s.

for all 0 ≤ s ≤ N − 1. Thus

ps = q0,s+1/q0,s.

for 0 ≤ s ≤ N − 1.

q0,s is the probability that a newborn will live at least s years. No
one lives longer than N .
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Exercise 3.2.8

The probability that at least one of the pair will be alive at the
beginning of the uth year is

1− Pr(both dead at beginning of jth year)

= 1− (1− qr,r+u)(1− qt,t+u)
= qr,r+u + qt,t+u − qr,r+uqt,t+u

so the expected present value of the joint annuity is
N∑
u=)

k−j(qr,r+u + qt,t+u − qr,r+uqt,t+u)

where qi,j = 0 if j ≥ N .
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Exercise 3.3.1

We have

f ′(t) =
r′(t)

s(t)
− r(t)s′(t)

s(t)2

so
f ′(t)

f(t)
=
r′(t)

r(t)
− s′(t)

s(t)
.

Since
r′(t)

r(t)
− s′(t)

s(t)
= p− pq s(t)

r(t)
,

we get
f ′(t)

f(t)
= p− pq

f(t)
and

f ′(t) = pf(t)− pq
whence

f ′(t)

f(t)− q
= p.

It follows that
d

dt

(
log(f(t)− q)− pt

)
=

f ′(t)

f(t)− q
− p = 0

and so
log(f(t)− q)− pt = A

for some constant A.

Sine r(0) = s(0), f(0) = 1 and, setting t = 0 in the last equation of
the previous paragraph, A = log(1− q). Thus

log(f(t)− q)− pt = pt+ log(1− q)
and applying exp to both sides

f(t)− q = (1− q)ept

that is to say
r(t)

s(t)
= f(t) = q + (1− q)ept

whence

s(t) =
r(t)

q + (1− q)ept
.
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Exercise 3.3.2

One half of the population dies from A and 1/4 from B so the prob-
ability of dying from A is 1/2 and of dying from B is 1/4. However,
as stated the probability of dying from an attack of A is 1/2 and the
probability of dying from an attack of B is 1/2.

The probability of dying from an attack of smallpox, is 1/8 and that
the probability of dying from smallpox is 1/13 because, as may be seen
from Bernoulli’s table, many people die young and so may have escaped
attacks of smallpox. The probability of dying from smallpox cannot be
smaller than the probability of dying an attack of smallpox because in
order to die from smallpox you must first have an attack of smallpox.

Exercise 3.3.3∗

Exercise 3.3.4∗
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Exercise 3.3.5

As the age increases the probability that you will have had an attack
of smallpox in your life up to then increases. However, if you are
inoculated you will eventually die of something else so the number
‘saved from smallpox’ must start to decrease.
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Exercise 3.3.6

If there is no smallpox p = 0 and R(t) = r(t) so

R′(t) = −R(t)u(t)

so
R′(t)

R(t)
= −u(t).

Earlier we showed that

r′(t)

r(t)
= −u(t)− pq s(t)

r(t)

so that
R′(t)

R(t)
− r′(t)

r(t)
= pq

s(t)

r(t)
.

But in Exercise 3.3.1 we showed that

s(t)

r(t)
=

1

q + (1− q)ept
so

R′(t)

R(t)
− r′(t)

r(t)
=

pq

q + (1− q)ept
.

Now
pq

q + (1− q)ept
= p− p(1− q)ept

q + (1− q)ept
so

d

dt

(
logR(t)− log r(t)− pt+ log(q + (1− q)ept)

)
=
R′(t)

R(t)
− r′(t)

r(t)
− p+ p− p(1− q)ept

q + (1− q)ept
= 0

and
logR(t)− log r(t)− pt+ log(q + (1− q)ept) = C

where C is a constant.

Now R(0) = r(0) so setting t = 0 in the last formula of the previous
paragraph we get C = 0. Thus

logR(t)− log r(t) = pt− log(q + (1− q)ept)
and applying exp to both sides we get

R(t)

r(t)
=

ept

q + (1− q)ept
.

As t→∞
R(t)

r(t)
=

1

qe−pt + (1− q)
→ 1

1− q
.
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Suppose smallpox does not kill but with probability q colours your hair
green. When t is large almost everybody will have had smallpox and
only a proportion 1− q will not have green hair. The result is what we
expect.
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Exercise 3.4.1

If we expect that the ‘unlucky’ children would if uninoculated suffer
the same diseases (including smallpox) and die in the same proportions
as other children then we expect

D(n) ≈ D(n− 1)× B(n)

B(n− 1)
.

(If we think that the ‘unlucky’ children are more likely to die of ordinary
smallpox then this improves Bernoulli’s figures in the sense of increasing
the expected lifetime with universal inoculation.)

The number of children who would be alive at n if not inoculated at
birth but would die from inoculation must be subtracted from the size
of the population of age n calculated by assuming that inoculation is
riskless.
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Exercise 3.4.2

If someone in immune with expected lifetime u then with probability
(1 − a) they will die one year hence and with probability a they will
survive one year and their expected lifetime at the beginning of that
year will be u. Thus

u = (1− a) + a(1 + u) = 1 = au

and u = (1− a)−1.

If someone who is not immune and will not be inoculated has ex-
pected lifetime v then

(1) With probability (1− b− c) they will die one year hence.

(2) With probability b they will be alive but not immune in a year’s
time and their expected lifetime at the beginning of that year will be
v.

(3) With probability c they will be alive and immune in a year’s time
and their expected lifetime at the beginning of that year will be u.

Thus

v = (1− b− c) + b(1 + v) + c(1 + u) = 1 + bv + cu.

Thus
(1− b)v = 1 + cu

and

v =
1

1− b

(
1 +

c

1− a

)
.

(The same results can be obtained by summing appropriate geometric
series.)

If the individual is inoculated they have a probability of dying of r
otherwise their expected life time is (1 − a)−1. Thus there expected
lifetime is

1− r
1− a

so the ‘gain in expected lifetime’ is

1− r
1− a

− 1

1− b

(
1 +

c

1− a

)
.

They will have strictly positive gain if

1− r
1− a

>
1

1− b

(
1 +

c

1− a

)
.

If a child is inoculate late it runs the additional risk of dying from
smallpox until it is inoculated.
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Exercise 3.4.3

We have already estimated the probability of dying from other causes
between the ages of n− 1 and n as

pn−1 ≈
C(n)

B(n− 1)

and we have estimates for p the probability of catching smallpox in a
year and q of dying from an attack.

Thus if un is the probability that a uninoculated child of 4 will survive
to age n without catching smallpox and vn is the probability that a
uninoculated child of 4 will survive to age n having caught smallpox
at sometime

un ≈ (1− p)(1− pn−1)un−1

vn ≈ (1− pn−1)vn−1 + (1− pn−1)pqun−1

with u4 = 1, v4 = 0. The probability that a uninoculated child of 4 will
survive to age n is un + vn and its expected lifetime is approximately∑80

n=5 un + vn.

If wn is the probability that a inoculated child of 4 will survive to
age n then

wn = (1− pn−1)wn−1

and its expected lifetime is approximately
∑80

n=5 wn.

Exercise 3.4.4∗



126

Exercise 3.4.5

This must be very much a back of an envelope calculation. Suppose
we have a country with a population of 70 million an a lifetime ex-
pectancy of 70 years. This suggests a million births a year. If the birth
figure remained unaltered but smallpox became endemic and the risk
of dying from other causes remained the same then, since the death
rate for young people is presently negligible and essentially everyone
would expect to get smallpox, there would be a million cases of small-
pox a year. If the death rate was one in 14 this would give 70 thousand
deaths a year. If we took the overoptimistic assumption that modern
medicine could get this down to 1 in a hundred we would still have 10
thousand deaths a year.



127

Exercise 3.5.4

(Corrected by Nigel White.) We have f ′(t) = 1/t and f ′′(t) =
−1/t2 < 0 so f is a smooth concave function.

With probability 1/2 my fortune will be

2a− av = a(2− v)

and with probability 1/2 my fortune will be
1
2
a+ kav − av = a(1

2
+ k − v).

Thus

Ef(Y ) = g(v) =
1

2
log
(
a(2− v)

)
+

1

2
log
(
a(1

2
+ (k − 1)v)

)
.

Now

g′(v) =
1

2

(
− 1

2− v
+

k − 1
1
2

+ (k − 1)v

)
=

1

2
×

(2k − 5
2
)− 2(k − 1)v

(2− v)(1
2

+ (k − 1)v)
.

Thus, if we take

v0 =
2k − 5

2

2(k − 1)
g is strictly increasing for v < v0 and strictly decreasing for v > v0.
Thus I will buy insurance only if

v0 > 0

and I will then set v = v0.

The insurance companies expected gain is

u(k) = av0 − 1
2
kav0

=
a

8

(−4k2 + 13k − 10)

k − 1

so

u′(k) = −a
8

2k2 − 8k + 3

(k − 1)2

and the insurance company should take

k = 3/2.
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Exercise 3.5.6

(i) Let
Pr(X = x) = t, Pr(X = y) = 1− t.

Then

tf(x) + (1− t)f(y) = Ef(X) ≤ f(EX) = f
(
tx+ (1− t)y

)
for all 0 ≤ t ≤ 1.

(ii) If x < v < y and we set t = (y − v)/(y − x) then 0 < t < 1 and

tx+ (1− t)y =
(y − v)x+

(
(y − x)− (y − v)

)
y

y − x

=
(y − v)x+ (v − x)

)
y

y − x
= v.

Thus
tf(x) + (1− t)f(y) ≤ f(v) = tf(v) + (1− t)f(v)

so
t
(
f(x)− f(v)

)
≤ (1− t)

(
f(v)− f(y)

)
whence

(y − v)
(
f(x)− f(v)

)
≤ (v − x)

(
f(v)− f(y)

)
.

It follows that

(y − v)
(
f(v)− f(x)

)
≥ (v − x)

(
f(y)− f(v)

)
and

f(v)− f(x)

v − x
≥ f(y)− f(v)

y − v
.

(iii) By (ii)

f(b)− f(a)

b− a
≥ f(c)− f(b)

c− b
≥ f(d)− f(c)

d− c
.

Note that it follows that
f(a)− f(b)

a− b
≥ f(c)− f(d)

c− d
.

(iii) If |k| < (y − x)/2 we may apply (ii) to get

f(x+ k)− f(x)

k
≤ f(y + k)− f(y)

k
.

Allowing k → 0 we get
f ′(x) ≤ f ′(y)

(remember that we suppose f well behaved). Since f ′ is decreasing
f ′′(t) ≤ 0 for all t.
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Exercise 3.5.7

EX1 = 74, varX1 = 1

EX2 = 75, varX2 = 25

EX3 = 80, varX3 =
2

3
102 =

200

3
The first player never wins, the second player wins with probability 1/2
and the third with probability 1/3. I should choose the second player.
(Moral, the mean and variance do not tell you everything.)
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Exercise 3.5.8

If I am in a shop and suddenly the price of everything is doubled
but the amount of money in my purse is doubled I will make the same
choices.
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Exercise 3.5.9

(i) We use induction on n. The result is trivially true when n = 1.
Suppose it is true for n = m. Then Using Theorem 3.5.3, we have (if
tm+1 6= 1)

f(t1x1+t2x2 + · · ·+ tm+1xm+1)

= f

(
(1− tm+1)

m∑
j=1

tj
1− tm+1

xj + tm+1xm+1

)

≤ (1− tm+1)f

(
m∑
j=1

tj
1− tm+1

)
+ tm+1f(xm+1).

But
tj

1− tm+1

≥ 0 and
m∑
j=1

tj
1− tm+1

so our inductive hypothesis shows that

m∑
j=1

tj
1− tm+1

f(xj) ≤ f

(
m∑
j=1

tj
1− tm+1

xj

)
and so

f(t1x1 + t2x2 + · · ·+ tm+1xm+1) ≤ f(t1x1 + t2x2 + · · ·+ tnxm+1).

The full result now follows by induction.

(ii) Since f ′′(t) = −1/t2 we know that f is concave so

1

n
log x1 +

1

n
log x2 + · · ·+ 1

n
log xn ≤ log

(
1

n
x1 +

1

n
x2 + · · ·+ 1

n
xn

)
that is to say

log(x1x2 . . . xn)1/n ≤ log
x1 + x2 + · · ·+ xn

n

so applying exp to both sides

(x1x2 . . . xn)1/n ≤ x1 + x2 + · · ·+ xn
n

.

(iii) We have

g′(x) = xp
−1−1(1 + xp

−1

)(p−1)

so

g′′(x) = (p−1 − 1)x−2+p−1

(1 + xp
−1

)(p−1)

+ (p− 1)(p−1 − 1)x−2+2p−1

(1 + xp
−1

)p−2

< 0

so g is concave.
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Taking

xk =
bpk
apk

and tk = apk,

Jensen’s inequality

t1g(x1) + t2g(x2) + · · ·+ tng(xn) ≤ g(t1x1 + t2x2 + · · ·+ tnxn)

gives
n∑
k=1

apk

(
1 +

bk
ak

)p
≤

1 +

(
n∑
k=1

bpk

)1/p
p

which simplifies to

n∑
k=1

apk(ak + bk)
p)p ≤

1 +

(
n∑
k=1

bpk

)1/p
p

and taking pth roots we obtain the required inequality.

(iv) Take T =
(∑n

j=1 t
p
j

)1/p

and set aj = tj/T , bj = sj/T . The

inequality of (iii) the holds and, multiplying through by T , we obtain(
(t1 + s1)p+(t2 + s2)p + · · ·+ (tn + sn)p

)1/p

≤
(
tp1 + tp2 + · · ·+ tpn

)1/p
+
(
sp1 + sp2 + · · ·+ spn

)1/p
.

Thus(
|u1 + v1|p + |u2 + v2|p + · · ·+ |un + vn|p

)1/p

≤
(
(|u1|+ |v1|)p + (|u2|+ |v2|)p + · · ·+ (|un|+ |vn|p)

)1/p

≤
(
|u1|p + |u2|p + · · ·+ |un|p

)1/p
+
(
|v1|p + |v2|p + · · ·+ |vpn|

)1/p
.

|OU |+ |OV | = (u2
1 + u2

2)1/2 + (v2
1 + v2

2)1/2

= (u2
1 + u2

2)1/2 +
(
(−v1)2 + (−v2)2

)1/2

≥
(
(u1 − v1)2 + (u2 − v2)2

)1/2

= |UV |

In three dimensions

|OU |+ |OV | = (u2
1 + u2

2 + u2
3)1/2 + (v2

1 + v2
2 + v2

3)1/2

= (u2
1 + u2

2 + u2
3)1/2 +

(
(−v1)2 + (−v2)2 + (−v3)2

)1/2

≥
(
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2

)1/2

= |UV |
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(v) h′(x) = −(log x+ 1) so h′′(x) = −1/x. Thus

h(tu+ (1− t)v) ≥ th(u) + (1− t)h(v)

for 1 ≥ t ≥ 0, u, v > 0. Taking

t =
a

a+ b
, u =

x

a
, v =

y

b

this gives

−x+ y

a+ b
log

x+ y

a+ b
≥ − 1

a+ b
x log

x

a
− 1

a+ b
y log

y

b

so, multiplying by −(a+ b) we obtain

(x+ y) log
x+ y

a+ b
≤ x log

x

a
+ y log

y

b

for all a, b, x, y > 0.
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Exercise 3.5.10

It is sufficient to deal with the case a, b ≥ 0. Observe that

f(x) = −xp

defines a concave function so, by Jensen’s inequality,

f(1
2
a+ 1

2
b) ≥ 1

2
f(a) + 1

2
f(b)

so
(a+ b)p ≤ 2p−1(ap + bp)

But, if a = b = 1,

(a+ b)p = 2p−1(ap + bp) 6= 0

so cp = 2p−1 is the required constant.
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Exercise 3.5.11

Observe that piqj > 0 and
n∑
i=1

m∑
j=1

piqj =
n∑
i=1

pisum
m
j=1qj = 1× 1 = 1.

Thus by Jensen’s inequality
n∑
i=1

m∑
j=1

piqjh(tij) ≥ h

(
n∑
i=1

m∑
j=1

piqjtij

)
for all tij > 0. Setting

tij =
πij
piqj

,

we get

−
n∑
i=1

m∑
j=1

πij log
πij
piqj
≥ h(0) = 0

so I ≤ 0.

We have equality when πij = piqj. (And only then, by drawing
a diagram we see that we have strict inequality unless all the tij are
equal.)

Suppose X and Y are random variables with X taking distinct values
x1, x2, . . . , xn and Y taking distinct values y1, y2, . . . , ym. Suppose
Pr(X = xi, Y = yj) > 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

I =
n∑
i=1

m∑
j=1

Pr(X = xi, Y = yj) log
Pr(X = xi, Y = yj)

Pr(X = xi) Pr(Y = yj)

is maximised when X and Y are independent.

Exercise 4.1.1∗
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Exercise 4.1.2

If kn = 2n − 1, then

kn+1 = 2kn + 1 = 2n+1 − 2 + 1 = 2n+1 − 1.

But k1 = 1 = 21 − 1 so, by induction,

kn = 2n − 1

for all n ≥ 1.
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Exercise 4.1.3

With 256 disks at one operation per Planck time it will take at least

(2256 − 1)× 5× 10−44 × 1

31600000
≈ 1.8× 1026

years. She should stick to old fashioned ways.
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Exercise 4.1.4

Let P (n) be the statement that, if we follow the rules we will move
a tower of size clockwise one place if n is odd and anticlockwise one
place if n is even taking 2n − 1 moves.

By inspection P (1) is true.

Now suppose P (n) is true. By the inductive hypothesis the first
2n+1 − 1 moves will move the top n pieces one place clockwise if n is
odd, anticlockwise if n is even. The largest piece is now exposed and
moved to the empty peg anticlockwise if n is odd, clockwise if n is even
by the 2n+1th move. The remaining 2n moves take the top n pieces
one place clockwise if n is odd, anticlockwise if n is even so they form
a tower over the largest piece. Thus P (n+ 1) is true.

The desired result follows by induction.
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Exercise 4.2.2

(i) If d divides a and b then a = k × d, b = l × d so a = k × d,
−b = (−l) × d. Thus d is no greater than the s greatest common
divisor d′ of a and −b. Similarly d′ ≤ d so d = d′.

(ii) 182 = 2 × 7 × 13 and 140 = 2 × 5 × 7 so the greatest common
divisor is 2× 7 = 14.

(iii) 815 055 = 3× 5× 67× 811, and 208 427 = 257× 811 all factors
being prime. (It is not hard for me to multiply primes together. It is
much harder for you to find them.) The greatest common divisor is
811.
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Exercise 4.2.4

If c divides a and b then a = kc, b = lc and using the notation of
Lemma 4.2.3,

d = ma+ nb = mkc+ nlc = (mk + nl)c

so c divides d.
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Exercise 4.2.5

(i) If an 6= 0

n∑
j=0

ajx
j = an

(
xn +

n−1∑
j=0

aj
an
xj

)
.

(ii) Long division.

The result is true when P has degree 0. (If n = 0 then K = P/Q,
R = 0; if n ≥ 1 then K = 0, R = P .)

Suppose it is true whenever P has degree m or less. If P has degree
m+ 1 either m+ 1 < n and K = 0, R = P or

P (t) = bm+1−nt
m+1−nQ(t) + S(t)

where bm+1−n is the value of the leading coefficient of P divided by the
value of the leading coefficient of Q and S has degree at most m. By
the inductive hypothesis,

S(t) = L(t)Q(t) +R(t)

where R has degree strictly less than n and so

P (t) =
(
bm+1−nt

m+1−n + L(t)
)
Q(t) +R(t).

The required result is thus true when P has degree m+ 1 or less.

The conclusion follows by induction.

(iii) Since 1 divides P and Q and no polynomial of degree strictly
higher than the degree of P divides P there must be a monic polynomial
S of highest degree dividing P and Q.

(iv) Consider the collection of polynomials U(x)P (x) + V (x)Q(x)
with U and V not both zero. This must contain a polynomial of lowest
degree and so a monic polynomial T of the same degree. Since S is a
factor of P and Q, S divides T .

Now P = KT + R where R has degree less than T . Thus (for
appropriate U and V )

R = P −KT = P −K(UP + V Q) = (1−KU)P + (−KV )Q

and so R = 0. Thus T divides P and similarly T divides Q. Thus The
degree of T is less than or equal to the degree of S and T = S. (Thus
T and S must be unique.)

(v) We call S the highest common factor of P and Q. Since

S(x) = U(x)P (x) + V (x)Q(x)

it follows that if W = AS we have W = (US)P + (UV )Q.
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If W = ŨP + Ṽ Q then since S divides P and Q, S divides W .
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Exercise 4.2.6

(i) We want
1 = 13u+ 10v

and a little experimentation (or thought about last digits) suggests
u = 7, v = −9.

(ii) Rather you than me.
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Exercise 4.2.9

|a|, |b| ≤ 10300 = 1000100 < 21000.

Now apply Lemma 4.2.8.

Exercise 4.2.11∗
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Exercise 4.2.12

Suppose they start with n coconuts and the captain’s initial share
is n1, the First Mate’s share n2 and so on down to the cabin boy who
gets n5. Let the the number of remaining coconuts be 5m. We have

n = 5n1 + 1

4n1 = 5n2 + 1

4n2 = 5n3 + 1

4n3 = 5n4 + 1

4n4 = 5n5 + 1

4n5 = 5m

Thus

45n = 5× 45n1 + 45

= 5× 44(5n2 + 1) + 45 = 52 × 44n2 + 5× 44 + 45

...

= 56m+ +4× 54 + · · ·+ 45)

= 56m+
56 − 46

5− 4
− 55 = 56m+ 56 − 46 − 55

Thus

F 1024n = 15625m+ 8404.

Let us apply Euclid’s algorithm to 15625 and 1024 We have

15625 = 15× 1024 + 2651024 = 4× 265− 36

265 = 7× 36 = 13

36 = 3× 13− 3

13 = 4× 3 + 1.

Thus

1 = 13− 4× 3 = 13− 4× (3× 13− 36) = 4× 36− 11× 13

= 4× 36− 11× (265− 7× 36) = 81× 36− 11× 265

= 81× (4× 265− 1024)− 11× 265 = 313× 265− 81× 1024

= 313× (15625− 15× 1024)− 81× 1024

= 313× 15625− 4776× 1024.

Thus one solution of F is

n = −8404× 4776 = −40137504, m = −8404× 313 = −2630452.
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But since 1024 = 45 and 15625 = 56 are coprime we know that the
solutions of F are given by

n = −40137504 + 15625k

m = −2630452 + 1024k

with k integer. Since 2630452 = 2569×1024−204 we see that m = 204
gives the smallest possible positive value of m corresponding to the
smallest positive value of n which is 3121.



147

Exercise 4.2.13

This is really a repetition of known results. If d divides a and b then it
must divide the highest common factor. But, by Lemma 4.2.10 (ii) the
highest common factor must divide d. Thus |d| is the highest common
factor.
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Exercise 4.2.14

(i) The set of strictly positive integers divisible by a and b contains
|ab| so is non-empty and has a least member.

(ii) Choose the integer v so that

0 ≤ n+ ve < e.

Now a and b divide n + ve so, by definition of e, n + ve = 0. Thus
n = (−v)e and e divides n.

(iii) Observe that
ab

d
= a

b

d
= b

a

d
so a and b divide e. Thus ab/d ≥ e.

By part (ii), e divides ab so ab/e is an integer with

a =
ab

e

e

b
, b =

ab

e

e

a
Thus ab/e ≤ d so ab ≤ de ≤ ab and ab = de.

If a and b are not necessarily positive repeat the argument with |a|
and |b|.

(iv) We have

22015 = 4× 5291 + 851

5291 = 6× 851 + 185

851 = 5× 185− 74

185 = 2× 74 + 37

74 = 2× 37

Thus 22 015 and 5291 have highest common divisor 37 and lowest com-
mon multiple

22015× 5291

37
= 3148145.
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Exercise 4.2.15

Given polynomials P1, P2 with the degree ∂P1 no larger than ∂P2

then either
P1 = Q1P2

for some polynomial Q and (after multiplication by a constant to make
it monic) P2 is the required polynomial or

P1 = Q1P2 + P3

with ∂P3 < ∂P2 but P3 6= 0. We observe that if S divides P2 and P3

then S divides P1 and P2 and conversely so (if gcd(A,B) is the monic
polynomial of highest degree dividing A and B)

gcd(P1, P2) = gcd(P2, P3).

Further if
A2P2 + A3P3 = B

then
A3P1 + (A2 −Q1)P2 = B.

We can repeat the process but since the degree of at least one of
the polynomial pairs decreases at each step the process must terminate
giving us S = gcd(P1, P2). Reversing the process as indicated computes
U and V such that

S(x) = U(x)P (x) + V (x)Q(x).

Exercise 4.3.1∗
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Exercise 4.3.2

(i) In 279 months a certain number of years and 3 months will have
passed. Count 3 months forward.

(ii) Every breakfast is 2 hours earlier so the 200th breakfast is 400
hours earlier, that is to say a certain number of days and 16 hours
earlier which is to say a certain other number of days and 8 hours
later. She will breakfast at 4 am.

(iii) Odd.
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Exercise 4.3.5

Observe that
10 ≡ 1 mod 9

so
10r ≡ 1r ≡ 1 mod 9

an10n + an−110n−1 + · · ·+ a0 ≡ an + an−1 + · · ·+ a0

and(
an10n + an−110n−1 + · · ·+ a0

)
×
(
bn10n + bn−110n−1 + · · ·+ b0

)
≡ (an + an−1 + · · ·+ a0)× (bn + bn−1 + · · ·+ b0).

(ii) Casting out nines produces an equation involving smaller integers
which remains true modulo 9. After a finite number of steps we have
integers between 0 and 8 which must be equal.

Reverse obviously false

18→ 9→ 0

and
3× 9→ 3× 0 = 0

but 18 6= 3.

Since(
an10n + an−110n−1 + · · ·+ a0

)
×
(
bn10n + bn−110n−1 + · · ·+ b0

)
≡ (an + an−1 + · · ·+ a0)× (bn + bn−1 + · · ·+ b0).

and(
an10n + an−110n−1 + · · ·+ a0

)
×
(
bn10n + bn−110n−1 + · · ·+ b0

)
≡ (an + an−1 + · · ·+ a0)× (bn + bn−1 + · · ·+ b0).

modulo 9 the method will also work for addition and subtraction.
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Exercise 4.3.6

(i)Observe that if n ≥ 2

0 ≡ 0n ≡ (1 + 1)n ≡
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
modulo 2 thus there must be an even number of r with(

n

r

)
≡ 1 mod 2

and this is what is claimed.

If n = 0 then (1 + 1)n ≡ (1 + 1)0 ≡ 1 6≡ 0 modulo 2.

(ii) We have

1

11

101

1111

10001

110011

1010101

11111111

100000001

1100000011

10100000101
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Exercise 4.3.7

By observing that x = −1 is a solution and that any other solu-
tion must have the form −1 + K with K divisible by 6 and 10 whilst
everything of this form is a solution we see that the solutions are

−1 + 30n

Now 1000000 ≡ 10 modulo 30 so the least number of the required
form is 1000019.
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Exercise 4.3.8

We wish to solve

x ≡ 2 mod 3,

x ≡ 1 mod 4.

If x is a solution so is x + 12k and inspection of the table shows that
there is precisely one solution (viz x = 5) with 0 ≤ x ≤ 11.

Thus there are 3 solutions with 0 ≤ x ≤ 35

(ii) In the following table r1 ≡ r mod 4, 0 ≤ r1 ≤ 3 and r2 ≡ r
mod 6, 0 ≤ r ≤ 6

r = 0 1 2 3 4 5 6 7 8 9 10 11
r1 = 0 1 2 3 0 1 2 3 0 1 2 3
r2 = 0 1 2 3 4 5 0 1 2 3 4 5

We note that

x ≡ x+ 12n mod 4,

x ≡ x+ 12n mod 6.

Thus by inspection of the table

x ≡ 2 mod 4,

x ≡ 4 mod 6.

has 4 solutions with 0 ≤ x ≤ 47 but

x ≡ 3 mod 4,

x ≡ 4 mod 6.

has none.
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Exercise 4.3.11

We first seek to solve

y ≡ 1 mod 17,

y ≡ 0 mod 19.

that is, to find a, b such that

19a+ 17b = 1

Now
19− 17 = 2

and
17 = 2× 8 + 1

so
1 = (19− 17)× (−8) + 17 = (−8)× 19 + 9× 17

Thus y = (−8)× 19 = −152 is a possible solution.

If we set z = 9× 17 = 153 then

z ≡ 0 mod 17,

z ≡ 1 mod 19.

Thus (since 17 and 19 are coprime) the general solution to our prob-
lem is

x = 3× (−152)− 2× (153) +n× 17× 19 = −762 + 323n = 207 + 323m

with m an integer.

The smallest positive solution is 207.
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Exercise 4.3.12

Since a and b have highest common factor 1, Euclid’s algorithm tells
us that there exist m and n such that

am+ bn = 1.

Similarly, there exist r and s such that

ar + cs = 1.

Thus

1 = (am+ bn)(ar + cs) = a(mar +mcs+ bnr) + bc(ns).

Setting N = mar +mcs+ bnr and M = bc, we have

1 = Na+Mbc

so a and bc have highest common factor 1.
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Exercise 4.3.13

By Exercise 4.3.12, a1 and a2a3 are coprime so we can find a z1 such
that

z1 ≡ 1 mod a1,

z1 ≡ 0 mod a2a3.

Thus

z1 ≡ 1 mod a1,

z1 ≡ 0 mod a2,

z1 ≡ 0 mod a3

More generally we can find zj with zj ≡ 1 mod aj and zk ≡ 1 mod ak
for k 6= j. Now x = u1z1 + u2z2 + u3z3 satisfies FF.

If x0 and x1 are solutions of FF then x[0− x1 is divisible by a1, a2

and a3 so x0 − x1 is divisible by the lowest common multiple of a1, a2

and a3 ie by |a1a2a3|. Thus

x0 ≡ x1 mod a1a2a3.

The converse is immediate.

The same arguments show that if we have non zero integers ak [1 ≤
k ≤ n] such that each pair (ai, aj) with i 6= j has highest common
divisor 1 then given integers uk we can find an x such that

x ≡ uk mod ak.

If x0 is a solution then the solutions are given by

x0 ≡ x1 mod a1a2 . . . an.
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Exercise 4.3.14

Note that 3, 5, 7 are coprime. By rapid search (or we could use
Euclid’s algorithm).

−35 ≡ 1 mod 3,

−35 ≡ 0 mod 5,

−35 ≡ 0 mod 7.

21 ≡ 0 mod 3,

21 ≡ 1 mod 5,

21 ≡ 0 mod 7.

15 ≡ 0 mod 3,

15 ≡ 0 mod 5,

15 ≡ 1 mod 7.

Sunzi’s problem is to solve

x ≡ 2 mod 3,

x ≡ 3 mod 5,

x ≡ 2 mod 7.

Thus the general solution is

x = −70 + 63 + 30 + 105n = 23 + 105n

and the least positive solution is 23.
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Exercise 4.3.15

A ≡ 0− 1039470 ≡ 0 mod 3

A ≡ (32 + 0− (−1)7 − 9)× 1− 0 ≡ 1 mod 5

A ≡ (12 + 0− (23)4 × 4− 3)× (−1)− 5 ≡ −(1− 4− 3)− 5 ≡ 1 mod 7

so using the results of Exercise 4.3.14 their age

x = 0× (−35) + 1× 21 + 1× 15 + 105n = 36 + 105n

so they are 36.



160

Exercise 4.3.16

If n, m. k, r are strictly positive integers with

n = mk + r

and m > r then

2n − 1 = 2n − 2r + 2r − 1

= 2r(2m − 1)(2(k−1)m + 2(k−2)m + · · ·+ 1) + 2r − 1

so
2n − 1 = M(2m − 1) + (2r − 1)

and Euclid’s algorithm works in parallel with the indices.

Thus gcd(2n − 1, 2m − 1) = 2gcd(n,m) − 1.
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Exercise 4.3.17

(i) If d divides ai and aj and

x ≡ ui mod ai,FF

x ≡ uj mod aj

then since ai divides x−ui and aj divides x−uj it follows that d divides
x− ui and x− uj so d divides

ui − uj = (x− uj)− (x− ui)
and

ui ≡ uj mod d.

Taking d = gcd(ai, aj) gives the desired result.

Suppose

x ≡ u1 mod a1,

x ≡ u2 mod a2,

x ≡ u3 mod a3.

Then

x′ ≡ u1 mod a1,

x′ ≡ u2 mod a2,

x′ ≡ u3 mod a3.

if and only if

x− x′ ≡ 0 mod a1,

x− x′ ≡ 0 mod a2,

x− x′ ≡ u3 mod a3.

that is to say aj divides x− x′ for each j.

Let us write e for the lowest common multiple of a1, a2 and a3.
Suppose aj divides y for each j, then we can find a k such that

e > y − ke ≥ 0.

Since aj divides y − ke for each j it follows by minimality that y = ke
so e divides y. The converse is trivial.

Thus

x′ ≡ u1 mod a1,

x′ ≡ u2 mod a2,

x′ ≡ u3 mod a3.

if and only if e divides x− x′, ie if and only if

x ≡ x′ mod e
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(ii) Set x1 = u1

Now x1−u2 and a1 are both divisible by the highest common divisor
of a1 and a2 so by Euclid’s algorithm we can find k and m such that

ka1 +ma2 = x1 − u2.

Thus setting

x2 = x1 − ka1

we have

x2 ≡ x1 ≡ u1 mod a1,

x2 ≡ x1 − ka1 ≡ u2 +ma2 ≡ u2 mod a2.

Let f be the lowest common multiple of a1 and a2. We observe that
x1 − u3 and f are both divisible by the highest common divisor of f
and a3 so by Euclid’s algorithm we can find K and M such that

kf +Ma3 = x2 − u3.

Thus setting

x3 = x2 −Kf
we have

x3 ≡ x2 −Kf ≡ x2 ≡ u1 mod a1,

x3 ≡ x2 −Kf ≡ x2 ≡ u2 mod a2,

x3 ≡ x2 −Kf ≡ u3 −Ma3 ≡ u3 mod a3

(iii) The system

x ≡ u1 mod a1,FF

x ≡ u2 mod a2,

x ≡ u3 mod a3

is soluble if and only if

ui ≡ uj mod gcd(ai, aj)

for all 1 ≤ i < j ≤ 3. If x is a solution of FF, then x′ is a solution of
FF if and only if x ≡ x′ mod e where e is the least common multiple
of the ai

The system

x ≡ u1 mod a1,F

x ≡ u2 mod a2,

x ≡ u3 mod a3,

...

x ≡ un mod an
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is soluble if and only if

ui ≡ uj mod gcd(ai, aj)

for all 1 ≤ i < j ≤ n. If x is a solution of F, then x′ is a solution of
F if and only if x ≡ x′ mod e where e is the least common multiple
of the ai.



164

Exercise 4.4.2

If n is not prime then we can find r and s such that n = rs and
r, s ≥ 2 so r 6≡ 0 and s 6≡ 0 but

r × s ≡ 0 mod n.
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Exercise 4.4.4

(ii) Suppose a is a book number. If aj = cj for j 6= k then, if c
satisfies the check,

0 ≡ 10c1 + 9c2 + · · ·+ 2c9 + c10

≡ 10c1 + 9c2 + · · ·+ 2c9 + c10 − 10a1 + 9a2 + · · ·+ 2a9 + a10

≡ (11− k)(ck − ak)
modulo 11 so, since 11 is prime

ck − ak ≡ 0

and so ck = ak.

(iii) If aj = bj = 0 for 1 ≤ j ≤ 8 and a9 = 5, a10 = 1, b9 = b10 = 0
then a and b are both ISBNs but differ in exactly two places.

(iv) and (v) Suppose a is a book number. If aj = cj for j 6= p, q
ap = cq and aq = cp then, if c satisfies the check,

0 ≡ 10c1 + 9c2 + · · ·+ 2c9 + c10

≡ 10c1 + 9c2 + · · ·+ 2c9 + c10 − 10a1 + 9a2 + · · ·+ 2a9 + a10

≡ (11− q)(cq − cp) + (11− p)(cp − cq)
≡ (q − p)(cp − cq)

modulo 11 so, since 11 is prime

cp − cq ≡ 0

and so cj = aj for all j. The check works for any single transposition.
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Exercise 4.4.6

By Fermat’s little theorem

10p−1 ≡ 1 mod p

so that
10(p−1)k ≡ 1 mod p

and 10(p−1)k − 1 is divisible by p for each k ≥ 1. If p 6= 3 this tells us
that (10(p−1)k− 1)/9 (which has the form 111 . . . 1) is divisible by p for
each k ≥ 1.

If p = 3, then, since 10k ≡ 1k ≡ 1 mod 3, we have 111 . . . 1 divisible
by 3 whenever the number has 3k digits.
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Exercise 4.4.8

(i) If r2 ≡ a2, then r ≡ a mod 2.

(ii) The equation r2 ≡ u mod 2 has exactly one solution for all u
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Exercise 4.4.9

If
am2 + bm+ c ≡ 0 mod p

then
m2 + a−1b+ a−1c ≡ 0

so
(m+ 2−1a−1b)2 ≡ 4−1(ba−1)2 − a−1c

and (
2a(m+ 2−1a−1b)

)2 ≡ b2 − 4ac

so b2 − 4ac is a square.

Conversely if b2 − 4ac = u2 then arguing as before

am2 + bm+ c ≡ 0 mod p

if and only if (
2a(m+ 2−1a−1b)

)2 ≡ u2

Thus ? holds if and only if(
2a(m+ 2−1a−1b)− u

)(
2a(m+ 2−1a−1b)− u

)
≡ 0

so if and only if

2a(m+ 2−1a−1b)− u ≡ 0 or 2a(m+ 2−1a−1b)− u ≡ 0

Thus the solutions of F are given by

m ≡ 2−1(−b± u) mod p.

If we work modulo 2 then a = 1 and

02 + b0 + c = c, 12 + b1 + c = 1 + b+ c.

The equation has solution 0 if c ≡ 0 and the solution 1 if b+ c ≡ 1.
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Exercise 4.4.11

(i) If u2 ≡ −1 then by Lemma 4.4.10 (ii)

(m2)(p+1)/4 ≡ m or (um2)(p+1)/4 ≡ m mod p

for all m contradicting Lemma 4.4.7 (iii).

(ii) If u2 ≡ a and v2 ≡ −a then (u−1v)2 ≡ −1 which is impossible
by (i).

(iii) Thus at most one of a and −a has a square root for each a 6≡ 0.
But by Lemma 4.4.7 (iii) exactly half of the non-zero integers modulo
p have square roots so exactly one of a and −a has a square root for
each a 6≡ 0.

(iv) Thus using (iii) and Lemma 4.4.10, u2 ≡ a has solution if and
only if u(p+1)/2 ≡ u.
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Exercise 4.4.12

We have
210 ≡ 16× 16× 4 ≡ (−3)2 × 4 ≡ −2

so 25 ≡ −6 is a square root of −2. Thus u2 ≡ 2 has no solution and
u2 ≡ −2 has solutions u ≡ ±6.

We have

310 ≡ 273 × 3 ≡ 83 × 3 ≡ 7× 8× 3 ≡ −3

so 35 ≡ 8×9 ≡ −4 is a square root of −3. Thus u2 ≡ 3 has no solution
and u2 ≡ −3 has solutions u ≡ ±4.
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Exercise 4.4.13

Observe that a2r+1
= (a2r)2 so by induction a2n can be computed by

squaring n− 1 times.

We may compute 2, 22, . . . , 2n−1 with n−2 multiplications and then

2m =
∏

wj=1,j≥1

2j

with n− 1 multiplications so we have used at most 2n multiplications.

Modulo 43 we have

22 ≡ 4, 24 ≡ 16,

28 ≡ 162 ≡ 256 ≡ −2,

216 ≡ 4.

Thus
222 ≡ 216 × 24 × 22 ≡ 4× 16× 4 ≡ 162 ≡ −2

and so u ≡ 2 mod p has no solutions by Exercise 4.4.11 (iv).
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Exercise 4.4.14

(i) We draw up a table of squares modulo 21

n ≡ 0 1 2 3 4 5 6 7 8 9 10
n2 ≡ 0 1 4 9 −5 4 −6 7 1 −3 −5

Thus

n2 ≡ 0 has one solution n ≡ 0,

n2 ≡ 1 has four solutions n ≡ ±1,±8,

n2 ≡ 4 has four solutions n ≡ ±2,±5,

n2 ≡ −5 has four solutions n ≡ ±4,±10,

n2 ≡ −3 has two solutions n ≡ ±9,

n2 ≡ −6 has two solutions n ≡ ±6,

n2 ≡ 7 has two solutions n ≡ ±7.

n2 ≡ 9 has two solutions n ≡ ±3.

Otherwise n2 ≡ u has no root.

(ii) We draw up a table of squares modulo 15

n ≡ 0 1 2 3 4 5 6 7
n2 ≡ 0 1 4 −6 1 −5 6 4

Thus

n2 ≡ 0 has one solution n ≡ 0,

n2 ≡ 1 has four solutions n ≡ ±1,±4,

n2 ≡ 4 has four solutions n ≡ ±2± 7,

n2 ≡ −5 has two solutions n ≡ ±5,

n2 ≡ 6 has two solutions n ≡ ±6,

n2 ≡ −6 has two solutions n ≡ ±3.

Otherwise n2 ≡ u has no root.
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Exercise 4.5.1

Either observe that if a 6≡ 0 mod p and a 6≡ 0 mod q then a and
pq have highest common factor 1 so by Euclid’s algorithm we can find
u and v such that

au+ pqv = 1

and so au ≡ 1 mod pq.

Or use Euclid to show that there exist r, s with

ar ≡ 1 mod p and as ≡ 1 mod q.

Now use the Chinese remainder theorem to give a u with

u ≡ r mod p and u ≡ s mod q

so
au ≡ 1 mod p and au ≡ 1 mod q

so by the uniqueness part of the Chinese remainder theorem

au ≡ 1 mod pq.
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Exercise 4.5.2

u2 ≡ a mod pq has one solution corresponding to each pair (r, s) of
solutions

r2 ≡ 0 mod p

s2 ≡ 0 mod q

(i) If a ≡ 0 mod pq then the only pair is (0, 0) so exactly one solu-
tion.

(ii) If a ≡ 0 mod q, a ≡ u2 mod p with a 6≡ 0 mod p then two
pairs (±u, 0) so two solutions.

If a ≡ 0 mod q, a 6≡ v2 mod p for any v then two pairs (±u, 0) so
two solutions.

Similar with roles of p and q reversed.

If a 6≡ 0 mod p and a 6≡ 0 mod q then either a ≡ u2 mod p, a ≡ v2

mod q so four pairs (±u,±v) and four solutions or no solutions.

(iii) There are (p−1)/2 non-zero values of u2 modulo p and (p−1)/2
non-zero values of v2 modulo 2.

We thus have

|{u ∈ A : u2 ≡ 0 mod p}| = p+ 1

2

|{u ∈ A : u2 ≡ 0 mod q}| = q + 1

2
|{u ∈ A : u2 ≡ 0 mod pq}| = 1

|{u ∈ A : u2 ≡ a mod pq has exactly two solutions}| = p+ q − 2

2

There are (p− 1)/× (q − 1)/2 pairs (r, s) with

r2 ≡ a mod p

s2 ≡ a mod q

when a 6≡ 0 mod p, a 6≡ 0 mod q so

|{u ∈ A : u2 ≡ a mod pq has exactly four solutions}|
= (p− 1)(q − 1)/4.

Since there are pq − 1 non-zero integers modulo pq

|{u ∈ A : u2 ≡ a mod pq has no solutions}|

= pq − 1− p+ q − 2

2
− p− 1

2

q − 1

2
=
pq − 1

2
+

(p− 1)(q − 1)

4
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Exercise 4.5.3∗
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Exercise 4.5.4

(Corrected by Nigel White.)

If q = 2 we know that u2 = a always has exactly one root. Thus

r2 ≡ a mod 2

s2 ≡ a mod q

has exactly the same number of solution pairs as

s2 ≡ a mod q

Thus

(i) u2 ≡ a mod 2q has exactly one solution if a ≡ 0 mod q.

(ii) If a 6≡ 0 mod q then u2 ≡ a mod 2q either has no solutions or
has exactly two solutions.

(iii) Let A = {a : 1 ≤ a ≤ 2q − 1}
|{u ∈ A : u2 ≡ a mod 2q has exactly two solutions}| = (q − 1),

|{u ∈ A : u2 ≡ a mod pq has no solutions}| = (q − 1)
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Exercise 4.5.6

If p and q are odd primes and a ≡ 0 mod q, a 6≡ 0 mod p then if v
is a solution of u2 ≡ a mod pq it follows that −v is the other distinct
solution.

To see this observe that

u2 ≡ a mod pq ⇔ u2 ≡ a mod p and u2 ≡ 0 mod q

⇔ (u− v)(u+ v) ≡ 0 mod p and u ≡ 0 mod q

⇔ u ≡ ±v mod p and u ≡ ±v mod q

⇔ u ≡ ±v mod pq



178

Exercise 4.5.7

(i) Since 10300 ≈ 21000, we know from Lemma 4.2.8 that we need only
a few thousand operations.

(ii) Our proof of Lemma 4.3.10 showed that we need only apply
Euclid’s algorithm and the method of Lemma4.2.10 twice (actually we
need only do it once) and do few more steps.

(iii) Since 10300 ≈ 21000, Lemma 4.4.13 shows that we need only a
few thousand operations.
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Exercise 4.5.11

Roughly speaking, we will get a satisfactory answer once in a thou-
sand times but if we ask our question 200 000 times the probability
that we will get less than 64 is very small (how small can be estimated
using Theorem 10.5.3 or less well using Tchebychev) and, if we have
64 satisfactory answers, then Exercise 4.5.10 tells us that with high
probability we can determine p and q rapidly.
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Exercise 4.5.12

By considering cases we find 1333 = 31× 43. We wish to solve

u2 ≡ −3 mod 31

u2 ≡ 11 mod 43

Now
(−3)2 ≡ 9, (−3)4 ≡ 12, (−3)8 ≡ 11 mod 31

so u ≡ ±11 mod 31.

Also,

112 ≡ −8, 114 ≡ 21, 118 ≡ 11 mod 43

1111 ≡ 11× 112 × 118 ≡ (−8)× (−8)2 × (−8)8 ≡ −21 mod 43

so u ≡ ±21 mod 43.

We now need to use the Chinese remainder theorem. Applying Eu-
clid’s algorithm we have

43 = 1× 31 + 12

31 = 3× 12− 5

12 = 2× 5 + 2

5 = 2× 2 + 1

Thus

1 = 5− 2× 2 = 5− 2× (12− 2× 5) = 5× 5− 2× 12

− 2× 12 + 5× (3× 12− 31) = 13× 12− 5× 31

= 13× (43− 31)− 5× 31 = 13× 43− 18× 31

and

559 ≡ 13× 43 ≡ 1 mod 31

559 ≡ 0 mod 43

−558 ≡ 0 mod 31

−558 ≡ 1 mod 43

Thus the possible roots are

559× 11 + 558× 21 ≡ 538and− 538 ≡ 795

559× 11− 558× 21 ≡ 1096and− 1096 ≡ 237.
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Exercise 4.5.13

Write u and v for the first and second encoded message. Observe
that N and N ′ are coprime. (If not, I really have been stupid, since
Euclid’s algorithm will now give SNDO the common factor.) SNDO can
use the known N and N ′ together with the Chinese remainder theorem
to compute w with w ≡ m2 (mod NN ′) and 0 ≤ w ≤ NN ′ − 1. But
0 ≤ m2 ≤ NN ′ − 1 so w = m2 and m is the positive square root of m.

[SNDO uses Euclid’s algorithm to find a, b with aN + bN ′ = 1.
If w ≡ bN ′u + aNv (mod NN ′), then w ≡ u (mod N) and w ≡ v
(mod N ′).]

SNDO is no further forward in reading other messages. For we have
proved that even if we encode messages known to SNDO and give
SNDO the results the code is still unbroken. Effectively SNDO knows
m and m2 (modulo N) in one case and nothing else (since N ′ and m2

(modulo N ′) are irrelevant).
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Exercise 4.5.14

My problem is, knowing b and s with

r2 + br − s ≡ 0 mod pq,

to find r. I can do this by using the Chinese remainder theorem and
solving

r2 + br − s ≡ 0 mod p

r2 + br − s ≡ 0 mod q.

The solutions of these equations are

r ≡ 2−1(b± u) mod p

r ≡ 2−1(b± v) mod q.

where u and v are solutions of

u2 ≡ b2 − 4s mod p

v2 ≡ b2 − 4s mod q.

Thus I can decode the messages by finding square roots and using the
Chinese remainder theorem.

If I can decode messages, then I can solve

r2 + br − s ≡ 0 mod pq

and so find w with
w2 ≡ b2 − 4s mod pq.

But given any n I can set s = 4−1× (b2− n) to obtain a square root of
n modulo pq. The new system is exactly secure as the old.
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Exercise 4.6.2

If aj = ak with r ≥ k ≥ j ≥ 1 then

a1 = T−j+1(aj) = T−j+1ak = ak−j+1

and r > k − j + 1 ≥ 1 which is impossible.

Observe that

T kas+1 = T k+1as =

{
as+2 if 1 ≤ s ≤ r − 1

a1 if s = r

If
{a1, a2, . . . , ar} ∩ {b1, b2, . . . , bk} 6= ∅

then we can find p and q such that ap = bq. If we write down the cycle
expressions starting with ap and bq we will get the same cycles. Thus,
by the previous paragraph, r = k,

{a1, a2, . . . , ar} = {b1, b2, . . . , br},
and taking u = q − p, we have and bs = T uas for all s.
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Exercise 4.6.3

(a) We have

(1 2 4 8 16 15 13 9)(3 6 12 7 14 11 5 10)(17)

(b) We have

(1 6 11 16 4 9 14 2 7 12 17 5 10 15 3 8 13)

(c) We have

(1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6)(17)

(d) We have T4(16) = 1 = T4(1).

(e) S1(5) = S1(15) so S1 is not a shuffle.

(f) S2 is a shuffle given by

(1 6 11)(2 7 8)(3 8 11)(4 9 12)(5 10 15)

(g) S3 is a shuffle given by

(1)(2 8)(3 12)(4)(5)(6)(7 13)(9)(10)(11)(14)
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Exercise 4.6.4

(i) Observe that

T kaj = aj for all j ⇔ T ka1 = a1.

Suppose that T ka1 = a1. Choose m such that

r > k −mr ≥ 0.

Then T k−mra1 = T k(T r)−ma1 = a1 and so, since r is minimal, k−mr =
0. Thus k = mr. The converse is immediate.

(ii) Using (i),

T kx = x for all x⇔ k is divisible by dk for all 1 ≤ k ≤ m

⇔ k is divisible by lcm(d1, d2, . . . , dm)

(iii) T1 has period 16, T2 has period 17, T3 has period 16, S2 has
period 3 and S3 has period 2.
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Exercise 4.6.6

(i) Without loss of generality u ≥ v ≥ 2 and

uv ≥ 2u ≥ u+ v.

(ii) By Exercise 4.2.14

uv = gcd(u, v) lcm(u, v) = lcm(u, v).

(iii) Suppose that d1, d2, . . . , dk are strictly positive integers and d1

and d2 have highest common factor c ≥ 2. Then setting d̃1 = d1/c,

d̃j = dj for k ≥ j ≥ 2 we have

lcm(d̃1, d̃2, . . . , d̃k) = lcm(d1, d2, . . . , dk)

and
d̃1 + d̃2 + · · ·+ d̃k ≤ d1 + d2 + · · ·+ dk.

Thus there is no loss of generality in supposing d1, d2, . . . dk coprime.
Suppose dk is not a power of a prime. Then we can write dk = d̃k× d̃k+1

with d̃k and d̃k+1 coprime. Setting d̃j = dj for 1 ≤ j ≤ k − 1 we have
(by part (i))

d̃1 + d̃2 + · · ·+ d̃k + d̃k+1 ≤ d1 + d2 + · · ·+ dk

and

lcm(d1, d2, . . . , dk) = d1d2 . . . dk

= d̃1d̃2 . . . d̃kd̃k+1

= lcm(d̃1, d̃2, . . . , d̃k, d̃k+1)

Thus lcm(d1, d2, . . . , dk) is maximised subject to dj ≥ 1 and d1 +d2 +
· · ·+ dk ≤ n, m ≥ 1 by taking the dj powers of distinct primes.

(iv) By Lemma 4.6.5 and part (iii) the longest period of a shuffle
with n cards is given by the maximum value of

p
m(1)
1 pm(2) . . . p

m(l)
l

where l is a strictly positive integer, p1, p2, . . . , pl are distinct primes
and m1, m2, . . . , ml are strictly positive integers with

p
m(1)
1 + pm(2) + · · ·+ p

m(l)
l ≤ n.
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Exercise 4.6.7

I do not know any better method than exhaustive search using
Exercise4.6.6 (iv).

n = 1. Longest period 1.

n = 2. Longest period 2.

n = 3. Longest period 3.

n = 4. Since 22 > 3, longest period 4.

n = 5. Since 2× 3 > 5, longest period 6.

n = 6. Since 2× 3 > 5, longest period 6.

n = 7. Since 3× 22 > 7, longest period 12.

n = 8. Longest period 3× 5 = 15.

n = 9. Since 22 × 5 > 24 > 3× 5, longest period 20.

n = 10. Longest period 2× 3× 5 = 30.

n = 11. Longest period 2× 3× 5 = 30.

n = 12. Longest period 22 × 3× 5 = 60.
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Exercise 4.6.8

(i) We have

n = 1, shuffle is (12), 2 shuffles to return.

n = 2, shuffle is (1243), 4 shuffles to return.

n = 3 shuffle is (124)(365), 3 shuffles to return.

n = 4, shuffle is (124875)(36), 6 shuffles to return.

n = 5, shuffle is (12485[10]9736), 10 shuffles to return.

n = 6, shuffle is (124836[12][11]95[10]7), 12 shuffles to return.

n = 7, shuffle is (1248)(36[12]9)(5[10])(7[14][13][11]), 4 shuffles to
return.

When n = 4, cards 3 and 6 just swap places each time (so return to
original position after any even number of shuffles). When n = 7, cards
5 and 10 just swap places each time (so return to original position after
any even number of shuffles).

(ii) Mr Jonas prefers the out-shuffle because the first and last cards
do not move. (Very useful indeed.)

We have

n = 1, shuffle is (1)92), stays in place.

n = 2, shuffle is (1)(23)(4), 2 shuffles to return.

n = 3 shuffle is (1)(2354)(6), 4 shuffles to return.

n = 4, shuffle is (1)(235)(476)(8), 3 shuffles to return.

n = 5, shuffle is (1)(235986)(47)([10]), 6 shuffles to return.

n = 6, shuffle is (1)(23596[11][10]847)([12], 10 shuffles to return.

n = 7, shuffle is (1)(235947[13][12][10]6[11]8)(14), 12 shuffles to re-
turn.
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Exercise 4.6.9

This is a simple generalisation of Lemma 4.4.3 (i). Since gcd(a, n) =
1 Euclid’s algorithm tells us that we can find u and v such that

au+ nv = 1

and so
au ≡ 1 mod n.
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Exercise 4.6.11

(i) Observe that

Aj(1) ∩ Aj(2) ∩ . . . Aj(u)

= {rnp−kj(1)j(1) p
−kj(2)
j(2) . . . p

−kj(s)
j(s) : 1 ≤ r ≤ p

kj(1)
j(1) p

kj(2)
j(2) . . . p

kj(s)
j(s) }

and so
|Aj(1) ∩ Aj(2) ∩ . . . Aj(u)| =

n

p
kj(1)
j(1) p

kj(2)
j(2) . . . p

kj(s)
j(s)

.

(ii) By the inclusion-exclusion formula∣∣∣∣∣
u⋃
j=1

Aj

∣∣∣∣∣ =
s∑

u=1

(−1)s+1
∑

1≤j(1)<j(2)<···<j(s)≤u

|Aj(1) ∩ Aj(2) ∩ . . . Aj(u)|

=
s∑

u=1

(−1)s+1
∑

1≤j(1)<j(2)<···<j(s)≤u

n

p
kj(1)
j(1) p

kj(2)
j(2) . . . p

kj(s)
j(s)

so

φ(n) =

∣∣∣∣∣X \
u⋃
j=1

Aj

∣∣∣∣∣ = |X| −

∣∣∣∣∣
u⋃
j=1

Aj

∣∣∣∣∣
= n

1−
s∑

u=1

(−1)s
∑

1≤j(1)<j(2)<···<j(s)≤u

1

p
kj(1)
j(1) p

kj(2)
j(2) . . . p

kj(s)
j(s)


= n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

pu

)
= pk11

(
1− 1

p1

)
pk22

(
1− 1

p2

)
. . . pkuu

(
1− 1

pu

)
.

(iii) We have φ(p) = p(1− p−1) = p− 1 when p is a prime so

φ(2) = 1, φ(3) = 2, φ(4) = 22 × 1

2
= 2, φ(5) = 4,

φ(6) = 2× 1

2
× 3× 2

3
= 2, φ(7) = 6, φ(8) = 8× 1

2
= 4,

φ(9) = 9× 2

3
= 6, φ(10) = 2× 1

2
× 5× 4

5
= 4,

φ(11) = 10, φ(12) = 22 × 1

2
× 3× 2

3
= 4.



191

Exercise 4.6.13

If p is prime, then φ(p) = p(1− p−1) = p− 1 and

ap−1 ≡ aφ(p) ≡ 1 mod p

whenever gcd(a, p) = 1 ie whenever a 6≡ 0 mod p.
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Exercise 4.6.14

(i) Observe that

u2 ≡ 1⇔ (u− 1)(u+ 1) ≡ 0⇔ u ≡ ±1 mod p.

Thus if rs ≡ 1 and r 6≡ ±1 we have r 6≡ s. By choosing exactly one
member of each pair r, s with rs ≡ 1 and r, s 6≡ ±1 we obtain a B with
the required properties. Now∏

r∈A

r = 1×−1×
∏
u∈B

u
∏
u/∈B

u ≡ 1×−1×
∏
u∈B

u
∏
u∈B

u−1

≡ 1×−1×
∏
u∈B

uu−1 ≡ −1

modulo p.

(ii) If n is not a prime and n > 4 we know that either n = rs with
n− 1 ≥ r > s > 1 so rs divides (n− 1)! and

(n− 1)! ≡ 0 mod n

or n = r2 and n− 1 ≥ 2r > r so (2r)× r and thus r2 divides (n− 1)!
and

(n− 1)! ≡ 0 mod n.

Since (2− 1)! ≡ 1! ≡ 1 mod 2 and

3! ≡ 6 ≡ 2 6≡ −1 mod 4

the required result now follows fro (i).

(iii) We have p = 4n+ 1 so

−1 ≡ (p− 1)! ≡
2n∏
r=1

r
2n∏
r=1

(−r) (−1)2n(2n)! ≡ ((p− 1)/2
)
!2 mod p

If p ≡ −1 mod 4 so p = 4n− 1 the same argument gives

−1 ≡ (p− 1)! ≡
2n−1∏
r=1

r
2n−1∏
r=1

(−r) (−1)2n−1(2n)! ≡ −((p− 1)/2
)
!2

so (
((p− 1)/2

)
!

)2

≡ 1 mod p

(iv) We know that u2 ≡ 1 mod pq has four distinct roots a, −a, b,
−b. Call the set of four roots X. Thus if rs ≡ 1 and r /∈ X we have
r 6≡ s. By choosing exactly one member of each pair r, s with rs ≡ 1
and r, s 6≡ ±1, we obtain a B such that B ∩ X = ∅ and if u /∈ X
u−1 ∈ B if and only if u /∈ B.
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Thus∏
r∈A

r =
∏
u∈X

u×
∏
u∈B

u
∏
u/∈B

u ≡ a2b2 ×
∏
u∈B

u
∏
u∈B

u−1

≡ −1×−1×
∏
u∈B

uu−1 ≡ 1

modulo pq.
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Exercise 4.6.15

(i) Observe that, if 1 ≤ r ≤ n, then

2r ≡ 2r mod 2n+ 1

and, if n+ 1 ≤ r ≤ 2n, then

2(r − n)− 1 ≡ 2r − (2n+ 1) ≡ 2r mod 2n+ 1.

If we start in position j, then, after m shuffles, we are at 2mj modulo
2n+ 1. By the Euler–Fermat theorem,

2φ(2n+1)j ≡ 1× j ≡ j mod 2n+ 1,

so the pack returns to its original order after φ(2n+ 1) shuffles.

Since 53 is prime, φ(53) = 52 and a standard pack returns to its
original order after 52 in-shuffles.

(ii) Observe that, if 2 ≤ r ≤ n, then

2(r − 1) ≡ 2(r − 1) mod 2n− 1

and, if n+ 1 ≤ r ≤ 2n− 1, then

2((r − 1)− n)− 1 ≡ 2(r − 1)− (2n− 1) ≡ 2r − 1 mod 2n− 1.

We ignore the fixed first and last card and use the renumbering. If
we start in position j, then, after m shuffles, we are at 2mj modulo
2n− 1. By the Euler–Fermat theorem,

2φ(2n−1)j ≡ 1× j ≡ j mod 2n− 1,

so the pack returns to its original order after φ(2n− 1) out-shuffles.

Since 51 = 3 × 17, we have φ(51) = φ(3)φ(17) = 2 × 16 and a
standard pack returns to its original order after 16 out-shuffles.

(iii) Working modulo 51, we have 22 ≡ 4, 24 ≡ 16 and

216 ≡ 164 ≡ 642 × 16 ≡ 132 × 16 ≡ 162 ≡ 64× 4 ≡ 13× 4 ≡ 1.

Thus
28j ≡ 1× j ≡ j mod 51,

and a standard pack returns to its original order after 8 out-shuffles.

The statement that a pack returns after m shuffles does not exclude
the statement that it returns after k shuffles. [This is the minimum
answer. A more expansive discussion would remark that if a pack
returns after m shuffles and after after k shuffles, then it will return
after the highest common factor of m and k shuffles.]

(iv) There is really no problem in just calculating powers of 2 up
to the 26th. Since the minimum return period must divide any return
period and since 2 must return to 2 after a return period this does it.
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Shorter ways are possible, since the only possible periods are 1 (ob-
viously not a period), 2, 4, 13 and 26. But 22 ≡ 4 modulo 53, 24 ≡ 16
and

213 ≡ 2× 642 ≡ 2× 112 ≡ 30

whilst
226 ≡ 900 ≡ −1.

No doubt even quicker ways are possible but only at the expense of
thought.
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Exercise 5.1.1

No changes are required if the reals are distinct.

If the reals are not distinct then we can (for example) instruct our
assistant not to swap cards if the numbers they bear are equal. We will
find one of the largest cards. (So, if there is only one largest card, we
will find it.)

Exercise 5.1.2∗
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Exercise 5.1.3

The pack contains n pairs. Place the larger of each pair in pile A and
the smaller of each pair in pile B. The requires n comparisons. Pile
A must contain the largest card in the pack so find the largest card in
pile A using n − 1 operations. Pile B must contain the smallest card
in the pack so find the smallest card in pile A using n− 1 operations.
We have used 3n− 2 operations.

Exercise 5.2.1∗



198

Exercise 5.2.2

Let k ∈ A if and only if the kth card is a record.

X1 +X2 + · · ·+Xn =
∑
j∈A

1 = |A|

where |A| is the total number of records.

EXj = 1× Pr(Xj = 1) + 0× Pr(Xj = 0) =
1

j
so

EY = EX1 + EX2 + · · ·+ EXn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.
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Exercise 5.2.3

(i) If n ≤ x ≤ n + 1 then since f is increasing f(n) ≤ f(x) and
f(x) ≤ f(n+ 1).

Since

f(n) ≤ f(x) ≤ f(n+ 1) for n ≤ x ≤ n+ 1

we have ∫ n+1

n

f(n) dx ≤
∫ n+1

n

f(x) dx ≤ [

∫ n+1

n

f(n+ 1) dx

so

f(n) ≤
∫ n+1

n

f(x) dx ≤ f(n+ 1).

Thus
N−1∑
n=1

f(n) ≤
N−1∑
n=1

∫ n+1

n

f(x) dx ≤
N−1∑
n=1

f(n+ 1).

ie
N−1∑
n=1

f(n) ≤
∫ N

1

f(x) dx ≤
N∑
n=2

f(n).

If f(x) > 0 for all x then f(1) > 0 so

N∑
n=1

f(n) ≥
N∑
n=2

f(n) ≥
∫ N

1

f(x) dx.

Replacing N by N + 1 in the inequalities of the previous paragraph

N∑
n=1

f(n) ≤
N+1∑
n=1

∫ N

1

f(x) dx

(iii) The area under the big rectangles includes the area under the
curve so

N−1∑
n=1

∫ n+1

n

f(x) dx ≤
N−1∑
n=1

f(n+ 1).

The area under the small rectangles is included includes the area
under the curve so

N−1∑
n=1

f(n) ≤
N∑
n=1

∫ N

1

f(x) dx.

(iii) Suppose that g is a well behaved decreasing function. Then

g(n) ≥ g(x) ≥ g(n+ 1) for n ≤ x ≤ n+ 1
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so ∫ n+1

n

g(n) dx ≥
∫ n+1

n

g(x) dx ≤
∫ n+1

n

g(n+ 1) dx

and summing
N−1∑
n=1

g(n) ≥
N−1∑
n=1

∫ n+1

n

g(x) dx ≥
N−1∑
n=1

g(n+ 1),

ie
N−1∑
n=1

g(n) ≥
∫ N

1

g(x) dx ≥
N∑
n=2

g(n).

(Or we could simply set f = −g and apply (i).)

(iv) We have g(x) = 1/x decreasing so

N∑
n=1

1

n
=

N∑
n=1

g(n)

≥
∫ N−1

1

g(x) dx

=

∫ N−1

1

1

x
dx

≥
∫ N

1

1

x
dx = logN

and
N∑
n=2

1

n
=

N∑
n=2

g(n)

≤
∫ N−1

1

g(x) dx

≤
∫ N

1

g(x) dx = logN

so that
N∑
n=1

1

n
≤ 1 + logN.
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Exercise 5.2.4

Set Xk = 1, if the kth card is a record, and Xk = 0, if not. Then

Y = Xn +X2 + · · ·+X[bn]

is the total number of records. It follows that

EY = EXn + EX2 + · · ·+ EX[bn] =
1

n
+

1

n+ 1
+ · · ·+ 1

[bn]
.

Now

1

n
+

1

n+ 1
+ · · ·+ 1

[bn]
≤

[bn]−1∑
j=n−1

∫ j+1

j

1

x
dx

=

∫ [bn]

n

1

x
dx = log([bn]/n)

and

1

n
+

1

n+ 1
+ · · ·+ 1

[bn]
≥

[bn]∑
j=n

∫ j+1

j

1

x
dx

≥
[bn]−1∑
j=n

∫ j+1

j

1

x
dx

=

∫ [bn]

n−1

1

x
dx = log([bn]/(n− 1))

Since [bn]/n→ b and [bn]/(n−1) = ([bn]/n)
(
n/(n−1)

)
→ 0 as n→∞

the expected number of records between the nth and the last card is
approximately log b.
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1 1 1 1 1 1 2 2 3 4 3 4 2 2 3 4 3 4 2 2 3 4 3 4
2 2 3 4 3 4 1 1 1 1 1 1 3 4 2 2 4 3 3 4 2 2 4 3
3 4 2 2 4 3 3 4 2 2 4 3 1 1 1 1 1 1 4 3 4 3 2 2
4 3 4 3 2 2 4 3 4 3 2 2 4 3 4 3 2 2 1 1 1 1 1 1

Exercise 5.3.1

(i) If m = 3 we win if either the third card is 4 which happens with
probability 1/4 or the fourth card is 4 and the third is not 3 (since
the third card should not be the largest of the three first cards) which
happens with probability (1/4)× (2/3) = 1/6. The total probability of
winning is 5/12.

(ii) If m = 1 we win if the first card is 4 ie with probability 1/4. If
m = 4 we win if the first card is 4 ie with probability 1/4.

If m = 2 we look at the table marking our choice with boldface. The
probability of winning is 11/24.

(iii) With three cards if m = 1 or 3 we must pick the card we are
on so we have probability 1/3 of winning. With m = 2 we win if the
second card is 3 or if our second card is 1 and the last card 3 so we
have probability 1/3 + 1/6 = 1/2 of winning.
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Exercise 5.3.4

If m = 1 the probability of success is 1/5.

If m = 2 the probability of success is

4

5
× 1

4
+

1

2
× 4

5
× 3

4
× 1

3
+

1

3
× 4

5
× 3

4
× 2

3
× 1

2
+

1

4
× 4

5
× 3

4
× 2

3
× 1

2
=

5

12
.

If m = 3 the probability of success is

3

5
× 2

4
+

1

2
× 3

5
× 2

4
× 2

3
+

1

3
× 3

5
× 2

4
× 1

3
=

13

30
.

If m ≥ 4 the probability of the largest number being among the mth
or larger is 2/5 < 5/12. Since 13/30 > 5/12 we should take m = 3.
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Exercise 5.3.6

The probability of dealing u given cards before the tnth card and v
after is
[tn]

n
× [tn]− 1

n− 1
× . . . [tn]− u+ 1

n− u+ 1

× n− [tn]

n− u
× n− [tn]− 1

n− u− 1
× . . . [tn]− u− v + 1

n− u− v + 1

= (n−1[tn])× n−1[tn]− n−1

1− n−1
× . . . n

−1[tn]− n−1(u− 1)

1− n−1(u− 1)

× 1− n−1[tn]

1− n−1u
× 1− n−1[tn]− n−1

1− n−1(u− 1)
× . . . n

1[tn]− n−1(v − 1)

1− n−1(u+ v − 1)

→ tu(1− t)v.
as n→∞. Thus

Pr(largest k cards after [tn], k + 1st card before) ≈ t(1− t)k

and so

Pr(largest k cards after [tn], k + 1st card before

and largest card before other k − 1 largest)

=
t(1− t)k

k
so as before

Pr(stop at largest card) ≈ t(1− t) +
t(1− t)2

2
+
t(1− t)3

3
+ . . . .
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Exercise 5.3.7

If f(t) = −t log t, then

f ′(t) = − log t− 1

so f ′(t) > 0 and f(t) is increasing for t < e−1, while f ′(t) < 0 and f(t)
is decreasing for t > e−1. Thus f attains its maximum at e−1.
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Exercise 5.3.9

(i) If the largest card is dealt before m then no new card will be a
record and we will stop at the last card and it will not be a record. If
we stop at the last card and it is not a record no card on or after the
mth can be a record so none of them can be the largest in the pack.
Thus the largest in the pack is in the first m− 1.

If n is large

Pr(stop at last card and it is not largest) = Pr(largest in first m− 1)

=
m− 1

n
≈ e−1

Pr(stop at last card and it is largest) ≤ Pr(last card is largest)

=
1

n
≈ 0

Thus
Pr(stop at last card ≈ e−1

Also

Pr(choose largest card or stop at last) = Pr(choose largest)

+ Pr(stop at last card and it is not largest)

≈ 2e−1

Thus the probability that we neither choose the last card nor the largest
is approximately 1− 2e−1.

(ii) If n is large

Pr(stop at last card and it is not largest)

= Pr(largest in first m− 1)

=
tn− 1

n

Pr(stop at last card and it is largest) ≤ Pr(last card is largest)

=
1

n
so

Pr(stop at last card) ≤ t

Also

Pr(none of the k largest cards is turned over before the mth card)

=
n−m
n
× n−m− 1

n− 1
× · · · × n−m− k + 1

n− k + 1

≤ (1− t)k



207

But, if we do not stop at one of the highest k cards, then either none
of the k largest cards is turned over before the mth or at least one of
the k largest cards is turned over before the mth in which case we must
have stopped at the last card.

Pr(stop at one of the k th largest cards)

≥ 1− Pr(non of the k largest cards is turned over before the mth)

− Pr(stop at last card)

≥ 1− t− (1− t)k

If we choose ε/2 > t > ε/4 and k such that (1− ε/4)k < ε/2

Pr(stop at one of the k largest cards) ≥ 1− ε
however large n is.
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Exercise 5.4.1

(i) Is the first digit 0? Is the second digit 0? Is the third digit 0?

Label the objects by sequences of n zeros and ones (there are 2n such
sequences). Now ask ‘Is the jth digit 0?’ for 1 ≤ j ≤ n.

(ii) If N is the number of head words then we are told that N ≤ 220

so the result follows from (i).

We could label the kth word by the sequence

xk = x1,kx2,k . . . x20,k

with

k =
20∑
j=1

2j−1xj,k.



209

Exercise 5.4.4

(i) We have for all values of n

n! = n× (n− 1)× (n− 2)× · · · × 2× 1

≤ n× n× n× · · · × n× n = nn

and

n! =
n∏
r=1

r ≥
n∏

r=n/2

r

≥
n∏

r=n/2

n

2
=
(n

2

)n/2
.

Thus

n log n = log nn ≥ log n! ≥ log
(n

2

)n/2
=
n

2
(log n− log 2) ≥ n

4
log n

if n ≥ 4.

(iii) There are lots of different variations. For example, if n is odd
and n ≥ 9,

n! =
n∏
r=1

r ≥
n∏

r=(n−1)/2

r

≥
n∏

r=(n−1)/2

n

3
=

(
n+ 1

2

)n/3
≥
(n

2

)n/3
.

Thus

n log n = log nn ≥ log n! ≥ log
(n

2

)n/3
=
n

2
(log n− log 3) ≥ n

4
log n.
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Exercise 5.4.6

a2 = 22 + 2× 2 = 2× 4 = 8

a3 = 23 + 2× 8 = 3× 8 = 24

a4 = 24 + 2× 3× 8 = 4× 24 = 64

a5 = 25 + 2× 4× 24 = 5× 25 = 160.

If am = m2m then

am+1 = 2m+1 + 2am = 2m+1 +m2m = (m+ 1)2m.

Since a1 = 2 = 1× 21 it follows by induction that

am = m2m

for all m ≥ 1.
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Exercise 5.4.7

We could add 2m − n dummy cards.

If 2m−1 < n ≤ 2m, we can sort a pack of n cards in m2m operations.
But

(m− 1) log 2 ≤ log n

so

m ≤ 1 + log n

log 2
so

m2m ≤ 1 + log n

log 2
2n.
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Exercise 5.4.9

Suppose that we know that er ≤ 4r log r for all 2 ≤ r ≤ n − 1. By
F and Lemma 5.4.8

en =
n2

n− 1
+

2

n− 1

(
e2 + · · ·+ en−1)

≤ n2

n− 1
+

4

n− 1

n−1∑
j=2

j log j

≤ n2

n− 1
+

4

n− 1

(
n2 log n

2
− n2

4

)
=

2n2 log n

n− 1
≤ 4n log n.

Since
e2 = 1 ≤ 4× 2× log 2

the result follows by induction.
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Exercise 5.4.10

Let I[a,∞)(t) = 1 if t ≥ a and I[a,∞)(t) = 0 if t < a.

aI[a,∞)(t) ≤ X

for all t ≥ 0, so
aI[a,∞)(X) ≤ X

and
aPr(X ≥ a) = E

(
aI[a,∞)(X)

)
≤ EX

as stated.

Thus the probability that the number of operation required is greater
than a times the expected number is less than 1/a.

(Of course if we work harder we can get better bounds but this is
already satisfactory for many purposes.)
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Exercise 5.4.11

If the pack is well shuffled then the two packs we construct in the
first round will be well shuffled and so, by induction, will all the further
packs we examine. But if a pack is well shuffled the bottom card will
be equally likely to be any card in the pack so choosing it will be the
same as choosing a random card.

If the pack is already sorted, then at each stage we divide into a pack
of one card and a pack of the rest taking

(n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
≈ n2

2
(or thereabouts depending on the fine details of our procedure) opera-
tions.
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Exercise 5.4.12

(8× 109)2

2
= 4× 1018.

The long way requires 4× 109 seconds or about 12000 years (see Exer-
cise 4.1.3).

On the other hand

4× (8× 109)× log(8× 109) ≈ 109 × 730

so the short way takes about 12 minutes.
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Exercise 5.5.1

Observe, for example, that

min
1≤j≤n

aj = − max
1≤j≤n

−aj.



217

Exercise 5.5.2

Starting from the first airport we may choose the first port of call in
n− 2 ways (we cannot choose the starting or end point), the second in
n− 3 ways, . . . , the n− 2nd in one way and the fly to the destination
airport. Thus there are

(n− 2)× (n− 3)× . . . 1 = (n− 2)!

routes.

Exercise 5.5.3∗
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Exercise 5.5.4

(i) We have

n2

4
− r(n− r) =

n2 − 4nr + 4r2

4
=

(r − 1
2
n)2

4
≥ 0.
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Exercise 5.5.5

Let us write

a = {P,W,G,C}, b = {P,W,G}, c = {P,W,C}
f = {P,G,C}, g = {P,C}, h = ∅

Then

dab = dba = dbc = dcb = dbf = dfb = dcg = dgc = dfg = dgf = 2

dgh = dhg = 1 and all other distances are ∞. We get shortest paths
abcgh and abfgh both of length 7.

(ii) An obvious notation is to write (n,m, k) for the state when there
are n pints in the 8 pint jug, m in the 5 pint jug and k in the 3 pint jug.
We observe that the distance from any (n,m, k) to (8, 0, 0) is 1 (just
pour everything in to the big jug). On the other hand if 8 > n > 0,
5 > m > 0 and 3 > k > 0 then the distance from any other point is ∞
(how do you know when to stop pouring?).

In fact there are very few paths and a little thought gives

(8, 0, 0)→ (3, 5, 0)→ (3, 2, 3)→ (6, 2, 0)→ (6, 0, 2)

→ (1, 5, 2)→ (1, 4, 3)→ (0, 4, 4).
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Exercise 5.5.6

(i) At the first stage A1 is a ‘new settled town’. All the signposts
point upwards.

At the nth stage we simply make the ‘new settled town’ an ‘old
settled town’.

(ii) We claim that at the beginning of the rth stage the signposts in
the settled towns show the shortest route to A1. Assuming this observe
that the shortest route to A1 from a given unsettled town through a
settled town is either via an old settled town in which case the distance
shown on the signpost will be no larger than the distance to the new
settled town plus the shortest distance from the new settled town and
the town council will do nothing or the distance shown will be greater
in which case the town council will make the appropriate alteration.
In each case the signpost will now show the shortest distance from the
unsettled town to A1 via a settled town. Just as in the old algorithm
an unsettled town which now has a sign showing a distance no larger
than any other unsettled town has a signpost showing the next town on
the shortest route to A1 and the total distance required. If we choose
one of these as our new settled town the inductive hypothesis holds
with r replaced by r + 1. The case r = 1 is trivial so algorithm works
by induction.

(iii) Each town council makes at most one comparison and there are
n councils. We then have to find the smallest of the distances shown
on at most n signposts and this requires less than n comparisons. Thus
we need less than 2n comparisons at each stage. Since there are n steps
we need at most 2n2 comparisons in all.

Exercise 5.5.7∗
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Exercise 5.5.9

(i) There are n2 ordered pairs (i, k) and to compute rik we need
to find the smallest of the n numbers pij + qjk. This requires n − 1
comparisons so we use n2 × (n− 1) ≤ n3 comparisons.

(ii) Let A = U • (V •W ) and B = (U • V ) •W .

We can find a S such that

aij = min
s

(
urs + min

t
(vst + wtj)

)
= uiS + min

t
(vSt + wtj)

and a T such that

min
t

(vSt + wtj) = vST + wTj.

Now
min
s

(uis + vsT ) ≤ uiS + vST

so

bij ≤ min
t

(
min
s

(uis + vst) + wtj
)

≤ min
s

(uis + vsT ) + wTj

≤ uiS + vST + wTj = aij.

Similarly aij ≤ bij so aij = bij as required.
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Exercise 5.5.10

(i) and (ii) Sometimes false. Set

U =

0 1 4
1 0 4
0 4 4

 , V =

0 4 4
4 0 1
4 1 0

 .

Then
min
j

(u1j + vj3) = min(0 + 4, 1 + 1, 4 + 0) = 2

and
min
j

(v1j + uj3) = min(0 + 4, 4 + 4, 4 + 0) = 4

so U • V 6= V • U although U and V are symmetric.

(iii) Always true. Write A = V T , B = UT , C = (U • V )T D =
V T • UT . Then

dik = min
j

(aij + bjk) = min
j

(aji + bjk)

= min
j

(bkj + aji) = cij

as required.

(iv) Sometimes false. Take

U =

(
0 2
3 0

)
, V =

(
0 3
2 0

)
, W =

(
0 4
4 0

)
Then

U •W = U, V •W = V

but

U + V =

(
0 5
5 0

)
so

(U + V ) •W = W 6= (U + V ) = U •W + V •W.
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Exercise 5.5.11

Clearly

d
[m]
ij = dij = shortest distance from Ai to Aj through at most 1 town.

Suppose that d
[r]
ij is the shortest distance from Ai to Aj by a route

passing through at most r towns. If we want to travel from Ai to Aj
we must go to a town Ak (possibly Ai or Aj) and then take the shortest
rout from Ak to Aj passing through at most r − 1 towns. Thus

shortest distance from Ai to Aj through at most r towns

= min
k

(dik + shortest distance from Ak to Aj through

at most r − 1 towns)

= min
k

(dik + d
[r−1]
kj ) = d

[r]
ij .

The stated result follows by induction.

(ii) Since the distance between any two towns is positive there can be
no advantage in visiting the same town twice so the shortest route (if
one exists) must pass through at most n−1 towns. (Similarly, but more
simply, if any route exists, then one exists passing through n−1 towns

or fewer.) Thus D[m] = D[n−1] for all m ≥ n − 1. and, if d
[n−1]
ij = ∞,

there is no route of any kind from Ai to Aj. Since D[m] = D[n−1] for all

m ≥ n− 1 d
[n]
ij is the length of the shortest path from i to j.
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Exercise 5.5.12

(i) Since 2N−1 ≤ n we have, on taking logarithms,

(N − 1) log 2 ≤ log n

so

N ≤ 1 +
log n

log 2
.

(ii) Choose N so that 2N−1 ≤ n ≤ 2N . Then we can compute

D[n] = D[2N ]

in less than

N ≤ 1 +
log n

log 2
≤ K log n

operations. (We can take K = 1 if n is not too small. For the purposes
of the question we could take K = 10.) so we can compute D[n] with
less than Kn3 log n comparisons.
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Exercise 5.5.13

di(1)i(2) + di(2)i(3) + · · ·+ di(r−1)i(r) = 1− 2 + 1− 2 + . . .

=

{
2− r/2 if r is even

−(r − 1)/2 if r is odd
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Exercise 5.5.16

(i) If
dj(1)j(2) + dj(2)j(3) + · · ·+ dj(s−1)j(s) = −k < 0

then defining j(rs+ t) = j(t) for 1 ≤ t ≤ s, r ≥ 1 we have

Ns−1∑
u=1

dj(u)j(u+1) = −Nk → −∞

as n→∞.

(ii) Given k and l, take a path from Ak to Aj(1), go round the length
decreasing loop many times, then take a path from Aj(1) to Al.
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Exercise 5.5.17

The closest town to A1 is A2, the closest town to A1 via A2 or directly
is A3 reached via A2 so our algorithm gives the path A1A2A3. There
is only one other possible path from A1 to A3. It is A1A4A3 of length
0 and is thus the shortest path.



228

Exercise 5.5.18

(i) Since there are only n towns any cycle without repetition contains
at most n towns. Given a length decreasing cycle follow it until the
first return. Either we have performed a negative cycle with at most
n towns or we may throw away the first cycle and obtain a smaller
negative cycle. Since the process terminates (we have only a finite
number of cycle steps) we must eventually find a negative cycle with at

most n towns ie we can find r ≤ n and i with d
[n]
kk < 0. Automatically

d
[n]
kk < 0.

(ii) If d
[n]
kk ≥ 0, then there is no shorter path from k to k than staying

at k. Thus

d
[n]
kk = length of shortest path from k to k in n or less steps = 0.

Since there are only n towns, it follows that, if there is any path from
Ai to Aj, then by removing cycles there is a path P involving at most
n− 1 steps so having

d
[n]
ij ≤ length of P <∞.

Since there are no negative cycles, removing cycles decreases the
length of paths from Ai to Aj. Thus the shortest paths from Ai to Aj
have at most n− 1 steps and so have length equal to d

[n]
ij .
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Exercise 5.5.19

Before 1835 melt down US gold dollars. Exchange in France for
French gold coins at a slight loss. Exchange French gold coins for
French silver coins. Melt down French silver coins and use to buy US
silver coins. Exchange US silver coins for US gold coins and start again.
You have increased your holdings in gold by a little less than 151

2
/15 =

31/30 but decreased the amount of gold coin in US circulation and
increased the amount of silver.

After 1835 run the process backwards.
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Exercise 5.5.20

(i) There must be a route from A1 to An. There must be no cycles
(if there are then we can go round and round to produce ever longer
paths).

We can use Floyd’s algorithm to solve the problem with dij replaced
by −dij (for dij 6=∞).

(ii) If task Ai must be completed before Aj and take time α, set
dij = α. Otherwise take dij = 0. The longest path from A1 (start
building) to An (stop building) gives the time to completion.

In general those tasks on the longest path will produce delay if they
take longer. (If a task is not on a longest path then increasing the time
taken on that task by a small amount will not increase the total time
required.)
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Exercise 5.5.21

(i) Roads (12), (23), (34), (45), (46) join all towns. The cost is
minimal because we need at least 5 roads so a 5 unit cost is cheapest.

(ii) The method works for n = 2 since there is only one route.

Suppose it works for n = m. Suppose we have m + 1 towns with
towns A1 and A2 the closest. If we have any collection of linking roads
for the m+ 1 towns then there is a set of roads linking A1 to A2. If we
remove one of those roads and build a road direct from A1 to A2 then
we still have collection of linking roads for the m + 1 towns (after the
deletion each town must still be linked to at least one of A1 and A2,
and after the rebuild each town must will be linked to A1) which will
be at least as cheap. Thus a cheapest set of roads will contain the road
from A1 to A2 so we may start by linking A1 to A2. This reduces the
problem to linking the ‘city’ {A1, A2} and the towns A3, . . . , Am+1. By
our inductive hypothesis our method will produce a cheapest solution
to this problem and so to the full problem.

The required result follows by induction.

(iii) We first give an upper bound. We need to find the least ele-
ment of at most n2 numbers at most n times so we need at most n3

comparisons.

Next we give a lower bound. If we are on the mth step and 3n/4 ≥
m ≥ n/4 then there are at least [n/4]2 possible roads from towns to
the city. Thus we need to make to find the least element of at least
[n/4]2 numbers at least [n/2] times. Thus (making underestimates) we
need at least (n− 8)3/32 comparisons.

Combining these we see that the number of comparisons

(iv) The inductive proof is a repeat of that for (ii).

The method works for n = 2 since there is only one route.

Suppose it works for n = m. Suppose we have m + 1 towns with
towns A1 and A2 the closest. If we have any collection of linking roads
for the m+ 1 towns then there is a set of roads linking A1 to A2. If we
remove one of those roads and build a road direct from A1 to A2 then
we still have collection of linking roads for the m + 1 towns (after the
deletion each town must still be linked to at least one of A1 and A2,
and after the rebuild each town must will be linked to A1) which will
be at least as cheap. Thus a cheapest set of roads will contain the road
from A1 to A2 so we may start by linking A1 to A2. This reduces the
problem to linking the ‘city’ {A1, A2} and the towns A3, . . . , Am+1. By
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our inductive hypothesis our method will produce a cheapest solution
to this problem and so to the full problem.

The required result follows by induction.

(v) Initially each town is a conurbation. Read the list of distances
in order of increasing size. If you come to a route joining two distinct
conurbations build the road and assign the towns in the two conurba-
tions to a single conurbation removing the two original conurbations
from the list. When all towns are in a single conurbation stop.

(vi) If we use quicksort we need at most

4
n(n− 1)

2
log

n(n− 1)

2
≤ 8n log n

comparisons.

(vii) If we enter A1, A5 or A6 by a 1 unit route we must leave by a
10 unit route. We must enter and leave all three so either we enter and
leave one by a 10 unit route or we use three 10 unit routes. Thus we
must use at least two 10 unit routes and our cost is at least 24 units.

A route which is this cheap is given by is given by

A1A2A3A5A4A6A1.

Exercise 6.1.1∗

Exercise 6.1.2∗
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Exercise 6.1.3

Consider the table of preferences.

A’s preferences B > C > D
B’s preferences A > C > D
C’s preferences D > A > B
D’s preferences C > A > B

The if we group as (A,B) and (C,D) everyone has their first prefer-
ences.
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Exercise 6.1.4

First stage (A, j)

Second stage (B, j), A

Third stage (B, j), (A, k)

Fourth stage (B, j), (A, k), (C,m)

Fifth stage (D, j), B, (A, k), (C,m)

Sixth (D, j), (A, k), (B,m), C

Seventh (D, j), (A, k), (B,m), (C, l)

Exercise 6.1.5∗
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Exercise 6.1.6

Those without partners have taken no part in the events. We have
thus witnessed an application of the algorithm to the r gentlemen and
ladies who have been paired. The pairing is thus stable for those in-
volved.
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Exercise 6.1.7

Not terminating Six participants A, B, C, D, E and F .

A preferences B > C and prefers C to any of D, E or F

B preferences C > A and prefers A to any of D, E or F

C preferences A > B and prefers B to any of D, E or F

D, E and F ’s preferences irrelevant.

A, E and F in room, B, C, D to enter in stated order.

Room sees

A,E, F → (A,B), E, F → (B,C), A,E, F

→ (A,C), B,E, F → (B,C), A,E, F → . . .

Terminating but at unstable point Apply the algorithm to the par-
ticipants in Exercise 6.1.2 with A and B inside the room, C coming
in first and D having preferences A > B > C. C matches with A,
D is turned down by A and B and proposes to C who must accept.
However the system of Exercise 6.1.2 is unstable.
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Exercise 6.1.8

(i) The system gives:-

First stage (A, j).

Second and final stage (A, j), (B, k).

The reversed system gives

First stage (j, B).

Second and final stage (j, B), (k,A).

Gentlemen prefer our procedure (they get their first choice). Ladies
prefer reversed procedure (they get their first choice).

(ii) Each gentleman enters in turn, proposes to his preferred lady
and is accepted.

(iii) The following are stable by inspection.

(A, j) (B, k), (C, l), (D,m)

(A, k) (B, j), (C, l), (D,m)

(A, j) (B, k), (C,m), (D, l)

(A, k) (B, l), (C,m), (D, l).

(vi) Let the gentlemen be Am the ladies am [1 ≤ m ≤ 2N ]

If A2r−1 has first preference a2r−1, second a2r,

A2r−1 has first preference a2r, second a2r−1,

a2r−1 has first preference A2r, second A2r−1,

a2r has first preference A2r−1, second A2r,

then any pairing with

(A2r−1, a2r−1), (A2r, a2r) or (A2r−1, a2r), (A2r, a2r−1)

for each 1 ≤ r ≤ N is stable and there are 2N such pairs.

If we add A2N+1 with first choice a2N+1 and a2N+1 with first choice
A2N+1 then the pairings already given remain stable if we add the pair
(A2N+1, a2N+1).

(v) If we have n gentlemen Aj and n ladies aj such that Aj has first
preference aj and aj has first preference Aj then the only stable pairing
has (Aj, aj).
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Exercise 6.1.12

Suppose that at the first rejection Agatha rejects Albert. Then
Agatha must have rejected Albert in favour of someone else, let us
say Bertram. (Either Albert proposed and she preferred to stick with
Bertram or Bertram proposed and she let go of Albert to take up
Bertram.) Thus Agatha prefers Bertram to Albert and (since there
were no previous rejections and Bertram starts by proposing to his
favourite) Agatha is Bertram’s first choice.

There can be no stable solution in which Agatha and Albert are
married since Bertram can always leave his wife for Agatha (his first
choice) and Agatha will drop Albert for him.
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Exercise 6.1.13

Suppose that two applications of our algorithm give two different
results. Then there must exist one man Albert, say who is married
to two different ladies Bertha and Caroline in the two applications.
If he prefers Bertha to Caroline the second application gives a stable
arrangement in which his married to someone he likes less well than
in the first contrary to Lemma 6.1.9. A similar objection applies if he
prefers Caroline to Bertha so we get a contradiction. All applications
of our algorithm must give the same result.
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Exercise 6.1.15

Since the solution does not depend on the order in which the suitors
(copies of universities) enter we can leave the fictitious university copies
to last. Just before the first fictitious copy enters the students can be
divided into the happy (who have a fiancé) and the unhappy. Each
fictitious university copy will be rejected by each happy student and end
up with an unhappy student so the same students will fail to find a place
and the same students will be assigned to each university regardless of
the preferences of the fictitious university copies.
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Exercise 6.1.16

[There are many possibilities and these are not claimed to be the
most efficient.] (i) Suppose there are N students. We introduce N
extra fictitious universities each offering one place and such that the
jth fictitious university Uj prefers the j th student to all others. The
jth student places the universities she wants to go to in order then
university Uj then the remaining fictitious and undesired universities
in some order.

Since the solution does not depend on the order in which the suitors
(copies of universities) enter we can leave the Uj to last. Uj will propose
to student j who will accept (finishing the process) if she has not got
an acceptable place or reject in favour of the acceptable place she has
already got.

If the universities have a total of M places they introduce M shadow
applicants. Each university lists the k applicants it wants in order
then M − k shadows, then the M remaining shadows and unwanted
applicants. If a university copy proposes to a shadow that university
copy will already have been turned down by all its wanted applicants
(who will have been accepted by universities they prefer).

(ii) The university of Pismo splits in two ‘Scholarship Pismo’ and
‘Place Pismo’ and students may order the list of Scholarship U’s and
Place U’s in any way they wish (eg A with S, B with S, A without S, C
with S, . . . ). [This used to be done with College choice in Oxbridge.)



242

Exercise 6.1.17

Since any lady will leave her present partner if the universal favourite
offers himself, the only stable solution will marry him to his first choice.
With these two removed the problem reduces with n pairs reduces to
the problem with n− 1 pairs so the only stable choice has the second
favourite choosing his favourite amongst the remaining n − 1 and so
on.

In the context of university entrance the top candidate chooses her
university, the second chooses from all the universities which are not
already full, the third chooses from all the universities which are not
already full, and so on.
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Exercise 6.1.18

We can replace the non-strict old preferences by new preferences such
that

(1) If A (a lady or gentleman) strictly prefers a to b in the old system
then A strictly prefers a to b in the new system.

(2) If A gives equal preference a to b in the old system then either A
prefers a to b in the new system or A prefers b to a in the new system

We then solve the new problem using Gale-Shapely. Since the result
is stable with the new preferences it it is stable under the old.

On the other hand if gentleman A and B like ladies a and b equally
and vice versa then neither (A, a); (B, b) nor (A, b); (B, a) satisfy the
condition that there do not exist one lady and one gentleman in differ-
ent pairs by like each other at least as much as their present partner.

Exercise 6.2.1∗
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Exercise 6.2.2

Since there are only two issues (2′) and (3′) which deal with 3 issues
are vacuously satisfied.

If everybody prefers A to B then at least half the voters prefer A to
B and the society prefers A to B.

If everybody prefers B to A then it is false that at least half the
voters prefer A to B so the society prefers B to A.

Thus (1′) is satisfied in every case.

Exercise 6.2.4∗
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Exercise 6.3.1

Suppose you choose B and I choose C. The following table shows
the winner for the various combinations of throws.

3 5 7
1 B B B
6 C C B
8 C C C

We see that the probability that C beats B is 5/9.

Suppose you choose C and I choose A. The following table shows
the winner for the various combinations of throws.

1 6 8
2 A C C
4 A C C
9 A A A

We see that the probability that A beats C is 5/9.
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Exercise 6.3.2

We have

Pr(X > Y ) = Pr(X = 4) = 1− p
Pr(Y > Z) = Pr(Z = 0) = 1− p

Pr(Z > X) = Pr(Z = 3, X = 1) = p2

Since 1−p is a decreasing and p2 an increasing function of p for p ≥ 0 it
follows that min(1−p, p2) attains a maximum for p ≥ 0 when 1−p = p2

ie p2 + p− 1 = 0. Thus

p = −1±
√

52, p ≥ 0

so
p = τ =

√
5− 12

(note that 1 > τ > 0) maximises

min
(

Pr(X > Y ), Pr(Y > Z), Pr(Z > X)
)

and with this choice

Pr(X > Y ) = Pr(Y > Z) = Pr(Z > X) = τ.

You will be able to and will choose a more advantageous lane than the
red car. He will then been able to and will choose a more advantageous
lane than the you. At every stage one of the drivers will be unhappy
and choose a new lane.
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Exercise 6.3.3

(i) We have

Pr(A beats B) = Pr(A throws 4) =
2

3

Pr(B beats C) = Pr(C throws 2) =
2

3
and

Pr(C beats D) = Pr(C throws 6) + Pr(C throws 2 and D throws 1)

=
1

3
+

1

2
× 2

3
=

2

3
Pr(D beats A = Pr(D throws 5) + Pr(D throws 1 and A throws 0)

=
1

2
+

1

2
× 1

3
=

2

3
.

A wins against B if B throws 2, 3 or 4 or if B throws 15, 16 or 17
and A throws 18. Thus the probability of A winning against B is

1

2
+

1

2
× 16 =

21

36
.

B wins against C if B throws 15, 16 or 17 or if B throws 2, 3 or 4
and C throws 1 Thus the provability of A winning against B is

1

2
+

1

2
× 16 =

21

36
.

C wins against A unless A throws 18 or A does not throw 18 but C
throws 1, Thus the provability of C winning against A is

1− 1

6
− 5

6
× 1

6
=

25

36
.
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Exercise 6.3.4

C and A prefer a to b. A and B prefer b to c. B and C prefer c to a.

By symmetry we need only consider the case when c is left out of
the first vote. Then a will win the first vote and then lose the second
vote to c.
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Exercise 7.1.1

If your opponent chooses A and B then one of them will beat the
other. Suppose A beats B. If you always play A then you will draw
when your opponent plays A and win when they play B.

Exercise 7.1.3∗

Exercise 7.1.5∗



250

Exercise 7.1.7

(i) Whether the second pass is defended or not, it will always be
quicker than the first path, whether defended or not. Since Colonel
Schröder will always take the second pass, Lieutenant Lukáš must de-
fend the second pass.

(ii) Suppose Lieutenant Lukáš decides to use a random strategy and
defend the first pass with probability q and the second with probability
1 − q. If Colonel Schröder uses the first pass his expected time to
destination is

f1(q) = 4(1− q) + 6q = 4 + 2q

and if he uses the second pass his expected time to destination is

f2(q) = 3(1− q) + 2q = 3− q.

Assuming that Colonel Schröder can guess the chosen q and makes
the correct decision, the expected time for his troops to reach their
destination will be

f(q) = min(f1(q), f2(q)) = f2(q) = 3− q
Thus f is a decreasing function of q and Lukáš should take q = 0 and
always defend the second pass.

Exercise 7.2.1∗
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Exercise 7.2.3

If Calum take q = q̂ and Rowena takes p = p̂ then Rowena’s expected
winnings are e(p̂), and Calum’s expected losses are f(q̂). Since Calum’s
losses are Rowena’s gains, e(p̂) = f(q̂).
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Exercise 7.2.4

(i) He gets a11 regardless of what happens.

(ii) Calum will have a non-unique choice if

f(q) = max(a12 + (a11 − a12)q, a22 + (a21 − a22)q)

has a horizontal section on which it takes its minimum value ie if

a11 − a12 = 0 and a12 < max(a21, a22)

or
a21 − a22 = 0 and a22 < max(a11, a12)

or
a11 = a12 = a21 = a22.

(iii) Consider the following matrix of Rowena’s winnings(
0 0
1 −1

)
.

Calum can play any strategy which takes the second column with prob-
ability q ≥ 1/2. Rowena must pick the first row (ie has the unique
choice p = 1).
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Exercise 7.3.1

We have an n × m matrix A = (aij). If Rowena has chosen row i
and Calum has chose column j, then Calum pays the amount aij to
Rowena. The object of Rowena is to maximise the expected sum paid
to her and the object of Calum is to minimise that sum.

We shall say that Rowena adopts strategy p if she chooses row i with
probability pi and that Calum adopts strategy q if he chooses row j
with probability qj. If Rowena adopts strategy p and Calum adopts
strategy q, then the expected gain for Rowena is

e(p,q) =a11p1q1 + a12p1q2 + a13p1q3 + . . .

+ a21p2q1 + a22p2q2 + a23p2q3 + . . .

+ a31p3q1 + a22p3q2 + a23p3q3 + . . .

+ . . .

which may be written more briefly as

e(p,q) =
n∑
i=1

3∑
j=m

aijpiqj =
n∑
i=1

3∑
j=m

piaijqj

or, still more briefly, in matrix notation

e(p,q) = pTAq.



254

Exercise 7.3.5

Take

H =

(
3 2
1 0

)
.

Then

max
i

min
j
hij = max{2, 0} = 2 6= 1 = min{3, 1} = min

i
max
j
hij.
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Exercise 7.4.1

[11] [12] [21] [22]
[11] 0 1 −1 0
[12] −1 0 0 1
[21] 1 0 0 −1
[22] 0 −1 1 0

The game is symmetric so the expected winnings with best play is
0. If row chooses each play with probability 1/4 the expected value of
the outcome for column is 0 whichever column is chosen. Thus row’s
play is optimal.

The same argument shows that for the general game each player
should choose each outcome [r, s] with equal probability.

Exercise 7.4.2∗
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Exercise 7.4.4

If row plays each row with probability 1/9 the expected value to row
of column playing column [rs] is

e[rs] =
1

9

∑
[ij]

a[rs][ij].

Thus

e[11] = 3/9 = 1/3, e[12] = 0, e[13] = −3/9 = −1/3,

e[21] = 3/9 = 1/3, e[22] = 0, e[23] = −3/9 = −1/3,

e[31] = 3/9 = 1/3, e[32] = 0, e[33] = −3/9 = −1/3.

Since e[11] > 0 row’s strategy cannot be right. Column can gain an
advantage by always guessing 3.

I would always guess 3. (Does not matter how many fingers I hold
out.)
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Exercise 7.4.5

Since the game is symmetric the outcome of best play must have
expected value 0. If row plays p̂. then expected value of the game to
row if column plays row [rs] is e[rs] with

e[11] = 5
12
× (−2) + 1

3
× 0 + 1

4
× 4 = 1

6
> 0

e[12] = 5
12
× 0 + 1

3
× (−3) + 1

4
× 4 = 0

e[13] = 5
12
× 0 + 1

3
× 0 + 1

4
× 0 = 0

e[21] = 5
12
× (−3) + 1

3
× 4 + 1

4
× 0 = 1

12

e[22] = 5
12
× 0 + 1

3
× 0 + 1

4
× 0 = 0

e[23] = 5
12
× 0 + 1

3
× 4 + 1

4
× (−5) = 1

16

e[31] = 5
12
× 0 + 1

3
× 0 + 1

4
× 0 = 0

e[32] = 5
12
× 4 + 1

3
× (−5) + 1

4
× 0 = 0

e[33] = 5
12
× 4 + 1

3
× 0 + 1

4
× (−6) = 1

6
> 0

(ii) Follows from the table.

(iii) No. For example, if we know they are always going to play [2, 2]
we can always play [3, 2].
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Exercise 7.4.6

Rowena will always do better by choosing R1 rather than R4. Our
system thus reduces to

C1 C2 C3

R1 4 −2 −5
R2 −2 4 3
R3 −3 6 2

Now Calum can always do better by choosing C3 rather than C2. Our
system reduces to

C1 C3

R1 4 −5
R2 −2 3
R3 −3 2

Now Rowena can always do better by choosing R2 rather than R3. Our
system reduces to

C1 C3

R1 4 −5
R2 −2 3

Suppose Rowena chooses R1 with probability p and R2 with proba-
bility 1− p. If Calum chooses C1, Rowena’s expected winnings are

e1(p) = 4p− 2(1− p) = 6p− 2.

If Calum chooses C3, Rowena’s expected winnings are

e2(p) = −5p+ 3(1− p) = 3− 8p.

Rowena chooses p to maximise

min(6p− 2, 3− 8p) =

{
6p− 2 if p ≤ 5/14

3− 8p if p ≥ 5/14.

Thus Rowena chooses R1 with probability 5/14, R2 with probability
9/14 and never chooses R3 or R4.

Suppose Calum chooses C1 with probability q and C3 with probabil-
ity 1− q. If Rowena chooses R1, Rowena’s expected winnings are

f1(q) = 4q − 5(1− q) = 9q − 5.

If Rowena chooses R2, Rowena’s expected winnings are

f2(q) = −2q + 3(1− q) = 3− 5q.

Calum chooses q to minimise

max(9q − 5, 3− 5q) =

{
3− 5q if q ≤ 4/7

9q − 5 if q ≥ 4/7.
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Thus Calum chooses C1 with probability 4/7, C3 with probability 3/7
and never chooses R2.

Observe that Rowena’s expected winnings Ej if she plays as advised
and Calum chooses Cj are

E1 = 4× 5
14
− 2× 9

14
= 1

7

E2 = (−2)× 5
14

+ 4× 9
14

= 13
7
> 1

7

E1 = (−5)× 5
14

+ 3× 9
14

= 1
7

and Rowena’s expected winnings Fk if Calum plays as advised and she
chooses Rk are

F1 = 4× 4
7
− 5× 3

7
= 1

7

F2 = (−2)× 4
7

+ 3× 3
7

= 1
7

F3 = (−3)× 4
7

+ 2× 3
7

= −6
7
< 1

7

F4 = 3× 4
7
− 6× 3

7
= −6

7
< 1

7
.

Thus our strategies are indeed optimal.
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Exercise 7.4.7

Bingham should always bet if the card is black since he is always
better off betting whatever you do. Thus b = 1.

If you always fold, then Bingham’s expected winnings are

eF = 1
2

+ 1
2

(
p− (1× (1− p))

)
= p.

If you always call, then Bingham’s expected winnings are

eC = 2× 1
2
− 2p× 1

2
− (1− p)× 1

2
= 1

2
(1− p).

Thus if you know what Bingham is going to do, his expected winnings
are

min{p, 1
2
(1− p)} =

{
p if p ≤ 1

3
1
2
(1− p) if p ≥ 1

5

so Bingham should take b = 1, p = 1
3

and his expected winnings are 1
3
.

Now consider your play. If Bingham always passes on red (but always
bets on black) his expected winnings are

fP = −1
2

+ 1
2
(2q + (1− q)) =

q

2
.

If Bingham always bets, his expected winnings are

fB = 2q × (1
2
− 1

2
) + (1− q) = 1− q.

Thus if Bingham knows what you are going to do his expected winnings
are

max{1
2
q, 1− q} =

{
1− q if q ≤ 2

3
1
2
q if q ≥ 2

3

so you should take q = 2
3

and (as already found earlier) his expected

winnings are 1
3
.
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Exercise 7.4.8

(i) If n = 1, then a1 = b1. If n = 2 a1 = b2, a2 = b1 . We always
have a draw.

(ii) Suppose A always takes aj = 1 or aj = 0. Let X be the set of
j where aj = 1, Y the set of j where bj = 1 and Z the set of j where
bj ≥ 2. Then A wins on battlefields with j ∈ X \ (Y ∪ Z) and B wins
on battlefields with j ∈ Z∪(Y \X). Otherwise we have draws. Writing
|W | for the number of elements of W , we have

|X \ (Y ∪ Z)| − |Z ∪ (Y \X)|
=
(
|X| − |X ∩ Y | − |X ∩ Z|

)
−
(
|Z|+ |Y | − |X ∩ Y |)

=
(
|X| − |Z| − |Y |)− |X ∩ Z| ≥ |X| − 2|Z| − |Y |

= n− 2|Z| − |Y | ≥ 0

so A has a draw or better.

(iii) Without loss of generality we suppose that A has chosen a1 ≥
a2 ≥ · · · ≥ an. Since m > n we have a1 ≥ 2. If B chooses b1 = a1 − 2,
b2 = a2 + 1, b3 = a3 + 1, bj = aj for j ≥ 4, she will win.
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Exercise 7.6.1

(i) If a > b then

h(b) = f(b) + g(b) > f(a) + g(b) > f(a) + g(a) = h(a).

Thus h is strictly increasing. Since the sum of continuous functions is
continuous, h is continuous.

(ii) h(0) = f(0) + g(0) = 1 + 1 = 2 and h(1) = 0 + 0 = 0.

(iii) The intermediate value theorem tells us that (i) and (ii) imply
the existence of an x0 with 0 < x0 < 1 with h(x0) = 1. Since h is
strictly increasing the solution is unique.
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Exercise 7.6.2

(i) Suppose y > x0. If z ≥ y

Pr(George paintballed) = f(z) < f(x0).

If z < y

Pr(George paintballed) = 1− g(y) > 1− g(x0) = f(x0).

Thus Fred should choose z < y and, with this choice,

Pr(George paintballed) = f(y) > f(x0).

(ii) Suppose y < x0 so f(y) + g(y) > 1. If z > y

Pr(George paintballed) = f(z) < f(y).

If z < y
Pr(George paintballed) = 1− g(y) < f(y).

If z = y
Pr(George paintballed) = f(y).

Thus Fred should choose z = y and, with this choice,

Pr(George paintballed = f(y) > f(x0).

(iii) Suppose y = x0. If If z > y

Pr(George paintballed) = f(z) < f(x0).

If z ≤ y
Pr(George paintballed) = 1− g(x0) = f(x0).

Thus Fred should choose z ≤ x0 and, with this choice,

Pr(George paintballed = f(x0).

(iv) Thus Fred should fire at x0 and, by the same argument with
roles reversed George should fire at x0.
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Exercise 7.6.3

If they do not fire simultaneously, either the one who did not fire is
paintballed and the firer is not paintballed or the one who fires misses
and will certainly be paintballed. The number of paintballed players is
1.

The probability both paintballed is pq, probability neither paint-
balled is (1−p)(1−q). The expected number of paintballed participants
is p+ q = 1.

If they fire at x > x0 the expected number of paintballed participants
is f(x) + g(x) < 1.

If they fire at x < x0 the expected number of paintballed participants
is f(x) + g(x) > 1.
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Exercise 7.6.4

It is what one would expected if customers go to the nearest ice-
cream seller and customers are evenly distributed.

If the first seller is at x < 1/2 then the if the second goes to y =
1
2
(x+ 1

2
) then, since y > x, the first seller will have

f
(
x, 1

2
(x+ 1

2
)
)

= 3
4
x+ 1

4
< 1/2.

By symmetry, or by repeating the argument, if the first seller is at
x > 1/2 then there is a y with

f(x, y) < 1/2

However if x = 1/2 then, if y > 1/2,

f(x, y) = (1
2

+ y)/2 > 1/2

and by symmetry, or by repeating the argument, if y < 1/2,

f(x, y) = (1
2

+ y)/2 > 1/2.

Finally
f(1

2
, 1

2
) = 1/2.

Thus the first ice-cream seller will choose x = 1/2 and by symmetry
the second will also chose y = 1/2.

Presumably (but this is not really a mathematical question) they
will move towards each other and when they have met they will jostle
for the more central position slowly moving to the centre.
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Exercise 7.6.5

Suppose that the other bus company chooses to start at a minutes
past the hour. Then the expected proportion of passengers carried by
the first company is

1

60

59∑
r=0

f(r, a) =
1

60

59∑
j=0

f(j, 0)

=
1

60

(
1

2
+

59∑
j=1

j

60

)

=
1

60

(
1

2
+

59

2

)
=

1

2
.

By symmetry, if each company employs its best tactics they must get
equal expected return. Since the total expected return (as a proportion
of passengers) is 1, if each company employs its best tactics they must
get return 1/2.

If the first company knows the departure time of the second and
decides to leave a minutes before, then it will get (60 − a)/60 of the
total carried for 1 ≤ a ≤ 59 and 1/2 if a = 0. Thus it will leave one
minute earlier than the other company. Thus each week the company
can move will go 1 minute before the other. (So after the second week
the changing company will move its departure time 2 minutes earlier.)
The author believes that has actually seen this happen with the dates
of college research fellowship interviews.
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Exercise 7.6.6

The travellers should finish together (otherwise the one who arrives
later could spend a little longer on the horse and arrive sooner yet still
not beat the first traveller). Thus the travellers must spend the same
time on the horse and the horse must be left at the halfway point.
It takes the first rider x/(2v) to get to the halfway point riding and
x/(2u) to finish walking. The time taken is(

1

2u
+

1

2v

)
x.

If they do something more complicated then they must still finish
together. If they met earlier then they meet for the first time and the
argument above shows that their best average speed up to this point is(
(2u)−1 +(2v)−1

)−1
. The same holds for the average speed between the

kth and k + 1st meeting so they can not improve their average speed
over the course so they can not arrive earlier.

The same arguments show that with the clever horse they can not
do better than the first rider riding a certain distance the leaving the
horse to walk back toward the second who then mounts and proceeds
to the finishing line crossing at the same time. Each must spend the
same time in the saddle so the first leaves the horse at 1

2
(1 + α)x. The

noble and sagacious steed will then walk back meeting the walker at
1
2
(1− α)x.

The time taken by the first traveller is

1
2
(1 + α)

x

v
+ 1

2
(1− α)

x

u

The time taken by the horse is

2× (1 + α)
x

v
+ αxw.

These two times must be equal so

1 + α

v
+

1− α
u

= 2
1 + α

v
+ 2× αw.

whence

−1 + α

v
+

1− α
u

= 2× αw

and

α =
v−1 − u−1

u−1 + v−1 + 2w−1
.
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Thus the total time taken is

x

2

(
v−1 + u−1) +

u−1 − v−1

u−1 + v−1 + 2w−1
(v−1 − u−1)

)
=

(
v−1 + u−1 − (u−1 − v−1)2

u−1 + v−1 + 2w−1

)
=

x

1 + u
v
v+w
u+w

.
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Exercise 8.1.2

Since t, 1− t, pj, qj ≥ 0 we have tpj ≥ 0, (1− t)qj ≥ 0 and

tpj + (1− t)qj ≥ 0.

Further
n∑
j=0

(tpj + (1− t)qj) = t

n∑
j=0

pj + (1− t)
n∑
j=0

qj = t+ (1− t) = 1.

Thus
u,v ∈ K̃, 1 ≥ t ≥ 0⇒ tu + (1− t)v ∈ K̃

and K̃ is convex.
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Exercise 8.1.3

Write
K = {(x, y) ∈ R2 : f(x) ≥ y}.

Then

(x1, y1),(x2, y2) ∈ K, 1 ≥ t ≥ 0

⇒ f(x1) ≥ y1, f(x2) ≥ y2, 1 ≥ t ≥ 0

⇒ f
(
tx1 + (1− t)x2

)
≥ tf(x1) + (1− t)f(x2)

≥ ty1 + (1− t)y2

⇒ t(x1, y1) + (1− t)(x2, y2)

= (tx1 + (1− t)x2, ty1 + (1− t)y2) ∈ K
so K is convex.

Exercise 8.1.8∗
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Exercise 8.1.10

(i) If (ax∗, by∗) is a best choice for Ka,b when we use the status quo
point (ax0, by0), then (x∗, y∗) = (a−1ax∗, b−1by∗) is a best choice for
K = (Ka,b)a−1,b−1 with status quo point (x0, y0) = (a−1ax0, b

−1by0).

(ii) We have

(u1, v1), (u2, v2) ∈ La,b, 1 ≥ t ≥ 0

⇒ (a−1u1, b
−1v1), (a−1u2, b

−1v2) ∈ L, 1 ≥ t ≥ 0

⇒ (ta−1u1 + (1− t)a−1u2, tb
−1v1 + (1− t)b−1v2) ∈ L

⇒
(
a(ta−1u1 + (1− t)a−1u2, b(tb

−1v1 + (1− t)b−1v2) ∈ La,b
⇒ t(u1, v1) + (1− t)(u2, v2) ∈ La,b.
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Exercise 8.1.12

Observe that

t(u+ x1, v + y1)+(1− t)(u+ x2, v + y2)

=
(
u+ (tx1 + (1− t)x2), v + (ty1 + (1− t)y2)

)
.
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Exercise 8.1.14

We carry out the argument with n people.

Rule 1 (Pareto optimality) Let K be a set of options in Rn. If x and
yare distinct points of K, xj ≥ yj for all j and xk > yk for some k,
then x is preferred to y.

Lemma A Consider a set of options

K =

{
x :

n∑
j=1

xj ≤ 1

}
.

The set of best choices under Rule 1 is

E =

{
x :

n∑
j=1

xj ≤ 1

}
.

Proof. If
∑n

j=1 xj < 1, set y1 = x1 + 1−
∑n

j=1 xj and yj = xj for j ≥ 2.
Then y is preferred to x. �

Rule 2 (Fairness) LetK be a set of options which is symmetric between
Alice and Bob in the sense that x ∈ K, yj = xσj for all j and some
bijection

σ : {1, 2, . . . , n} → {1, 2, . . . , n}
If the status quo point z has the form

z = (z, z, . . . z)

any best choice must be of the form

z = (w,w, . . . w).

Lemma B Consider a set of options

K =

{
x :

n∑
j=1

≤ 1

}
with status quo point 0. Under Rule 1 and Rule 2 there is a unique
best choice (1/n, 1/n, . . . , 1/n).

Proof. Since K and 0 are symmetric we can apply Rule 2. Observe
that the only symmetric point in the set E of Lemma A is

x∗ = (1/n, 1/n, . . . , 1/n).

�
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Rule 3 (Indifference to rejected alternatives) Let K and K ′ be a sets
of options with z ∈ K ′ ⊆ K. Suppose that x∗ ∈ K is a best choice for
K with status quo point z. Then, if x∗ ∈ K ′, it will be a best choice
for K ′ with status quo point z.

Lemma C Consider a set of options

K ⊆

{
x :

n∑
j=1

≤ 1

}
with status quo point 0. If (1/n, 1/n, . . . , 1/n) ∈ K, then under Rules 1
to 3 it is the unique best choice.

Lemma D Suppose that K is a convex set such that

u = (1/n, 1/n, . . . , 1/n) ∈ K

and
∏n

j=1 xj ≤ n−n for all x ∈ K with xj ≥ 0 for all j. Then

K ⊆

{
x :

n∑
j=1

≤ 1

}
.

Proof. Suppose x ∈ K and xj ≥ 0 for all j. Then

u + t(x− u) = ((1− t)u + x ∈ K

for all 1 ≥ t ≥ 0 and so

n−n ≥
n∏
j=1

(
n−1 + t(xj − n−1)

)
and so

t
n∑
j=1

(xj − n−1) + t2Px(t) ≤ 0

for some polynomial Px(t). Thus, dividing by t,

n∑
j=1

(xj − n−1) + tPx(t) ≤ 0

for all 1 ≥ t > 0. Allowing t→ 0+, we obtain

n∑
j=1

(xj − n−1) ≤ 0

ie
n∑
j=1

xj ≤ 1

as stated. �
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Lemmas C and D combine to give us Lemma E.

Lemma E Suppose that K is a convex set such that

u = (1/n, 1/n, . . . , 1/n) ∈ K
and

∏n
j=1 xj ≤ n−n for all x ∈ K with xj ≥ 0 for all j. If the status

quo point is 0, then, under Rules 1 to 4, u is the unique best choice.

Rules 4 and 5 (Scale and translation invariance) If aj > 0 and b ∈ Rn

define Ta,b : Rn → Rn by

Ta,b(x) = y

with
yj = ajxj + bj.

We demand that, if x∗ is a best choice for some set K with status quo
point u, then Ta,bx

∗ is a best choice for Ta,bK with status quo point
Ta,bu.

Theorem Consider a convex set of options K with status quo point
u. If x∗ ∈ K, x∗j > uj for all j. and

n∏
j=1

(xj − uj) ≤
n∏
j=1

(x∗j − uj)

for all x ∈ K with xj > uj for all j, then, under Rules 1 to 5, (x∗, y∗)
is the unique best choice.

Proof. Use Lemma E together with rules 4 and 5 applied with b = −u,
aj = n−1(xj − uj)−1. �

Exercise 8.2.1∗
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Exercise 8.2.2

(i) Since the status point is (0, 0) the only points (x, y) to consider
must have y ≥ 0 so y = 0 so be (x, 0). If 0 ≤ x < 1 then (1, 0)
is preferred to (x, 0). There is no point preferred to (1, 0) which is
therefore a unique best choice.

(ii) Suppose (a) and (b) false. Then we can find (x, 0) ∈ K with
x > 0 and (0, y) ∈ K with y > 0. By convexity

(x/2, y/2) = 1
2
(x, 0) + 1

2
(0, y) ∈ K

yet x/2, y/2 > 0 contradicting the condition on K.

Part (i) shows that (b) may be false but (a) true. Interchanging x
and y this shows that (a) may be false but (b) true.

If we take

(a0, b0) = (0, 0), (a1, b1) = (0,−1),

(a2, b2) = (−1, 0) and (a3, b3) = (−1,−1)

and status quo point (0, 0), then the only point (x, y) in K̃ with x ≥
0, y ≥ 0 is (0, 0) so both (a) and (b) are true.

(iii) By translation we may suppose (x0, y0) = (0, 0) Take K = K̃
in part (ii). If (a) and (b) are true then the status point is the unique
best point. If (b) is false then by the argument of (i) the unique best
point is (x∗, 0) with x∗ the largest x with (0, x) ∈ K.
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Exercise 8.2.3

(i) Observe that

a2 + b2 − 2ab = (a− b)2 ≥ 0.

(ii) Write
‖x‖ = (x2 + y2)1/2.

Using the triangle inequality (see Exercise 3.5.9 (iv)), we see that, if
1 ≥ t ≥ 0,

u,v ∈ D ⇒ ‖u‖, ‖v‖ < 1

⇒ ‖tu + (1− t)v‖ ≤ ‖tu‖+ ‖(1− t)v‖ = t‖u‖+ (1− t)‖v‖ < 1

⇒ tu + (1− t)v ∈ D
Thus D is convex.

In a similar manner

u,v ∈ D̄ ⇒ ‖u‖, ‖v‖ ≤ 1

⇒ ‖tu + (1− t)v‖ ≤ ‖tu‖+ ‖(1− t)v‖ = t‖u‖+ (1− t)‖v‖ ≤ 1

⇒ tu + (1− t)v ∈ D̄
Thus D̄ is convex.

(iii) If 0 < k < 1 then (k1/2, k1/2) ∈ Hk ∩D so Hk ∩D 6= ∅.

However if k ≥ 1

(x, y) ∈ Hk ⇒ xy ≥ 1⇒ x2 = y2 ≥ 2⇒ (x, y) /∈ D.
so Hk ∩D = ∅.

(iv) Set x∗ = y∗ = 1. Then (x∗, y∗) ∈ D̄ and

x∗y∗ = 1 ≥ x2 + y2

2
= xy

for all (x, y) ∈ D̄ with x, y ≥ 0.
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Exercise 8.2.5

(i) We may take (x0, y0) = (0, 0) since

K̃ = {(x− x0, y − y0) : (x, y) ∈ K}
is also a closed convex set such that

(a) Whenever (x, y) ∈ K̃ we have x, y ≤M + |x0|+ |y0|,

(b) (x1 − x0, y1 − y0) ∈ K̃ and x1 − x0 ≥ 0, y1 − y0 ≥ 0.

(ii) Suppose (x∗, y∗), (x∗∗, y∗∗) ∈ K distinct and x∗y∗ = x∗∗y∗∗ = k.
Then (

1
2
(x∗ + x∗∗), 1

2
(y∗ + y∗∗)

)
= 1

2
(x∗, y∗) + 1

2
(x∗∗, y∗∗) ∈ K

but
1
2
(x∗ + x∗∗)× 1

2
(y∗ + y∗∗) = 1

4
(x∗y∗ + x∗∗y∗∗ + x∗y∗∗ + x∗∗y∗)

=
k

4

(
2 +

x∗

x∗∗
+
x∗∗

x∗

)
= k + k

((
x∗

x∗∗

)1/2

−
(
x∗∗

x∗
)

)1/2
)2

> 0

unless (
x∗

x∗∗

)1/2

−
(
x∗∗

x∗

)1/2

= 0

that is to say x∗ = x∗∗ and so y∗ = y∗∗. Thus the point (x∗, y∗) is
unique if it exists.

(iii) Since (0, 0) ∈ K, 0 ∈ E, condition (i) tells us that e ∈ E implies
e ≤M2.

(iv) By the definition of the supremum we can find kn ∈ E with
kn → k. Choose (xn, yn) ∈ K with xn, yn ≥ 0 such that xnyn = kn.

(v) We know that 0 ≤ xn ≤ M so we by the theorem of Bolzano–
Weierstrass we may find a subsequence m(j)→∞ and an x∗ ∈ R such
that xm(j) → x∗. We can now find a subsequence n(j) = m(j(k)) of
the m(j) with n(j)→∞ and a y∗ ∈ R such that yn(j) → y∗.

(vi) Now xn(j) → x∗. Since xn(j) ≥ 0 x∗ ≥ 0. Similarly y∗ ≥ 0. Since
K is closed (x∗, y∗) ∈ K. By continuity x∗y∗ = k so

xy ≤ k = x∗y∗

whenever (x, y) ∈ K and x, y ≥ 0.
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Exercise 8.3.1

If we set X = x + 3, Y = y + 1, we see that we must solve the
bargaining problem for X+Y ≤ 13. By symmetry and Peano we know
that X = Y = 13/2 so x = 7/2 and y = 11/2 represent the Nash
solution. Since B makes 1 from the new arrangement, A must pay B
an extra 9/2.
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Exercise 8.3.2

(i) The expected outcome for each is

f(q) = −100q2 − 5q(1− q) + 5(1− q)q − (1− q)2

= −1 + 2q − 101q2 = −101(q − 101−1)2 + 101−2 − 1

which is maximised by taking q = 1/101.

(ii) Since the situation is symmetric between Jules and Jim, the Nash
solution will be, so p3 = p4. If they decide on a choice with pj = qj and
q2 > 0. Then p1 = q2 + q4, p2 = q2, p2 = 0 will make them happier.
Thus for the Nash solution p2 = 0, p3 = p4.

For both suggested status quo points the only point in the quadrant
{(x, y) : x, y ≥ 0} is p3 = p4 = 1/2 so this is the Nash solution (with
p1 = p2 = 0).

(iii) Exactly as in (ii) we are looking for a solution p3 = p4 = x,
p2 = 0 p1 = 1− 2x with 0 ≤ x ≤ 1/2 which maximises

x(5 + a)− (1− 2x) = x(7 + a)− 1.

If a > −7 we want x = 1/2 and p3 = p4 = 1/2 (with p1 = p2 = 0). If
a < −7 we want x = 0 and p2 = 1, p1 = p3 = p4 = 0 so both always
swerve.
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Exercise 8.3.3

Since the situation is symmetric between the two prisoners, the Nash
solution will be symmetric ie both confess with probability p, one or
other confess with probability q, and neither confess with probability
1− 2q − p.

The expected sentence for each is then

−2p− 3q + 0q − (1− p− 2q) = −1− p− q
which is minimised by taking p = q = 0 and both keeping stum.
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Exercise 8.4.5

We need the following result.

Theorem Let

B̄ = {(x, y, z ∈ R3 : x2 + y2 + z2 ≤ 1}
∂B = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

We cannot find a continuous function F : B̄ → ∂B with F (x, y, z) =
(x, y, z) for all (x, y, z) ∈ ∂B.

We now prove Theorem 8.4.4.

Suppose that f : B̄ → B̄ is a continuous function with no fixed
point, that is to say that f(x) 6= x for all x ∈ B̄.

We can now define a function F : B̄ → ∂D by the recipe ‘starting at
f(x), draw a line through x and continue it until it cuts the boundary
∂D at F (x)’.

Observe that, if we make a small change in x, there will only be
a small change in f(x) (since f is continuous) and so only a small
change in F (x). Thus F is continuous. By construction, F (x) = x for
all x ∈ ∂B and we have a contradiction with the result of with our first
theorem.

Thus no f of the type described can exist and the result follows.

The generalisations are immediate.

Theorem Let

B̄ = {(x ∈ Rn : ‖x‖ ≤ 1}
∂B = {(x ∈ Rn : ‖x‖ = 1}.

We cannot find a continuous function F : B̄ → ∂B with F (x) = x for
all x ∈ ∂B.

Theorem We the notation as before if f : B̄ → B̄ is continuous, then
there is an (x) ∈ B̄ such that f(x) = (x).
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Exercise 8.4.7

We go directly to general, the result for 3 being obtained by setting
n = 3.

Lemma Let
B̄ = {(x ∈ Rn : ‖x‖ ≤ 1}.

Suppose that E is a set in Rn such that there exist continuous functions
h1 : B̄ → E and h2 : E → B̄ with the properties that

h2

(
h1(x)

)
= x for all x ∈ B̄

h1

(
h2(u)

)
= u for all u ∈ E.

Then, if h : E → E is continuous, there is an u0 ∈ E such that
h(u0) = u0.

The proof runs unaltered.

If we set
f(x) = h2

(
f
(
h1(x)

))
,

then f is a continuous function from B̄ to B̄ and so has a fixed point
x0. Set u0 = h2(x0). Then

g(u0) = g
(
h2(x0)

)
= h2

(
h1

(
h2

(
g
(
h1(x0)

))))
= h2

(
f(x0)

)
= u0.

Exercise 8.5.2∗



284

Exercise 8.5.3

Write
R+ = {x ∈ R : x ≥ 0}

Consider the set

E =

{
(p,q, r) : p ∈ Rn

+,q ∈ Rm
+ , r ∈ Rl

+,
n∑
i=1

pi =
m∑
j=1

qj =
l∑

k=1

qk

}
.

We observe that E is a bounded closed convex subset of Rn+m+l.

Let p
[i]
j = 1 for i = j, p

[i]
j = 0 otherwise. Define

ui(p,q, r) = max(0, α(p[i]q, r)− α(p,q, r)

and

vj = (p,q, r) = max(0, α(p,q[j], r)− α(p,q, r)

wk = (p,q, r) = max(0, α(p,q, r)− α(p,q, r[k])

similarly.

We now set h(p,q, r) = (p′,q′, r′) where

p′i =
pi + ui(p,q, r)

1 +
∑n

s=1 us(p,q, r)

q′j =
qj + vj(p,q, r)

1 +
∑m

t=1 vt(p,q, r)

r′k =
rk + wk(p,q, r)

1 +
∑m

d=1wd(p,q, r)
.

We observe that h maps E to E and h is continuous so h has a fixed
point (p∗,q∗, r∗).

Suppose, if possible, that

α(p[i],q∗, r∗) > α(p∗,q∗, r∗) whenever p∗i > 0.

Then
p∗iα(p[i],q∗, r∗) ≥ p∗iα(p∗,q∗, r∗) for all i

and
p∗i0α(p[i0],q∗, r∗) > p∗i0α(p∗,q∗, r∗) for some i0

so

α(p∗,q∗, r∗) =
n∑
i=1

p∗iα(p[i],q∗, r∗) >
n∑
i=1

p∗iα(p∗,q∗, r∗) = α(p∗,q∗, r∗)

which is absurd. Thus our original assumption must be wrong and
there must be some i1 with

α(p[i1],q∗, r∗) ≤ α(p∗,q∗, r∗) and p∗i1 > 0.
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Without loss of generality and to fix ideas, we suppose i1 = 1.

We now know that

α(p[1],q∗, r∗) ≤ α(p∗,q∗, r∗) and p∗1 > 0

and so

u1(p∗,q∗, r∗) = max
(
0, α(p[1],q∗, r∗ − α(p∗,q∗, r∗)

)
= 0.

Thus, by the definition of h,

p∗1 =
p∗1 + u1(p∗,q∗, r∗)

1 +
∑n

i=1 ui(p
∗,q∗, r∗)

=
p∗1

1 +
∑n

i=1 ui(p
∗,q∗, r∗)

.

Since p∗1 > 0, it follows that
n∑
i=1

ui(p
∗,q∗, r∗) = 0

and so ui(p
∗,q∗, r∗) = 0 for all i.

Thus
α(p[i],q∗, r∗) ≤ α(p∗,q∗, r∗)

for all i and so

α(p,q∗, r∗) =
n∑
i=1

piα(p[i],q∗, r∗) ≤
n∑
i=1

piα(p∗,q∗, r∗) = α(p∗,q∗, r∗)

for all possible choices of p.

The same argument shows that

β(p∗,q∗, r∗) ≥ β(p∗,q, r∗) for all q,

γ(p∗,q∗, r∗) ≥ γ(p∗,q∗, r) for all r.

Exercise 8.5.4∗
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Exercise 8.6.1

Suppose that Albert is driving one car and Bertha the other. If
Albert chooses left with probability p and right with probability 1− p
whilst Bertha chooses left with probability q and right with probability
1− q, then the expected value of the game to Albert is

α(p, q) = apq−p(1−q)−q(1−p) = (a+2)pq−p−q =
(
(a+2)q−1

)
p−q.

If a > −1 then writing q0 = 1/(a+ 2)

if q > q0, then α(1, q) > α(p, q) for all 1 > p ≥ 0

if q < q0, then α(0, q) > α(p, q) for all 1 ≥ p > 0.

In addition, we observe that α(q0, q0) = α(p, q0) for all p. Since similar
results apply for Bertha, we see that there are exactly three Nash equi-
librium points (p, q) = (0, 0) with expected value to each the players
of 0, (p, q) = (1, 1) with expected value to each the players of a and
(p, q) = (q0, q0) with expected value to the two players of −q0.

If a = −1 then
α(p, q) = (q − 1)p− q,

and
if q < 1, then α(0, q) > α(p, q) for all 1 ≥ p > 0.

and α(p, 1) = −1 for all p. Since similar results apply for Bertha, we
see that there are exactly two Nash equilibrium points (p, q) = (0, 0)
with expected value to each the players of 0 and (p, q) = (1, 1) with
expected value −1.

If a < −1 then, since

α(p, q) = apq−p(1−q)−q(1−p) = (a+2)pq−p−q =
(
(a+2)q−1

)
p−q,

we have
α(0, q) > α(p, q) for all 1 ≥ p > 0 and all q.

Since similar results apply for Bertha, we see that there is only one
Nash equilibrium point (p, q) = (0, 0) with expected value to each the
players of 0.
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Exercise 8.6.2

Suppose that Albert is driving the row car. He chooses left with
probability p and Bertha (driving the column car) chooses left with
probability q. The expected value of the game to Bertha is

α(p, q) = p(aq − (1− q)) + (1− p)(−q + 0) = (q(a+ 2)− 1)p− q.
If a ≥ −1, then

if q > (2 + a)−1 then β(1, q) > β(p, q) for all 1 > p ≥ 0

if q < (2 + a)−1 then β(0, q) > β(p, q) for all 1 ≥ p > 0

if q = (2 + a)−1 then β(0, q) = β(p, q) for all 1 ≥ p ≥ 0

Since similar results hold for Bertha, there are three Nash equilibrium
points (p, q) = (0, 0) with expected value to Albert of a and to Bertha
of 0, (p, q) = (1, 1) with expected value to Albert of 0 and to Bertha of
a and (p, q) = (1 − (2 + a))−1, (2 + a)−1) with expected value to both
players of −(2 + a)−1).

If a < −1 then

β(0, q) > β(p, q) for all 1 ≥ p > 0

and, since similar results hold for Bertha, there is one Nash equilibrium
point (p, q) = (0, 1) with expected value to Albert of −1 and to Bertha
of −1
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Exercise 8.6.3

If the value to Row of the various possibilities is given by(
a b
c d

)
then if Row plays first row with probability p and Column plays first
column with probability q the expected value of the game to Row is

ρ(p, q) = apq + bp(1− q) + c(1− p)q + d(1− p)(1− q)
= Apq +Bp+ Cq +D = (Aq +B)p+ Cq +D.

Similarly the expected value of the game to Column is

κ(p, q) = (αp+ β)q + γp+ δ

If A+B,B > 0 then

ρ(1, q) > ρ(p, q) for all 1 > p ≥ 0

and we set p∗ = 1. If α + β ≥ 0 we set q∗ = 1, if α + β < 0 we set
q∗ = 0 By inspection we have Nash equilibrium at (p∗, q∗).

If A+B,B < 0 then

ρ(1, q) > ρ(p, q) for all 1 > p ≥ 0

and we set p∗ = 0. If β ≥ 0 we set q∗ = 1, if α < 0 we set q∗ = 0. By
inspection we have Nash equilibrium at (p∗, q∗).

If A + B and B do not have the same sign but α + β and α do we
interchange to role of row and column.

In the remaining cases A+B and B do not have the same sign and
α + β and β do not have the same sign then, taking p∗ = −β/α, we
see that κ(p∗, q) does not depend on q and, taking q∗ = −B/A, we see
that ρ(p, q∗) does not depend on q. Thus (p∗, q∗) is a Nash equilibrium
point.
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Exercise 8.6.4

(ii) As D becomes large (so the costs of fighting become large) p and
q become small so the players become more and more dovelike (but it
is still worth an occasional hawk play) and the expected payoff

V (D − V )

2D
=
V

2

(
1− V

D

)
→ V

2

the dove pair payoff.

As D → V+ the rewards of being a hawk against a dove remain high
but the cost of being a hawk against a hawk diminishes towards zero.
p, q → 1 so the players play dove less and less often and the expected
payoff

V (D − V )

2D
=
V

2

(
1− V

D

)
→ 0

the payoff for two hawks when the cost of fighting equals the reward.

(iii) If V = D then, with the notation of the previous paragraphs

α(p, q) =
V −Dq

2
p+

V

2
(1− q)

so if q 6= 1
α(1, q) > α(p, q) for 1 > p ≥ 0.

The only Nash equilibrium point is (p, q) = (1, 1) and the payoff for
both players is then 0.
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Exercise 8.6.5

(i) Since there are slightly more lefters than righters a righter is
more likely to collide (with a lefter) than a lefter (with a righter).
The average lefter will collect fewer damage points and outbreed the
average righter by a bit. Thus the next generation will contain a higher
proportion of lefters and the selective pressures against righters will
increase. Eventually the flock will consist of lefters (who will then
write books on the obvious merits of lefters as demonstrated by their
success against righters).

If here are slightly more righters than lefters the reverse process will
take place.

(ii) If the proportion of lefters in the population is p then, roughly
speaking, the average breeding points a lefter will collect will be

L(p) = A
(
pa− (1− p)

)
and the average number that a righter will collect will be

R(p) = −Ap.
Now

L(p)−R(p) = A(p(a+ 2)− 1).

If a ≤ −1 so (a+2) ≤ 1 then L(p) < R(p) for all 0 < p ≤ 1 so lefters
will die out.

If a > −1 then taking p∗ = (a+2)−1 (and observing that L(p)−R(p)
increases as p increases and decreases as p decreases) we see that if a
some stage p is at least a bit larger than p∗ the lefters will eventually
take over, but if p is at least a bit smaller than p∗ the righters will.
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Exercise 8.6.6

If we release a few bourgeois into a flock of doves then since bourgeois
on average, do better than doves in an encounter with a dove and better
than doves, in an encounter with other bourgeois the bourgeois are
likely to replace the doves.

If we release a few bourgeois into a flock of hawks then since bourgeois
on average do better than hawks in an encounter with a hawks and
better than hawks in an encounter with other bourgeois, the bourgeois
are likely to replace the hawks.
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Exercise 9.1.1

Suppose that the distance to the cemetery is x yards and B drives
at speed u yards an hour. If A sets of at time 0, then A arrives after a
time x/(4u) and B after a time (x− 100)/u. Thus

x

4u
<
x− 100

u
.

Simplifying, we get
x < 4x− 400

so 3x > 400 and x > 1331
3
.
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Exercise 9.1.2

Let us take the time when the race starts to be 0 The hare overtakes
the tortoise half a kilometre from the starting post at time 1/(2v) so
the hare has travelled a distance(

1

2v
− 1

2

)
.

Thus (
1

2v
− 1

2

)
V =

1

2

and

(1)
1

v
− 1

V
= 1.

At the second meeting the tortoise has travelled X − 5
4

in a time

T = (X − 5
4
)/v and the hare has travelled X + 5

4
running for T − 1

hours. Thus ((
X − 5

4

)
1

v
− 1

)
V = X +

5

4

and so

(2)

(
X − 5

4

)
1

v
−
(
X +

5

4

)
1

V
= 1.

Substituting in (2) from (1) we get(
X − 5

4

)(
1− 1

V

)
−
(
X +

5

4

)
1

V
= 1.

Simplifying gives (
X − 5

4

)
− 5

2V
= 1

so

V =
10

4X − 9
.

We have
1

v
= 1 +

1

V
= 1 +

4X − 9

10
=

4X + 1

10
and so

v =
1

4X − 9
.

The hare runs 1/2 hours to cover a distance 2X so

5

4X − 9
=
V

2
= 2X

and
8X2 − 18X − 5 = 0.
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Thus

X =
9±
√

92 + 40

8
=

9± 11

8
.

Since X > 0 we have X = 20/8 = 5/2.

The tortoise travels at 1 kilometre per hour and will take 5/2 hours
to reach the cabbage patch.
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Exercise 9.2.3

(i) [Note this part of the execise has been changed in the corrections]
If b ≤ 1/4, then c ≤ 1/4 so 3b + c(1 − b)2 < 1. If b ≥ 1/3, then
3b+ c(1− b)2 > 1.

(ii) If C misses on his first shot, then either B hits A and C has
first shot in a two sided duel against A or B misses A and C has first
shot in a two sided duel against B. In either case C has a probability
c of hitting his remaining opponent with his first shot and becoming
outright winner.

(iii) If b and c are very small then, with high probability, C misses
A (by accident or design), B misses A, A hits B, C misses A and A
hits C so winning outright.

If b is very close to 1 and c is very small then, with high probability,
C misses A (by accident or design), B hits A, C misses B and B hits
C so winning outright.

If b and c are very close to 1 then, with high probability, C misses A
(by design), B hits A, and C hits B so winning outright.

The verbal arguments can be verified algebraically but there is no
need to do so.
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Exercise 9.2.4

(i) Since pq is very small compared with p + q the probability that
P wins if she shoots first

p

p+ q − pq
≈ p

p+ q
.

Since q is small compared with 1, the probability that P wins if she
shoots second

(1− q)p
p+ q − pq

≈ p

p+ q
.

Since P will probably miss with her first shot it makes it makes little
difference whether she shoots first or second.

(ii) Since the order of firing in the two-sided duel now makes little
difference the participants simply want to make sure that they are faced
with the weakest possible opponent in that duel. Thus everyone will
fire at the strongest player who is not themselves (thus A fires at B
while B and C fire at A).

Since a, b and c are small A is in effect engaging in a two-sided
duel in which he has probability b of hitting and his opponent has
probability b + c of hitting him. The probability of A surviving this
duel is approximately a/(a + b + c). If he survives, he must now duel
C with a probability approximately a/(a+ c) of surviving to win. His
chances of winning outright is thus about

PA =
a

a+ b+ c
× a

a+ c
=

a2

(a+ b+ c)(a+ c)
.

The probability of A not surviving the first duel is (b+c)/(a+b+c).
If A does not survive, then B and C duel with B having a probability
b/(b+ c) of winning. Thus B has approximate probability

PB =
b+ c

a+ b+ c
× b

b+ c
=

b

a+ b+ c
.

of winning outright.

The probability of C winning outright is approximately

PC = 1− Pr(A wins)− Pr(B wins)

= 1− a2

(a+ b+ c)(a+ c)
− b

a+ b+ c

=
2ac+ c2

(a+ b+ c)(a+ c)
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(iii) We have

1 =
a2

(a+ 0 + 0)(a+ 0)
>

a2

(a+ b+ c)(a+ c)

>
a2

(a+ a+ a)(a+ a)
=

1

6
.

If a is fixed, PA → 1 as b, c → 0. If A is much better than B and C
then he is likely to win. If A, B and C have approximately equal skill
then A must engage in a duel in which he has one shot for every two of
his more or less equally opponents so two out of every three paintballs
are aimed at him and he has probability about 1/3 of surviving. If he
survives then he faces a duel on more or less equal terms for which his
survival probability is about 1/2 thus his worse case chances are about
1/3× 1/2 = 1/6.

We have
1

2
>

b

a+ b
>

b

a+ b+ c
> 0.

If a is fixed, PB → 0 as b, c → 0, PB → 1/2 as b → a, c → 0. Thus
PB can take all values between 1/2 and 0. B’s best chance is if he his
almost as good as A so has chance about 1/2 of surviving to duel with
C. If C is incompetent B’s chance of triumph remains 1/2. If PA is
close to 1, PB must be close to 0.

We have

1

2
=

2a2 + a2

(a+ 2a)(a+ a)
>

2ac+ c2

(a+ 2c)(a+ c)
>

2ac+ c2

(a+ b+ c)(a+ c)
> 0

C will always survive to the second duel where his best chance is to
be almost as skilled as his opponent in which his chance of triumph is
almost 1/2 so C’s best case is when A, B and C are almost equally
skilled. If PA is close to 1, PC must be close to 0.



298

Exercise 9.2.6

(i) The fly is approaching B at speed c+ b so it takes time

tA(x) =
x

c+ b
.

to reach B. The cyclists are approaching each other at speed a + b so
the distance apart of the cyclists when the fly reaches B is

DA = x− x

c+ b
× a+ b =

c− a
c+ b

x.

(ii) We have

SA(x) = dA(x) + SB(DA(x)), SB(x) = dB(x) + SA(DB(x))

so

SA(x) = ctA + SB

(
c− a
c+ b

x

)
=

cx

c+ b
+ SB

(
c− a
c+ b

x

)
and

SB(x) =
cx

c+ a
+ SB

(
c− b
c+ a

x

)
.

Thus

SA(x) =
cx

c+ b
+

c(c− a)x

(c+ a)(c+ b)
+ SA

(
(c− a)(c− b)
(c+ b)(c+ a)

x

)
Now SA(x) = xSA(1) so writing SA(1) = A1(

1− (c− a)(c− b)
(c+ b)(c+ a)

)
S1 =

c

c+ b
+

c(c− a)

(c+ a)(c+ b)
so (

(c+ a)(c+ b)− (c− a)(c− b)
)
S1 = c(c+ a) + c(c− a)

and
2(a+ b)cS1 = 2c2

whence
S1 =

c

a+ b
, SA(x) =

cx

a+ b
.

(iii) We have

SA(x) =

(
cx

c+ b
+

c(c− a)x

(c+ a)(c+ b)

) ∞∑
j=0

(
(c− a)(c− b)
(c+ b)(c+ a)

)j
=

2c2x

(c+ a)(c+ b)

(
1− (c− a)(c− b)

(c+ b)(c+ a)

)−1

=
cx

a+ b
.

(iv) The cyclists meet after a time x/(a + b) and the fly has flown
cx/(a+ b).
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Exercise 9.2.7

(Corrected by Matthew Towers) If on each throw there is a proba-
bility a of you winning and a probability b of the banker winning and
1−a−b of no decision your probability p of ultimately winning is given
by

p = a+ (1− a− b)p
ie p = a/(a+b) the probability of throwing a 7 or 11 is (6+2)/36 = 8/36.

If you roll k 6= 2, 3, 7, 11, 12 your chances of winning a particular
throw are a = r(k)/36 and of the banker winning is b = 1/6 are as

follows

k r win probability
4 3 1/3
5 4 2/5
6 5 5/11
8 5 5/11
9 4 2/5
10 3 1/3

so your win probability for the full

game is

P (win) = P (win|initial roll 7, 11)(8/36)

+ P (win|initial roll 2, 3, 12)(4/36)

+ P (win|initial roll not 2, 3, 7, 11, 12)(24/36)

= 8/36 + 0 + (24/36)(2 · (3/24) · (1/3) + 2 · (4/24) · (2/5) + 2 · (5/24) · (5/11))

= 244/495 ≈ 0.493

where 2(3/24)(1/3) is for 4 or 10, 2(4/24)(2/5) is 5 or 9, and 2(5/24)(5/11)
is 6 or 8. Matthew adds ‘Wikipedia agrees with me, so I must be right’.
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Exercise 9.3.4

un =
n∑
r=1

2r Pr(r − 1 tails then heads)

=
n∑
r=1

2r2−r =
n∑
r=1

1 = n
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Exercise 9.3.5

(i) We have

vn = −
n∑
r=1

Pr(r − 1 tails then heads)− (2n − 1) Pr(n tails)

= 1− 2−n −
n∑
r=1

2−r = 0

(ii) We have

vn = −
n∑
r=1

Pr(r − 1 tails then heads)

= 1− 2−n
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Exercise 9.3.6

We take > p > 0, p 6= 1/2.

First St Petersburg.

un(p) =
n∑
r=1

2r Pr(r − 1 tails then heads)

= (1− p)
n∑
r=1

pr−12r

= 2(1− p)1− (2p)n

1− 2p

=
2(1− p)
1− 2p

(1− (p/2)n)

If p > 1/2, un(p)→∞ as n→∞.

If p < 1/2

un(p)→ 2
1− p
1− 2p

and the game is trouble free.

Next Double or Quits with penalty.

vn = −
n∑
r=1

Pr(r − 1 tails then heads)

− (2n − 1) Pr(n tails)

= −
n∑
r=1

(1− p)pr−1 + (2n − 1)pn

= (pn − 1) + (2n − 1)pn = (2p)n − 1

If p < 1/2, un(p)→ −1 as n→∞.

If p > 1/2, un(p)→∞ as n→∞.

Finally Double or Quits without penalty.

vn = −
n∑
r=1

Pr(r − 1 tails then heads)

= −
n∑
r=1

(1− p)pr−1

= (pn − 1)→ −1

as n→∞.



303

Exercise 9.3.7

Without replacement

Pr(suceed on rth go) =

{
1/n for 1 ≤ r ≤ n

0 otherwise.

so

an =
n∑
r=1

r/n = (n+ 1)/2.

Lemma 9.3.3 tells us that bn = n (since with replacement we have
probability 1/n of getting in on any go independent of what has gone
before).

Finally

cn =
∞∑
j=1

j Pr(in on jth go)

=
1

n
+
∞∑
j=2

j
n− 1

n

(
n− 2

n− 1

)j−2
1

n− 2

=
1

n
+

(n− 1)2

n(n− 2)

∞∑
j=2

j

(
1

n− 1

)j

=
1

n
+

(n− 1)2

n(n− 2)

(
− 1

n− 1
+
∞∑
j=1

j

(
1

n− 1

)j)

=
1

n
+

(n− 1)2

n(n− 2)

(
− 1

n− 1
+ (n− 1)

)
= (n− 1) +

1

n

Thus
an
bn

=
1 + n−1

2
→ 1

2
and

bn
cn

=
1

1− n−1 + n−2
→ 0

as n→∞.
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Exercise 9.3.8

(i) All tails has probability 1/4. One head and one tail (in some
order) has probability 1/2. At least one head has probability 3/4.

(ii) Each particular outcome has probability 1/8, so events can have
probability r/8 and only those values [0 ≤ r ≤ 8].

(iii) Chose r particular outcomes. If you get one of those shout heads.
If not, tails. You have probability r/2n of shouting heads. [0 ≤ r ≤ 2n].
If r = 0 or r = 2n you can dispense with the coins and always shout
tails or always shout heads.
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Exercise 9.3.10

It is probably easiest to separate existence and uniqueness.

Let P (n) be the statement that if 0 ≤ r ≤ 2n − 1, then we can find
ej ∈ {0, 1} such that

r = e12n−1 + e22n−2 + e32n−3 + · · ·+ en−12 + en.

P (1) is true (set e1 = r). Suppose P (n) is true and 0 ≤ r ≤ 2n+1−1.
If 0 ≤ r ≤ 2n − 1 then by the inductive hypothesis we can find dj ∈
{0, 1} such that

r = d12n−1 + d22n−2 + d32n−3 + · · ·+ dn−12 + dn

and so, setting ej = dj−1 for 2 ≤ j ≤ n+ 1, e1 = 0 we have ej ∈ {0, 1}
such that

r = e12n + e22n−1 + e32n−2 + · · ·+ en2 + en+1.

If not, then 2n ≤ r ≤ 2n+1 − 1 and setting s = r − 2n we have

0 ≤ s ≤ 2n − 1

and by the inductive hypothesis we can find dj ∈ {0, 1} such that

r = d12n−1 + d22n−2 + d32n−3 + · · ·+ dn−12 + dn.

Setting ej = dj−1 for 2 ≤ j ≤ n + 1, e1 = 1 we have ej ∈ {0, 1} such
that

r = e12n + e22n−1 + e32n−2 + · · ·+ en2 + en+1.

By induction P (n) holds for all n.

Let Q(n) be the statement that if 0 ≤ r ≤ 2n − 1, the expansion

r = e12n−1 + e22n−2 + e32n−3 + · · ·+ en−12 + en

is unique. Q(1) is true by inspection of cases.

Suppose Q(n) is true and

e12n + e22n−1 + e32n−3 + · · ·+ en2 + en+1

= d12n + d22n−1 + d32n−3 + · · ·+ dn2 + dn+1

with ej, dj ∈ {0, 1}. If e1 = 1, d1 = 0, then

e12n + e22n−1 + e32n−2 + · · ·+ en2 + en+1 ≥ 2n

and

d12n + d22n−1 + d32n−3 + · · ·+ dn2 + dn+1

≤ 2n−1 + 2n−3 + · · ·+ 2 + 1 = 2n − 1 < 2n

which is impossible. Similarly we can not have e1 = 0, d1 = 1 so
d1 = e1 and

e22n−1 + e32n−2 + · · ·+ en2 + en+1 = d22n−1 + d32n−2 + · · ·+ dn2 + dn+1
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whence (since
∑n+1

j=2 ej2
n+1−j ≤ 2n − 1) by the inductive hypothesis

ej = dj for all 2 ≤ j ≤ n+ 1. Thus Q(n+ 1) is true.

By induction Q(n) holds for all n.

Exercise 9.3.14*
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Exercise 9.3.15

(i) If
p < X12−1 +X22−2 · · ·+Xn2−n

then the process was halted in round n or earlier with left being
recorded.

If
p ≥ X12−1 +X22−2 · · ·+Xn2−n + 2−n

then the process was halted in round n or earlier with left being
recorded.

(ii) If

X12−1 +X22−2 · · ·+Xn2−n ≤ p < X12−1 +X22−2 + · · ·+Xn2−n+2−n−1

then B is true and if

X12
−1+X22

−2 · · ·+Xn2
−n+2−n−1 ≤ p < X12

−1+X22
−2+· · ·+Xn2

−n+2−n

then (A) is true. Clearly (A) and (B) cannot both be true.

(iii) If (A) is true the probability of a decision in the n+1st round is
the probability that Xn+1 = 0 ie 1/2. If (B) is true the probability of
a decision in the n+ 1st round is the probability that Xn+1 = 1 ie 1/2.
Since exactly one of (A) and (B) is true the probability of a decision
in the n+ 1st round is 1/2.
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Exercise 9.3.18

Let Xk = 1 if the kth purchase contains the jth poet and Xk = 0
otherwise. Set M = (1 + ε)Nn and

SM =
M∑
k=1

Xk.

Then

ESM =
M∑
k=1

EXk = Mn−1 = (1 + ε)N

and since the Xj are independent

varSM =
M∑
k=1

varXk =
M∑
k=1

n− 1

n2
≤

M∑
k=1

1

n
= (1 + ε)N.

Thus

Pr(they obtain fewer than N busts of the jth poet)

= Pr(SM < N)

≤ Pr(|SM − ESM | ≥ εN)

≤ varSM
(εN)2

≤ (1 + ε)N

(εN)2
= (1 + ε)ε−1N−1

if N ≥ ε−3.

Thus, if N ≥ 2nε−3,

Pr(they obtain fewer than N busts some poet)

≤
n∑
j=1

Pr(they obtain fewer than N busts of the jth poet)

≤ ε

and they will have at least N full sets of poets with probability at least
1− ε.
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Exercise 9.3.20

(i) No gentleman proposes to the same lady twice. There are n ladies
so no gentleman makes more than n proposals. Thus there are no more
than n2 proposals.

(ii) If we have n gentlemen with the same list then each proposes
to the favoured lady on entry (giving n proposals). One of them is
accepted permanently (though some others may be accepted temporar-
ily). The others then perform our algorithm as if the favoured lady did
not exist and we had n− 1 gentlemen with the same preferences. Thus
the number of proposals is

n+ (n− 1) + (n− 2) + · · ·+ 1 = n(n+ 1)/2
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Exercise 9.4.2

We write PXY for the probability that we reach HHT before HTH
if the last two throws have been XY and the game is not settled.

If we are at HH then with probability 1/2 we go to HHT and I win
and with probability 1/2 we go to HHH and the probability I now win
is pHH . Thus

pHH =
1

2
(pHH + 1).

If we are at HT then with probability 1/2 we go to HTH and I lose
and with probability 1/2 we go to HTT and the probability I now win
is pTT . Thus

pHT =
1

2
(0 + pTT ).

If we are at TH then with probability 1/2 we go to THH and the
probability I now win is pHH and with probability 1/2 we go to THT
and the probability I now win is pHT . Thus

pTH =
1

2
(pHH + pHT ).

If we are at TT then with probability 1/2 we go to TTH and the
probability I now win is pTH and with probability 1/2 we go to TTT
and the probability I now win is pTT . Thus

pTH =
1

2
(pTH + pHH).

Finally we note that after the first two throws we have probability
1/4 of being at each of HH, HT , TH, TT so

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ).
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Exercise 9.4.3

(i) We write PXY for the probability that we reach HHT before
HTT if the last two throws have been XY and the game is not settled.

pHH =
1

2
(pHH + 1), pHT =

1

2
(0 + pTT )

PTH =
1

2
(pHH + pHT ), pTT =

1

2
(pTH + pTT ).

Thus

pTT =
2

3
, pHH = 1, pHT =

1

3
, pHT =

2

3
and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

2

3
.

(ii) We write PXY for the probability that we reach THH before
HHT if the last two throws have been XY and the game is not settled.

pHH =
1

2
(pHH + 0), pHT =

1

2
(pTH + pTT )

PTH =
1

2
(1 + pHT ), pTT =

1

2
(pTH + pTT ).

Thus
pHH = 0, pTT = pTH , pHT = pTH , pTH = 1

and so
pHH = 0, pTT = pTH = pHT = 1

and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

3

4
.

The result is also obvious from the diagram. You get to HHT from
HHH and HHT but all other paths are blockaded.

(iii) Interchanging T and H, we see that:-

HTT has probability 7/8 of beating TTT ,

TTH has probability 2/3 of beating THT ,

TTH has probability 2/3 of beating THH,

HTT has probability 3/4 of beating TTH.
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Exercise 9.4.4

If the first player chooses HH and the second TH then unless the
first two throws are HH the second player must win. Thus the second
player has probability 3/4 of winning. Similarly the first player should
not choose TT .

If the first player chooses HT then the second player should not
choose TT . Suppose the second player chooses HH. Let qXY be the
probability that the second player wins starting from XY . We have

qHH = 1

qHT = 0

qTT = 1
2
qTT + 1

2
qTH

qTH = 1
2
qHT + 1

2
qHH = 1

2

so qHH = 0, qHT = 1, qTH = 1
2
, qTT = qTH = 1

2
and the probability of

the second player winning is

qHH + qHT + qTH + qTT
4

=
1

2
.

By symmetry if the second player chooses TH her probability of win-
ning is also 1/2.

Thus HT and TH are sensible choices for the first player.

If one player chooses TH and the other HT then if the first throw
is T the first player must win and if the first throw is H the second
player must win.
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Exercise 9.4.5

(i) This is just the statement

Pr(Ac) = 1− Pr(A).

(ii) We have perfect symmetry between heads and tails.

(iii) In order to obtain XYH we must first throw XY but once we
have done so we have equal probability of throwing heads or tails.

There is no particular benefit in performing the calculations but but
here they are.

Probability HHH beats HTH We write PXY for the probability that
we reach HHH before HTH if the last two throws have been XY and
the game is not settled.

pHH =
1

2
(1 + pHT ), pHT =

1

2
(0 + pTT )

PTH =
1

2
(pHT + pHH), pTT =

1

2
(pTH + pTT ).

Thus

pTH = PTT , pHT =
1

2
pTT , pTT =

1

4

(
pTT +

(
1 +

1

2
pTT

))
and so

pTH = pTT =
2

5
, pHT =

1

5
, PHH =

3

5
and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

2

5
.

Probability HHH beats HTT We write PXY for the probability that
we reach HHH before HTT if the last two throws have been XY and
the game is not settled.

pHH =
1

2
(1 + pHT ), pHT =

1

2
(0 + pTT )

PTH =
1

2
(pHT + pHH), pTT =

1

2
(pTH + pTT ).

These are the equations of the previous paragraph.

Pr(I win) =
2

5
.

Probability HHH beats THT We write PXY for the probability that
we reach HHH before THT if the last two throws have been XY and
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the game is not settled.

pHH =
1

2
(1 + pHT ), pHT =

1

2
(pTH + pTT )

PTH =
1

2
(1 + pHH), pTT =

1

2
(pTH + pTT ).

Thus

pHT = PTT = pTH =
1

2
pHH , pHH =

1

2

(
1 +

1

2
pHH

)
and so

pHH =
2

3
, pHT = PTT = pTH =

1

3
and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

5

12
.

Probability HHH beats TTH We write PXY for the probability that
we reach HHH before TTH if the last two throws have been XY and
the game is not settled.

pHH =
1

2
(1 + pHT ), pHT =

1

2
(pTH + pTT )

pTH =
1

2
(pHT + pHH), pTT =

1

2
(0 + pTT ).

Thus

pTT = 0, pHT =
1

3
pHH , pTH =

2

3
pHH , pHH =

3

5
and so

pTT = 0, pHT =
1

5
, pTH =

2

5
pHH , pHH =

3

5

and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

3

10
.

Probability HHT beats HTT We write PXY for the probability that
we reach HHT before HTT if the last two throws have been XY and
the game is not settled.

pHH =
1

2
(1 + pHH), pHT =

1

2
(0 + pTH)

pTH =
1

2
(pHT + pHH), pTT =

1

2
(pTH + pTT ).

Thus

pHT =
1

2
pTH , pTT = pTH , pHH = 1, pTH =

2

3
and so

pTT = pTH =
2

3
, pHT =

1

3
, pHH = 1
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and

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

2

3
.

Probability HHT beats THT We write PXY for the probability that
we reach HHT before THT if the last two throws have been XY and
the game is not settled.

pHH =
1

2
(1 + pHH), pHT =

1

2
(pTH + pHT )

pTH =
1

2
(pHH + 0), pTT =

1

2
(pTH + pTT ).

Thus

pHH = 1, pTT = pTH = pTH =
1

2
pHH =

1

2
and so

Pr(I win) =
1

4
(pHH + pHT + pTH + pTT ) =

5

8
.

Probability HTH beats TTH The match will be decided if at least
throws have been made and the last two throws were TH. It is equally
likely that the throw before the last two was heads or tails so the
probability that HTH beats TTH is 1/2.

The remaining entries have already been calculated or may be found
by applying rules (i), (ii) and (iii).
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Exercise 9.4.6

We do not need to do as many checks as these but it is comforting
to observe that

Expected value our strategy against HHH =
1

4
> 0

Expected value our strategy against HHT =
1

12
> 0

Expected value our strategy against HTH = 0

Expected value our strategy against HTT = 0

Expected value our strategy against THH = 0

Expected value our strategy against THT = 0

Expected value our strategy against TTH =
1

12
> 0

Expected value our strategy against TTT =
1

4
> 0

By symmetry our expected value against best play is 0 so this is an
optimum strategy.

If my opponent just plays one tripleXY Z, I will have strictly positive
expected winnings against HHH, TTT , HHT and THH.

If my opponent promises to choose eitherHTH or THT , then inspec-
tion of Table 9.2 shows that I should play some combination of HHT
and THH and a little thought (or explicit calculation) shows that if he
uses best play (subject to his original foolish decision), I should play
each option with probability 1/2 and my expected winnings are 7/24.



317

Exercise 9.5.1

The new game is obtained from the old by adding 3 units to the
value of each outcome.

Whatever Little Bonaparte chooses, Spats can do better for himself
by pressing. Thus Spats should press. By exactly the same argument
Little Bonaparte will press. They get 1 each.

If Bonaparte and Spats could trust each other they could agree not
to press and get 2 each.
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Exercise 9.5.2

The travellers may not be the most agreeable conversationalists but
they are acute reasoners. If there is exactly 1 bore then he knows
immediately who he is (since he knows no bores) and resigns on the
first evening. If there is more than 1 no one can know for certain that
he is a bore. If there are exactly 2 bores then on the first morning each
knows that there must be at least 2 bores but is acquainted with only
1 bore. They therefore know that they are bores and resign. If there
is more than 2 no one can know for certain that he is a bore. The
argument proceeds inductively and shows that if there are exactly k
bores they will resign on the kth evening and their resignation will be
announced on the kth morning after the announcement. Since there
are no resignations on the first 49 mornings everybody must be a bore
and they resign en masse and a smirking secretary posts their names
on the 50th morning.
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Exercise 9.5.5

We have

B(I, P ) = 3 + pB(A,P )

B(I,N) = 2 + pB(I,N)

B(I, S) = 2 + pB(I, S)

B(I, 0) = 3 + pB(A,O)

B(A,P ) = 1 + pB(A,P )

B(A,N) = 0 + pB(I,N)

B(A, S) = 0 + pB(A, S)

B(A, 0) = 0 + pB(I, O)

Thus

B(I,N) =
2

1− p
, B(I, S) =

2

1− p
, B(A,P ) =

1

1− p
, B(A, S) = 0

so

B(I, P ) = 3 +
p

1− p
, B(A,N) =

2p

1− p
.

Also
B(I, 0) = 3 + pB(A,O) = 3 + p2B(I, O)

so

B(I, 0) =
3

1− p2
, B(A, 0) =

3p

1− p2
.
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Exercise 9.5.6

We have

B(I, P ) = 3 + p+ p2 + p3 + · · · = 3 +
p

1− p

B(I,N) = 2 + 2p+ 2p2 + 2p3 + · · · = 2

1− p

B(I, S) = 2 + 2p+ 2p2 + 2p3 + · · · = 2

1− p

B(I, O) = 3 + 0p+ 3p2 + 0p3 + 3p4 + · · · = 3

1− p2

B(A,P ) = 1 + p+ p2 + p3 + · · · = 1

1− p

B(A,N) = 0 + 2p+ 2p2 + 2p3 + · · · = 2p

1− p

B(A, S) = 1 + p+ p2 + p3 + · · · = 1

1− p

B(A,O) = 0 + 3p+ 0p2 + 3p3 + 0p4 · · · = 3p

1− p2
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Exercise 9.5.7

If it is very likely that there will be another game our best choice
is to obtain a system where neither press and we share equally a sum
which is greater than the total available by non-cooperation.

If it is less likely that there will be another game we take the max-
imum possible by pressing. If there is a second game we sacrifice a
small sum to restablish good relations which we can exploit if there is
another round.

If the probability of another game is even smaller then at each round
we take the maximum available on that round by pressing.
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Exercise 9.5.8

We have B(A,P ) = B(A, S) and

B(A,P )−B(A,N) =
1− 2p

1− p

B(A,P )−B(A,O) =
1− 2p

1− p2

B(A,N)−B(A,O) =
p(2p− 1)

1− p2
.

Thus
B(A,P ) > B(A,N), B(A,O)

for 0 ≤ p < 1/2 and

B(A,N) > B(A,O) > B(A,P )

for 1/2 < p ≤ 1 whilst

B(A,N) = B(A,O) = B(A,P )

if p = 1/2.

Sonia should play never press if p > 1/2 and always press if p < 1/2.
If p = 1/2 all strategies have the same expected pay-off.
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Exercise 9.5.9

Using the same notation as before we have

B(I, P ) = 6 + p+ p2 + p3 + · · · = 6 +
p

1− p

B(I,N) = 2 + 2p+ 2p2 + 2p3 + · · · = 2

1− p

B(I, S) = 2 + 2p+ 2p2 + 2p3 + · · · = 2

1− p

B(I, O) = 6 + 0p+ 6p2 + 0p3 + 6p4 + · · · = 6

1− p2
.

Thus B(I,N) = B(I, S) and

B(I,N)−B(I, P ) =
2− p
1− p

− 3 =
2p− 1

1− p
,

B(I,N)−B(I, O) =
2(1 + p)− 6

1− p2
=

2p− 4

1− p2
,

B(I, P )−B(I, O) =
p

1 + p
− 6p2

1− p2
=
p(1− 7p)

1− p2
.

Thus

B(I,N) > B(I, P ) for p > 1/2, B(I, P ) > B(I,N) for 1/2 > p,

B(I, O) > B(I,N) for all p,

B(I, O) > B(I, P )) for p > 1/7, B(I, P ) > B(I, O) for 1/7 > p.

and Sonia should do the opposite of Tania if p > 1/7 and always press
if p < 1/7. She can follow either tactic if p = 1/7.

The total prize available if one presses and the other does not, is
greater than for any other. If the probability of many further games
is high the strategies of Tania and Sonia more or less share this total
prize.
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Exercise 9.5.10

If p is large tactics by which the players always hit on the maximum
total pay out and arrange to share more or less equally are optimal.

If 2c > d and p is large enough always play the same, if 2c < d and
p is large enough always play the opposite.
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Exercise 9.5.11

There is no mathematical argument available but since tit for tats
do well in the other type of contest and draw with each other it seems
to me that tit for tat remains a good choice.
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Exercise 9.5.12

(i) Any program is much more likely to meet a ‘tit for tat’ than an
‘always press’. Since ‘tit for tats’ do better than ‘always press’ against
‘tit for tats’ the ‘tit for tats’ will gain more points than the ‘always
presses’ and the population of ‘always presses’ will decline.

(ii) Any program is much more likely to meet an ‘always press’ than
a ‘tit for tats’. Since ‘tit for tats’ do worse than ‘always presses’ against
‘always presses’ the ‘tit for tats’ will gain fewer points than the ‘always
presses’ and the population of ‘tit for tats’ will decline.

(iii) Any program is much more likely to meet an ‘never press’ than
an ‘always press’. Since ‘always presses’ do better than ‘always presses’
against ‘never presses’ than an ‘always press’ the proportion of ‘always
presses’ will increase. The question of what will happen when there is
a large proportion of ‘always preses’ depends on how we fix the reward
and breeding structure.

If we have a mixed flock of ‘never presses’ and ‘tit for tats’ then the
behaviour of the two types of program in an encounter is the same.
There is no tendency for the proportion of ‘tit for tats’ to grow or
decline. (This is not the same as saying that the proportion will stay
the same, simply that there is no preferred direction of change.)
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Exercise 9.6.1

Consider the map

θ : {0, 1}N → {H,T}N

from sequences of 0’s and 1’s to sequences of heads and tails. Define

θ(x)2k =

{
H if xk = 0

T if xk = 1

and

θ(x)2k+1 =

{
T if xk = 0

H if xk = 1

Thus the 2k and 2k+ 1 th throws are HT if the kth entry of x is 0 and
TH if the kth entry of x is 1 [0 ≤ k].

θ(x) contains no sequence HHH or TTT and θ is injective. Since
{0, 1}N is uncountable there uncountably many different sequences for
which the game goes on for ever.
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Exercise 9.6.3

Observe that if the machine spins all wheels the probability of three
letters being the same is 3/27 = 1/9, of no letters being the same is
6/27 = 2/9 and two the same is 18/27 = 2/3.

The game will certainly end if hold fails to light up and the machine
the produces three distinct letters. The probability of this is (1/2) ×
(2/9) = 8/9 so the probability the game ends on a particular round is
at least 1/9. Thus he probability that she plays an n th round is no
greater than (8/9)n−1.

If she must stop on round N her expected number of rounds

rN ≤
N∑
n=1

(
8

9

)n−1

≤ 9

Since rN is increasing bounded above it tends to a limit so the expected
number of rounds that she plays is finite. Since her winnings and losses
on each round are bounded by 3 her expected winnings are finite. (A
more sophisticated approach is to use the comparison test.)

Let e1 be her expected winnings starting with all windows different,
e2 her expected winnings starting with two windows the same and e3

her expected winnings starting with three windows the same.

e1 = −10 +
2

3
e2 +

1

9
(30 + e3)

e2 = −10 +
1

2

(
2

3
e2 +

1

9
(30 + e3)

)
+

1

2

(
2

3
e2 +

1

3
(30 + e3)

)
e3 = −10 +

1

2

(
2

3
e2 +

1

9
(30 + e3)

)
+

1

2
(30 + e3)

Subtracting the second equation from the third gives

e3 − e2 =
1

2
(30 + e3)− 1

2

(
2

3
e2 +

1

3
(30 + e3)

)
so e3 = e2 + 15. Substituting back, e3 = 15, e2 = 0 and e1 = −5.

The bettors expected loss is 5 pence.
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Exercise 9.6.4

(i) Observe that

EX =
N∑
j=1

j Pr(X = j)

=
N∑
j=1

j∑
k=1

Pr(X = j)

=
∑

1≤k≤j≤N

Pr(X = j)

=
N∑
k=1

N∑
j=k

Pr(X = j)

=
N∑
k=1

Pr(X ≥ k)

If YN = min(X,N)

EYN =
N∑
k=1

Pr(YN ≥ k) =
N∑
j=1

Pr(X ≥ k)→
∞∑
r=1

Pr(X ≥ r)

as N →∞.

(ii) Let X be the number of shots A fires. We have

Pr(X ≥ m) = Pr(m− 1 misses in a row) = (1− a)m−1

so

Emin(N,X) =
N∑
m=1

(1− a)m−1 =
1− (1− a)n+1

a
− (1− a)n

and

EX =
∞∑
m=1

(1− a)m−1 =
1

a
.
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(iii) Let Bj,r be the probability that the jth spot where an acorn is
planted does not have an oak after r − 1 plantings. Then

Pr(at least r plantings required) = Pr

(
n⋃
i=1

Bi,r

)
=
∑
i

Pr(Bi,r)−
∑
i<j

Pr(Bi,r ∩Bj,r) +
∑
i<j<k

Pr(Bi,r ∩Bj,r ∩Bk,r)− . . .

=

(
n

1

)
Pr(B1,r)−

(
n

2

)
Pr(B1,r ∩B2,r) +

(
n

3

)
Pr(B1,r ∩B2,r ∩B3,r)− . . .

=

(
n

1

)
qr −

(
n

2

)
q2r +

(
n

3

)
q3r − . . .

and so

expected number of plantings =
∞∑
r=1

Pr(at least r plantings required)

=

(
n

1

)
1

1− q
−
(
n

2

)
1

1− q2
+

(
n

3

)
1

1− q3
− . . .+ (−1)n−1

(
n

n

)
1

1− qn
.
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Exercise 9.6.5

The game will certainly terminate if the next three throws are HHH
or TTT (it may terminate otherwise). The probability of three the
same is 1/4, so the probability that the game terminates during the
next three throws is at least 1/4. Thus

Pr(game lasts 3n tosses) ≤ (3/4)n → 0

as n→∞.
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Exercise 9.6.6

Let An be the collection of games terminating in n goes or less.
Then An is finite so countable. Thus

⋃∞
n=1An is countable (being the

countable union of countable sets) and this is the stated result.
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Exercise 10.1.2

Pr(happy end) = Pr(wins 5 goes in succession) = p5

If p = 1/4, p5 ≈ 0.00098.

If p = 3/4, p5 ≈ 0.237.
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Exercise 10.1.3

If qn = q0t
n then

qn+1 = qnt = q0t
n+1

since q0 = t0q0 the result follows by induction for n ≥ 0.

The result is also true for n ≤ 0. Either use simple induction or
observe that

q−(n+1) = t−1q−n
and use the first part.
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Exercise 10.1.4

(i) Observe that, if

qn = A+B

(
p

1− p

)n
then

pqn+1−qn + (1− p)qn−1A
(
p− 1 + (1− p)

)
+B

(
1− p
p

)n−1
(
p

(
1− p
p

)2

−
(

1− p
p

)
+ (1− p)

)

= 0 +B

(
1− p
p

)n−1
(1− p)2 − (1− p) + p(1− p)

p
= 0

as stated.

(ii) If q0 = 0 then A = −B so

qn = A

(
1−

(
p

1− p

)n)
.

If further q256 = 1 then

A =

(
1−

(
p

1− p

)256
)−1

so

qn =
1−

(
1−p
p

)n
1−

(
1−p
p

)256 .
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Exercise 10.1.5

(i) With (a) I gamble 1120 dollars and have probability p of gaining
my end. If I lose (which I do with probability 1− p) I have 320 dollars
and must win three times in a row (probability p3) to gain my ends.
My probability of success is

p+ (1− p)p3.

With (b) I must win 3 times in row to gain my ends without gam-
bling my back pocket. The probability of this is p4. Otherwise, with
probability 1 − p4 I gamble my back pocket and have probability p of
winning. My probability of success is

p3 + (1− p3)p = p+ (1− p)p3.

(ii) With bold play I have probability p of reaching my goal imme-
diately. Otherwise with probability 1 − p I will have 1440 dollars and
using (a) or (b) I have probability p0 = p + (1 − p)p3 of winning my
ends. Thus my probability of success is

p+ (1− p)p0.

Alternatively I can put 1280 dollars in my back pocket and then use
either strategy (a) or (b) (with one dollar being replaced by 50 cents)
to gain gain my ends without gambling my back pocket. This has
probability p0. If I fail (which I will with probability 1− p0) I gamble
my back pocket and have probability p of gaining my ends. Thus my
probability of success is

p0 + (1− p0)p = p+ (1− p)p0.

(See How To Gamble If You Must by Dubins and Savage Chapter 5,
Section 4. The book is reprinted by Dover)
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Exercise 10.1.6

The expected gain on a bet of x is

pxp−1 + (1− p)0− x = 0.

If your expected gain on any game is zero then it should be zero on
any combination of games.

Thus your expected winnings are 0. If you have probability q of
gained your desired prize with a particular strategy then your expected
winnings are

−k + ql + (1− q)0 = −k + ql.

Thus ql = k and q = k/l.
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Exercise 10.1.7

(i) If p < 1/2 she is gambling in unfavourable circumstances and
should use bold play as described in this section.

(ii) If f is her fortune on retirement then the probability she is happy
is 1 if f ≥ 1 and zero otherwise.

We have proved the inductive hypothesis for r = 0. Suppose it is
true for r = m. If we have a fortune

f = (k + δ)2−m−1 + δ

with 0 ≤ k ≤ 2m+1 an integer then if we gamble (u + η)2−m−1 with
0 ≤ u ≤ k an integer and 0 ≤ η ≤ δ our new fortune will either be
(k+u+ η+ δ)2−m−1 or (k−u− η+ δ) and by the inductive hypothesis
the probability of ultimate success will either be that if we start from

2−m[(k + u+ η + δ)/2] = 2−m[(k + u)/2]

or if we start from

2−m[(k − u+ η − δ)/2] = 2−m[(k − u)/2]

(here [a] is the integer part of a) at year m independent of η and δ.
The result thus follows by induction.

(iii) If k is even she should bet (2r)2−m−1 with 0 ≤ 2r ≤ k and the
probability of ultimate success if she then plays correctly is

e(2r, k,m+ 1) =
p
(
((k + 2r)/2,m

)
+ p
(
((k − 2r)/2,m

)
2

She should choose r = r∗ to maximise e(2r, k,m+1) and then p(k,m+
1) = e(2r∗, k,m+ 1).

If k is odd she should bet (2r + 1)2−m−1 with 0 ≤ 2r + 1 ≤ k and
the probability of ultimate success if she then plays correctly is

e(2r + 1, k,m+ 1) =
p
(
((k + 2r + 1)/2,m

)
+ p
(
((k − 2r − 1)/2,m

)
2

She should choose r = r∗ to maximise e(2r + 1, k,m + 1) and then
p(k,m+ 1) = e(2r∗ + 1, k,m+ 1).

(iv) If n is large we are almost back to the circumstances described in
this section and should gamble slowly. She will stake a small proportion
of her fortune.

If n is small, small bets can not produce the required outcome. She
will bet a relatively large proportion of her fortune.
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Exercise 10.2.1

(a) The expected return is

Pr(win)× 32 =
32

33
.

The probability of winning with bold play is 1/33 ≈ 0.0303.

(b) The expected return is

Pr(win)× 2 =
16

33
× 2 =

32

33
.

To win with bold play you need to win 5 times in a row. The probability
of winning is (

16

33

)5

≈ 0.0268.

Take my advice– when deep in debt,
Set up a bank and play Roulette!
At once distrust you surely lull,
And rook the pigeon and the gull.
The bird will stake his every franc
In wild attempt to break the bank–
But you may stake your life and limb
The bank will end by breaking him!

(Gilbert and Sullivan The Grand Duke)
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Exercise 10.2.2

(i) Game A has expected value 2−1028 = 2−2 and variance

2−10216 − (2−2)2 = 26 − 2−4

for an investment of one dollar. The probability of winning your desired
sum by bold play in game A is 2−10.

Game B has expected value 2−322 = 2−1 and variance

2−324 − (2−1)2 = 1/4.

The probability of winning your desired sum by bold play in game B
is the probability of winning four times in succession that is to say
(2−3)4 = 10−12.

Game C has expected value 2802−120 = 2−40 and variance

2−1202160 − (2−40) = 240 − 2−80

for an investment of one dollar. Bold play in C will involve betting
at least 2−71 dollars (actually rather more) each go so you will run
out of money after at most 271 throws unless you win a throw. The
probability of winning in 271 throws is

1− Pr(losing 271 throws) = 1− (1− 2−120)271

which is tiny (either by direct calculation or using the binomial expan-
sion and bounding terms).

(ii) The expected value of game D is

2−1028 + 2802−120 = 2−2 + 2−40

and its variance is greater than

2−120 × 2160 − (2−2 + 2−40)2 > 239.

If we intend to try and play a few games then the game looks very much
like game B which is substantially worse than game A. If we play many
games with many small stakes then the law of large numbers says that
in practice we are betting in game C with a bet of k/2, returning 240k
with probability 2−80 and the same kind of estimates as before show
that our chances of succeeding are negligible.
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Exercise 10.2.3

We have
EX = p× kp−1 + (1− p)× 0 = k

and

varX = EX2 − (EX)2

= p× (kp−1)2 + (1− p)× 0− k2

= k2(p−1 − 1)

Thus varX → k2(1− 1) = 0 as p→ 1− and varX →∞ as p→ 0+.
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Exercise 10.2.4

You are broke if you lose. You have 1 if you win. The probability of
success is thus kF < k.
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Exercise 10.2.5

(i) You have (n− r)F fortune remaining so you need to win

1− (n− r)n−1F
to leave. Thus you take pr so that

F
n
kp−1

r = 1− (n− r)n−1F

or, rearranging,

pr =
kF

n(1−F) + rF
.

(ii) You will fail if each of your n bets fail so with probability

qn =
n∏
r=1

Pr(rth bet fails) =
n∏
r=1

(1− pr)

so taking logarithms,

log qn =
n∑
r=1

log(1− pr).

(iii) Observe that

pr =
kF

n(1−F)
≤ F(1−F)−1.
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Exercise 10.2.6

(i) We have

g′(x) = 1 + 2x− 1

1− x
=
x− 2x2

1− x
=
x(1− 2x)

1− x
≥ 0

for 0 ≤ x ≤ 1/2 so g is increasing and

0 = g(0) ≤ g(x) = x+ x2 + log(1− x)

ie

x+ x2 ≥ − log(1− x)

for 0 ≤ x ≤ 1/2.

On the other hand, setting f(x) = x+ log(1− x), we have

f ′(x) = 1− 1

1− x
≤ 0

for 0 ≤ x < 1 so f is decreasing and

0 = f(0) ≥ f(x) = x+ log(1− x)

ie

x ≤ − log(1− x)

for 0 ≤ x < 1.

(ii) Set A = F(1 − F)−1. Provided that n > 2A, part (iii) of Exer-
cise 10.2.5 tells us that 0 < pn < 1/2 so

pr ≤ − log(1− pr) ≤ pr + p2
r ≤ pr +

A2

n2

whence
n∑
r=1

pr ≤ − log qn ≤
n∑
r=1

pr +
A2

n

and

log qn +
n∑
r=1

pr → 0

as n→∞.

We know that if G : [0, 1]→ R is continuous then

1

n

n∑
r=1

G(r/n)→
∫ 1

0

G(t) dt.

Taking

G(t) =
1

(1−F) + tF
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we obtain
n∑
r=1

pr = kF × 1

n

n∑
r=1

1

(1−F) + r
n
F

→ kF
∫ 1

0

dt

(1−F) + tF
== −k[log

(
(1−F) + tF

)
]10

= −k log(1−F)

as n→∞.

Thus
log qn → k log(1−F)

and so
qn → (1−F)k

as n→∞.
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Exercise 10.2.7

(i) We have

g(x) = k(1− x)k−1 − k = k
(
(1− x)k−1 − 1

)
> 0

for 0 < x < 1, so g is strictly increasing in this range and

g(x) > g(0) = 0

ie
1− kx > (1− x)k

for 0 < x < 1.

The probability of failure with the simple bold strategy is 1−kF . The
probability of failure with the division strategy can be made as close
to (1−F)k as we wish. Thus the division strategy (with n sufficiently
large) is always better than our simple bold strategy.

(ii) By the definition of the derivative

1− (1− x)k

kx
=

1

k
× h(x)− h(0)

x
→ h′(0)

k
= 1,

so when F is small the ratio of the probabilities of success

1− (1−F)k

kF
is close to 1 and our division strategy not much better better than the
simple bold strategy.
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Exercise 10.2.8

You must win 5 times in secession so you want

p5 ≥ 1/33

so p ≥ .497 (approximately) If we take p = .497 the Casino’s expecta-
tion is about 0.006 (In the game (a) it is about 0.03.)

Exercise 10.2.9∗
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Exercise 10.2.10

(i) The expected return is 2 560 000 which is what we should expect
from a fair game. We expect to get out (on average) what we put in.

(ii) [Corrected version] If p = .495 our expected return is

10, 000× .505−8 ≈ 2 364 117.
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Exercise 10.2.11

This just a particularly wild modification of unlimited double or
quits. If you own a′ (with a′ < b) you you announce a bet of (b′− a)/u
dollars. If you win, you walk away with b. If you lose you repeat the
process.

Since you walk away at the first win and since no strategy will allow
you to walk away before you have had at least one win this is a best
strategy.

The expected time to your first win is p−1 (see the one sided duel)
which is independent of a, b and u.

Useful theorems on probability must exclude wild games like this.
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Exercise 10.3.1

aw′′ + bw′ + cw = a(kv + u)′′ + b(kv + u)′ + c(kv + u)

= a(kv′′ + u′′) + b(kv′ + u′) + c(kv + u)

= k(av′′ + bv′ + cv) + (au′′ + bu′ + cu)

= k0 + f = f.

If
au′(x) + bu(x) = f(x)

and
av′(x) + bv(x) = 0,

then, if k is constant and w = kv + u,

aw′ + bw = a(kv + u)′ + b(kv + u)

= a(kv′ + u′) + b(kv + u)

= k(av′ + bv) + (au′ + bu)

= k0 + f = f.
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Exercise 10.3.2

(i) Observe that

(D − aI)(D − bI)u = (D − aI)(u′ − bu) = (u′ − bu)′ − a(u′ − bu)

= u′′ − bu′ − au′ + abu = (D2 − (a+ b)D + abI)u.

(ii) If u′ − au = f then

d

dx
(e−axu(x)) = −ae−axu(x) + e−axu′(x)

= e−ax(u′(x)− au(x)) = e−axf(x)

so integrating [
e−asu(s)

]x
0

=

∫ x

0

e−asf(s) ds

so

e−axu(x)− u(0) =

∫ x

0

e−asf(s) ds

and

u(x) = u(0)eax + eax
∫ x

0

e−asf(s) ds.

(iii) Set v = (D − bI)u. Then

v′(x)− av(x) = 0

and, by (ii) with f(x) = 0,

v(x) = v(0)eax + eax
∫ x

0

e−as0 ds = v(0)eax.

Now

u′(x)− bu(x) = v(x) = v(0) + eax

so, by (ii),

u(x) = u(0)ebx + ebx
∫ x

0

v(0)e(a−b)s ds

= u(0)ebx +
v(0)

a− b
(eax − ebx) = Aeax +Bebx.

Thus the only possible solutions are

u(x) = Aeax +Bebx

for some pair constants A and B. By inspection every pair of constants
give a solution.
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To prove the last statement, either examine he argument above care-
fully or note that we have a solution if and only if

u0 = A+B

u1 = aA+ bB

and, since a 6= b, these equations have a unique solution.

(iv) Set v = (D − aI)u. Then, as in (iii),

v(x) = v(0)eax

so, by (ii), with f(x) = eax

u(x) = u(0)eax + eax
∫ x

0

v(0) ds

= u(0)eax + v(0)xeax

Thus the only possible solutions are

u(x) = (A+Bx)eax

for some pair constants A and B. By inspection every pair of constants
give a solution.

he prove the last statement either examine he argument above care-
fully or note that we have a solution if and only if

u0 = A

u1 = aA+B

and these equations have a unique solution.

(v) Set v = (D − aI)u. Then v(0) = u1 − au0 and, by (ii),

v(x) = v(0)eax + eax
∫ x

0

e−asf(s) ds,

and, using (ii) again

u(x) = u(0)ebx + ebx
∫ x

0

e−bsv(s) ds.

Thus our system has exactly one solution.

(vi) Use part (i) and parts (iii) and (iv).
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Exercise 10.3.3

(i) We have
d

dx
e−axu(x) = Ke(c−a)x

so

e−axu(x) = A+K
e(c−a)x

c− a
and

u(x) = Aeax +
K

c− a
ecx

for some constant A.

(ii) We have
d

dx
e−axu(x) = K

so
e−axu(x) = A+Kx

and
u(x) = (A+Kx)eax

for some constant A.

(iii) Set v(x) = u′(x)− au(x). Then

v′(x)− bv(x) = Kecx

and

v(x) = Cebx +
K

c− b
ecx

so

u(x)− au(x) = Cebx +
K

c− b
ecx

and using linearity or repeating the argument of (i)

u(x) = Aeax +Bebx +
K

(c− a)(c− b)
ecx

for some constants A and B.

(iv) Set v(x) = u′(x)− au(x). As in (iii)

u(x)− au(x) = Cebx +
K

a− b
eax

so using linearity or repeating the argument of (ii)

u(x) = Aeax +Bebx +
K

a− b
xeax

for some constants A and B.

(v) Set v(x) = u′(x)− au(x). Then

v′(x)− av(x) = Keax
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and
v(x) = Ceax +Kxeax

so
d

dx
e−axu(x) = B +Kx

whence

e−axu(x) = A+Bx+
K

2
x2

and

u(x) =

(
A+Bx+

K

2
x2

)
e−ax

for some constants A and B.
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Exercise 10.3.4

(i) If un is defined uniquely for some n ≥ 0, then un+1 = yn+1 +aun is
uniquely defined. Since u0 is uniquely defined, it follows, by induction
that un is defined uniquely for all n ≥ 0.

If u−n is defined uniquely for some n ≥ 0, then u−n−1 = a−1(u−n −
y−n−1 is uniquely defined. Since u0 is uniquely defined, it follows, by
induction that u−n is defined uniquely for all n ≥ 0. Thus un is defined
uniquely for all n.

(ii) If un and un+1 are defined uniquely for some n ≥ 0, then un+1

and un+2 = zn− aun+1− bun are uniquely defined. Since u0 and u1 are
uniquely defined, it follows, by induction that un is defined uniquely
for all n ≥ 0.

If u−n and u−n−1 are defined uniquely for some n ≥ 0, then u−n−1

and u−n−2 = b−1(z−n−2 − au−n−1 − u−n) are uniquely defined. Since
u0 and u−1 = b−1(z1 − aũ0 − ũ1) are uniquely defined, it follows, by
induction that un is defined uniquely for all n ≤ 0. Thus un is defined
uniquely for all n.
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Exercise 10.3.5

Observe that

awn+2 + bwn+1 + cwn

= a(kvn+2 + un+2) + b(kvn+1 + un+1) + c(kvn + un)

= k(avn+2 + bvn+1 + cvn) + (aun+2 + bun+1 + cun)

= k0 + yn = yn.

Suppose that
aun+1 + bun = yn

and
avn+1 + bvn = 0.

If k is constant and wn = kvn + un, then

awn+1 + bwn = a(kvn+1 + un+1) + b(kvn + un)

= k(avn+1 + bvn) + (aun+1 + bun)

= k0 + yn = yn.



357

Exercise 10.3.6

(i) We have

(E − aI)(E − bI)un = (E − aI)un+1 − bun
= un+2 − bun+1 − aun+1 + abun

= un+2 − (a+ b)un+1 + abun

= (E2 − (a+ b)E + abI)un.

(ii) We have

(E − aI)vn = vn+1 − avn = an+1un+1 − anun = an(un+1 − un) = anwn.

(iii) We have
uj+1 − uj = yj

so

un+1 − u0 =
n∑
j=0

(uj+1 − uj) =
n∑
j=0

yj.

for all n ≥ 0, ie

un = u0 +
n−1∑
j=0

yj

for n ≥ 1.

Also
u−(j+1) − u−j = −y−j−1

so, by what we have just shown,

u−n = u0 −
n∑
j=0

y−j−1

ie

un = u0 −
−n∑
j=1

y−j

for n ≤ −1.
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Exercise 10.3.7

(i) By Exercise 10.3.6 (iii),

un = 1

for all n.

(ii) By Exercise 10.3.6 (iii),

un =
bn − 1

b− 1

for all n.

(iii) By Exercise 10.3.6 (iii),

un = n

for all n.

(iv) Since
∑n

j=1 j = n(n + 1)/2, it follows from Exercise 10.3.6 (iii)
that

un = n(n+ 1)/2

We now use Exercise 10.3.6 (ii) on each of the previous four parts in
turn to get.

(v) un = an.

(vi) un =
bn

b− a
(vii) un = nan

(viii) un = n(n+ 1)an/2.

Finally using linearity and parts (v) and (vi).

The general solution of (E − aI)un = 0 is un = Aan.

The general solution of (E − aI)un = bn with b 6= a is un = Abn.
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Exercise 10.3.8

(i) If
vn+2 − (a+ b)vn+1 + abvn = 0,

then, setting un = vn+1 − avn we get

un+1 − bun = 0

so un = Cbn and
vn+1 − avn = Cbn

and by Exercises 10.3.7 (ix) and (v) and linearity

vn = Aan +Bbn.

Thus using Exercises 10.3.4 and 10.3.5 we have

un = Aan +Bbn + vn,

where A and B are freely chosen constants.

(ii) If a 6= 0 and

vn+2 − 2avn+1 + a2vn = 0,

then, arguing as before,

vn+1 − avn = Aan

so
un = (A+Bn)an + vn,

where A and B are freely chosen constants.
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Exercise 10.3.9

(i) Write vn = (E − aI)un. Then

vn+1 − bvn = Cxn

so

vn = Kbn +
C

x− b
xn

for some constant K. Thus

un+1 − un = Kbn +
C

x− b
xn

and

un = Aan+Bbn+
C

(x− a)(x− b)
xn = Aan+Bbn+

C

x2 − (a+ b)x+ ab
xn

for some constants A and B.

(ii) Write vn = (E − aI)un. Then

vn+1 − bvn = Can

so

vn = Kbn +
C

a− b
an

for some constant K. Thus

un+1 − un = Kbn +
C

a− b
an

and

un = Aan +Bbn +
C

b− a
nan.

(iii) We have
(E − I)2un = C

so
(E − I)un = B + Cn

and
un = A+Bn+ 1

2
Cn2

for some constants A and B.
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Exercise 10.3.10

We have
α2 + bα + a = 0

so taking complex conjugates

0̄ = α2 + bα + c = ᾱ2 + bᾱ + c.

Thus ᾱ is root. Since ᾱ 6= α we have β = ᾱ.

Since A+B = Aα0 +Bᾱ0 is real we know that

=A = −=B.
Let α = u+ iv with u and v real. Then

Aα +Bᾱ = (<A+ i=A)(u+ iv) + (<B + i=B)(u− iv)

is real so

u(=A+ =B) + v(<A−<B) = v(<A−<B)

is real so, since v 6= 0, <A = <B and B = Ā.

Conversely if B = Ā then

Aαn +Bᾱn = Aαn + Āᾱn = Aαn + Āᾱn

so Aαn +Bᾱn is real.

(i) If uj and uj+1 are real then uj+1 uj+2 = −buj+1 − cuj = 0 are
real. Since u0 and u1 are real uj is real for all j ≥ 0. To show that uj
is real for j ≤ 0 consider the equation

u−(n+2) + c−1bu−(n+1) + c−1au−n = 0.

(ii) We have

u0 = A+B

u1 = Aα +Bᾱ

so
(u1 − ᾱu0) = A(α− ᾱ)

and

A =
u1 − ᾱu0

α− ᾱ
Similarly

B =
u1 − αu0

ᾱ− α
= Ā

so un is real for all n.
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Exercise 10.3.11

(i) We have

(E − I)

(
n

r

)
=

(
n+ 1

r

)
−
(
n

r

)
=

1

r!
n(n− 1) . . . (n− r + 2)

(
(n+ 1)− (n− r + 1)

)
=

1

(r − 1)!
n(n− 1) . . . (n− r + 2) =

(
n

r − 1

)
.

(ii) Using the particular solution of of (i) and the known complemen-
tary solution we have

un = A+

(
n

r

)
for some constant A.

(iii) We use induction on k. If the result is true for k = m then

(E − I)m+1un = 0⇔ (E − I)un = vn with (E − I)mvn = 0

⇔ (E − I)un =
m−1∑
j=0

Am−1−j

(
n

j

)

⇔ un =
m∑
j=0

Am−j

(
n

j

)
with Aj arbitrary. The result holds for k = 1 so it holds for all k by
induction.

(iv) By inspection or by using Exercise 10.3.6,

un =
k−1∑
j=0

Ak−1−j

(
n

j

)
aj.

(v) By inspection or using induction on k

un =

(
n

r + k

)
is a solution so the general solution is

un =

(
n

r + k

)
+

k−1∑
j=0

Ak−1−j

(
n

j

)
.
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Exercise 10.3.12

Let
t3 + at2 + bt+ c = 0

have roots α, β and γ (repeated roots repeated appropriately). Note
that since c 6= 0 no root is zero.

(i) If α, β, γ are distinct,

(E3 + aE2 + bE + cI)un = 0⇔
(
E − βI)((E − γI)

)
(E − αI)un = 0

⇔ (E − αI)un = B′βn + C ′γn

⇔ un = Aαn +Bβn + Cγn

for general constants B′, C ′, A, B, C.

(ii) If α and β are distinct but γ = α,

(E3 + aE2 + bE + cI)un = 0⇔
(
E − αI)((E − βI)

)
(E − αI)un = 0

⇔ (E − αI)un = A′αn +B′βn

⇔ un = (A+ A′n)αn +Bβn

for general constants B′, A′, A, B.

(iii) If If α = β = γ,

(E3 + aE2 + bE + cI)un = 0⇔
(
E − αI)((E − αI)

)
(E − αI)un = 0

⇔ (E − αI)un = A′ + A′′′αn

⇔ un = (A+ A′n+ A′′n2)αn

for general constants A, A′, A′′, A′′′.
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Exercise 10.3.13

(i) Just before the nth minute the flea will be on the black dog with
probability 1− pn−1 and jump to the white dog with probability w or
it will be on the white dog with probability pn−1 and stay on the white
dog with probability 1− b. Thus

pn = (1− pn−1)w + pn−1(1− b) = w + (1− b− w)pn−1

for n ≥ 1 and
(E − (1− b− w)I)pn = w

for n ≥ 0.

We seek a particular solution pn = c, obtaining

(b+ w)c = w

and the general solution

pn =
w

b+ w
+ A(1− b− w)n.

Since p0 = 1, we have A = b/(b+ w) so

pn =
w

b+ w
+

b

w + b
(1− b− w)n.

Since 0 < b+ w < 2 we have |1− b− w| < 1 so (1− b− w)n → 0 and

pn →
w

b+ w
as n→∞.

(ii) As before

qn =
w

b+ w
+B(1− b− w)n

for some constant B. Since q0 = 0, B = −w/(b+ w) and

qn =
w

b+ w
− w

w + b
(1− b− w)n → w

b+ w
as n→∞.

(The process gradually forgets how it starts.)

(iii) If b + w = 0 then b = w = 0 and the flea stays on the dog it
starts on.

If b+ w = 2 then b = w = 1 and after an even number of seconds it
it will be on its starting dog and after an odd number on the the other.

(In neither case does the process forget how it started.)
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Exercise 10.4.1

We have
un = 1

2
un+1 + 1

2
un−1

so
(E − I)2un = 0

and
un = A+Bn

We have u0 = 0 so A = 0 and uN = 1 so b = 1/N and

un = uN(n) =
n

N
.
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Exercise 10.4.2

If the casino has a fortune of n, then at the next bet it has a prob-
ability of p of gaining 1 so its probability of going bankrupt is now
un+1, a probability of r of neither losing nor gaining so its probability
of going bankrupt is now un, and probability of q of neither losing 1 so
its probability of going bankrupt is now un−1. Thus

un = pun−1 + run + qun+1

for 1 ≤ n ≤ N − 1. If n = 0 it is bankrupt so u0 = 0. If n = N it stops
so uN = 1.

(ii) We have
(qE2 − (p+ q)E + pI))un = 0

so
(E − I)(E − (p/q))un = 0

whence

un = A+B

(
p

q

)n
.

Since u0 = 0 we have A = −B and since, uN = 1, A = (1− (p/q)N)−1.
Thus

un =
1−

(
p
q

)n
1−

(
p
q

)N .
(iii) If p = q we get

(pE2 − 2pE + pI))un = 0

so (E2 − E + I))un = 0 and, exactly as in Exercise 10.4.1,

un = uN(n) =
n

N
.

(iv) Allowing N → ∞ in (ii) and (iii) we see that bankruptcy is
certain if p ≥ q. If p < q the probability of bankruptcy starting with a
fortune n is

1−
(
p

q

)n
which may be made as small as we wish by taking n large enough.
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Exercise 10.4.3

Suppose that the casino has N units. If it takes a bet, then with
probability p it will lose, have a new fortune of N − 1 and expect to
survive a further eN−1 bets. With probability 1− p it will win, pay its
owners 1 so have a new fortune of N and expect to survive a further
eN bets. Thus

en = 1 + peN−1 + (1− p)eN .
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Exercise 10.4.4

Suppose that the casino has n units with 1 ≤ n ≤ N − 1. If it takes
a bet, then with probability p it will lose, have a new fortune of n− 1
and expect to pay out a further fn−1 to its owners. With probability
1− p it will win, have a new fortune of n+ 1 and expect to pay out a
further fn+1 to its owners. Thus

fn = pfn−1 + (1− p)fn+1.

Suppose that the casino has N units. If it takes a bet, then with
probability p it will lose, have a new fortune of N − 1 and expect to
pay out a further fN−1 to its owners With probability 1− p it will win,
pay its owners 1 so have a new fortune of N and expect to pay out a
further fN . Thus

F fN = pfN−1 + (1− p)(1 + fN).

If the casino has fortune 0 it is bankrupt so f0 = 0.

Our standard calculation shows that

fn = A

(
1−

(
1− p
p

)n)
Equation F now gives

p(fN − fN−1) = 1− p
and

A =
1

1− 2p

(
1− p
p

)N
whence

fn =
1

1− 2p

(
1− p
p

)N (
1−

(
1− p
p

)n)
and, so in particular,

fN =
1

1− 2p

((
1− p
p

)N
− 1

)
.



369

Exercise 10.4.5

Since the game is fair, the expected return to investors is precisely
what they put in. Thus fn = n.
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Exercise 10.4.6

The expected time to bankruptcy en satisfies

en = 1 + pen−1 + qen+1 + ren

for 1 ≤ n ≤ N − 1 while e0 = 0 and

eN = 1 + peN−1 + (q + r)eN .

Thus
(qE2 − (p+ q)E + p)en = 1

or
(qE − p)(E − 1)en = 1

We try a particular solution en = Kn obtaining K = (q − p)−1 and a
general solution

en = A+B

(
p

q

)n
+

n

q − p
Since e0 = 0, B = −A and

en = A

(
1−

(
p

q

)n)
+

n

q − p
.

The condition eN = 1 + peN−1 + (q + r)eN gives

eN − eN−1 = p−1

so

A

((
p

q

)N
−
(
p

q

)N−1
)

=
1

q − p
− 1

p

whence we obtain A and eN .

The expected sum withdrawn fn if the casino starts with n satisfies

fn = pfn−1 + rfn + qfn+1

if 1 ≤ n ≤ N − 1 and f0 = 0,

fN = pfN−1 + rfN + q(1 + fN) = q + (1− p)fN) + pfN−1

so
pfN = q + pfN−1.

We have
(qE − p)(E − 1)fn = 1

so

fn = A+B

(
p

q

)n
and since f0 = 0, B = −A and

fn = A

(
1−

(
p

q

)n)
.
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Applying the other end condition

A

(
p

q

)N−1(
1− p

q

)
=
q

p

whence we obtain A and fN .
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Exercise 10.4.7

Yn(r) is my fortune if I play fair heads and tails for n goes starting
with a fortune of r and I am not stopped by bankruptcy. The first
value of n, if any, with Yn(r) = 0 corresponds to bankruptcy.

If I start with n and avoid bankruptcy by reaching N then my prob-
ability of escaping bankruptcy is n/N . Allowing N → ∞ we see that
if I play indefinitely the probability of bankruptcy is 1.

If I have a fortune of N − 1 ≥ n ≥ 1 then at the next bet I have
a probability of 1/2 of gaining 1 so I will have lasted one further turn
and my expected survival time will be er+1 and a probability of 1/2
of gaining 1 so I will have lasted one further turn and my expected
survival time will be er−1. Thus

F en = 1 + 1
2
(en+1 + en−1)

for N − 1 ≥ n ≥ 1. Since I stop at 0 and at N we have e0 = eN = 0.

F gives en+1− 2en + en−1 = −2. We seek a solution of the form Cn2

obtaining
C(2n2 + 2− 2n2) = −2

when C = 1. Since un+1 − 2un + un−1 = 0 has the general solution
A+ bN we have

en = −n2 +Bn+ A

Since e0 = eN = 0, a = 0 and B = −N whence

en = en(N) = n(N − n).

If n is fixed

en(N) = n(N − n) = nN − n2 →∞
as N →∞.
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Exercise 10.4.8

(i) We note that the position of the players is symmetric and that in
each case, if the double is accepted, the player who doubles moves from
a player who can double at will to a player who cannot double facing
an opponent who can double at will. Thus the decision is always the
same.

(ii) Suppose the players are at M . Let p be the probability that the
first player wins if doubling is prohibited and q the probability that
the players will reach −M before the game ends (again doubling being
prohibited).

p = Pr(players never pass through −M)

+ Pr(players pass through −M and first player wins)

= (1− q) + q(1− p) = 1− qp
Thus, assuming that this is the first double and the second player
accepts, we know that there is a probability 1− q that the first player
will win (so the game will have value −2 to the second player) without
passing through −M and a probability 1 − q that the game will pass
through −M , at which point the game will have value −2 to the first
player and so value 2 the second. Thus

−1 = expected value for the second player if accepts

= −2(1− q) + 2q

Thus q = 1/4 and p = 4/5.

(iii) Observe that the players are playing a standard heads tails, so
if pr is the probability that the first player wins from the point r we
have

pr = 1
2
pr−1 + 1

2
pr+1

and pN = 1, p−N = 0 and by standard calculations

pr+1 =
r +N

2N
so, if N is divisible by 5 we have critical value M = 3N/5.
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Exercise 10.4.9

(i) Write M for the total number of coins involved. Let er be the
expected time to the end if Rosencrantz has fortune r. With probability
1/2 his fortune is r after one throw, With probability 1/4 his fortune
is r − 1 after one throw and with probability 1/4 his fortune is r + 1
[1 ≤ r ≤M − 1]. Thus

er = 1 +
1

4
(er−1 + 2er + er+1)

ie
er+1 − 2er + er−1 = 4.

A particular solution is er = Ar2 with A = 2. Thus

er = Br + C + 2r2.

Since e0 = eM = 0 we have C = 0 and B = −2M . Thus

er = 2(r2 −Mr) = 2rg.

(ii) The probability that any man wins a round is the probability
that the other two throw the opposite ie 1/4. Thus we have

ehrg = 1 +
1

4
(e(h+2)(r−1)(g−1) + e(h−1)(r+2)(g−1) + e(h−1)(r−1)(g+2) + ehrg

so

F 4 = e(h+2)(r−1)(g−1) + e(h−1)(r+2)(g−1) + e(h−1)(r−1)(g+2) − 3ehrg
)
.

Further e0uv = eu0v = euv0 = 0.

We try
ehrg = Ahrg

which certainly satisfies the boundary conditions.

The equation F is satisfied if and only if

4 = −A
(
(h+ 2)(r − 1)(g − 1) + (h− 1)(r + 2)(g − 1)

+ (h− 1)(r − 1)(g + 2)− 3hrg
)

= A
(
3(h+ r + g)− 6

)
ie

A =
4

3N − 6
where N = h+ r + g.

Since F has at most one solution satisfing the boundary condition
and we have found a solution, this must be the unique soltion. We
have

ehrg = hrg
4

3N − 6
.
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If they start with 100 coins each they are likely to reach England
before they finish the game.
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Exercise 10.4.10

(i) Jack will be paid j with probability pj if j ≥ m. With probability∑m−1
j=1 pj he will take the cow home and with probability q the cow will

not die and he will be in exactly the same position with expected gain
em. Thus

em =
n∑

j=m

jpj +

(
m−1∑
j=1

pj

)
qem

so (
1− q

m−1∑
j=1

pj

)
em =

n∑
j=m

jpj

as stated.

We claim that em increases and then decreases. Matthew Towers
gives the following argument. Observe that this statement is equivalent
to saying that em+1 ≤ em implies em+2 ≤ em+1 and this is equivalent
to saying that

pm

(
m− q

(
m

m∑
j=0

pj +
n∑

j=m+1

jpj

))
≥ 0

m− q

(
m

m∑
j=0

pj +
n∑

j=m+1

jpj

)
≥ 0

implies

m+ 1− q

(
m∑
j=0

pj +m
m∑
j=0

pj +
n∑

j=m+1

jpj

)
> 0

and this implication follows from the fact that

q
m∑
j=0

pj ≤ 1.

Let us write Am =
∑n

j=m jpj and Bm = 1− q
∑m−1

j=1 pj. Then

em+1 − em =
Am+1

Bm+1

− Am
Bm

=
Am −mpm
Bm − qpm

− Am
Bm

=
(qAm −mBm)pm
(Bm − qpm)Bm

.

Thus em+1 − em ≥ 0 if qAm −mBm ≥ 0 and em+1 − em ≤ 0 if qAm −
mBm ≤ 0.
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But qAm is a decreasing and mBm is an increasing sequence so em+1−
em is a decreasing sequence and the result follows.

Jack should choose m = m0.

(ii) If he has to take his cow home he incurs an extra cost of k so his
expected gain em is now

em =
n∑

j=m

jpj +

(
m−1∑
j=1

pj

)
(−k + qem)

so

em =

∑n
j=m jpj − k

∑m−1
j=1 pj

1− q
∑m−1

j=1 pj
.

Let us write Am =
∑n

j=m jpj − k
∑m−1

j=1 pj and Bm = 1− q
∑m−1

j=1 pj.
Then

em+1 − em =
Am+1

Bm+1

− Am
Bm

=
Am − (m+ k)pm

Bm − qpm
− Am
Bm

=
(qAm − (m+ k)Bm)pm

(Bm − qpm)Bm

.

But qAm is a decreasing and (m+k)Bm is an increasing sequence so
em+1 − em is a decreasing sequence. Thus there is an integer m0 with
0 ≤ m0 ≤ n such that em−1 ≤ em when 1 ≤ m ≤ m0 and em ≤ em+1

when m0 ≤ m ≤ n− 1.

Note that in case (i) (except in the trivial cases p0 = 1 or q = 1)
Jack will have m0 ≥ 1 but in case (ii) Jack may be happy to give the
cow away (this is obvious if k > n). We have assumed that beans are
traded in integral multiples but the ideas clearly work more generally.
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Exercise 10.4.11

The computation of V0 is essentially that of the onesided duel.

V0 =
∞∑
j=0

j Pr(A−j first unoccupied space)

so
V0 = q(1 + V0)

and V0 = q/p.

If I use my plan with m = n then, with probability q, the nth state
is free and I walk n units and with probability p it is occupied and my
expected walk is that obtained by taking m = n− 1. Thus

Vn = pn+ qVn−1.

If we look for a solution of

un = pn+ qun−1

with un = Bn+ C, we obtain

Bn+ C = pn+ qB(n− 1) + qC

so B = 1, C = −q/p. By inspection un = n−q/p is indeed a particular
solution. Thus, the general solution is

un = Aqn + n− q

p
.

We now know that
Vn = Aqn + n− q

p
for some constant A. Since V0 = q/p A = (2q/p) so

Vn = n+
(2qn − 1)q

p

for n ≥ 0 as stated.

Thus

Vn−1 − Vn = −1 + 2q
qn−1 − qn

p
= 2qn − 1

and

Vn − Vn−1

{
≥ 0 if 2qn − 1 ≥ 0

≤ 0 if 2qn − 1 ≤ 0

so Vn is minimised when n takes its largest value with

n ≤ log(1/2)

log q
.
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Exercise 10.5.1

(i) We have

Pr(Law loses) = Pr(double six on a particular throw)6

=

(
1

36

)2

≈ 4.6× 10−10.

(ii) About 2.2× 109 seconds.

(iii) He has paid 1 shilling for a bet worth approximately

4.6× 10−10 × 103 × 20 = 9.2× 10−4 ≈ 10−3

shillings.

(iv) No. The Kelly criterion deals with the long run and even if we
bet every second of a lifetime we will not have made enough bets for
the appropriate Tchebychev inequality to give any information.
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Exercise 10.5.2

The probability of getting the right numbers in some fixed order is

1

49
× 1

48
× 1

47
× 1

46
× 1

45
× 1

44
and there are 6! ways of obtaining the right numbers in any order so
the probability of winning is

6!× 1

49
× 1

48
× 1

47
× 1

46
× 1

45
× 1

44
=

1

49
× 1

47
× 1

46
× 1

3
× 1

44

=
1

13983816
.
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Exercise 10.5.4

Observe that
d

da
ae−a = e−a − ae−a = (1− a)e−a

so ae−a increases with a until a = 1 and then decreases. Thus ae−a is
maximised by taking a = 1.
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Exercise 10.5.5

Assuming that N is so large that we may take

Pr(exactly m winners) =
1

m!
ame−a,

we must seek to maximise f(a) = ame−a.

Now
f ′(a) = (m− a)am−1e−a

so f increases as a increases from 0 to m and then decreases. We should
take a = m.
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Exercise 10.5.6

Let Xj be the sum paid out to the jth participant The expected
value of the total sum paid out is

E
N∑
j=1

Xj =
N∑
j=1

EXj = NEX1

= N × N

2m
=
N

2
.
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Exercise 10.5.8

Since
∞∑

r=2m+1

mr

r!
≤ 2um+1

it is sufficient to find a k so that
∞∑

r=2m+k+1

mr

r!
≤ um+1

200
.

But arguing as in Lemma 10.5.7, we have
∞∑

r=2m+k+1

mr

r!
≤ u2m+1

∞∑
r=k+1

2−r = 2−ku2m+1

so k = 8 will certainly do.
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Exercise 10.5.9

e−5 511

11!
≈ 0.0082

e−10 1021

21!
≈ 0.00089
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Exercise 10.5.10

(i) We did the case −1/2 < x ≤ 0 in Exercise 10.2.6. Now we
consider 0 ≤ x < 1/2.

If g(x) = x− log(1 + x), then

g′(x) = 1− 1

1 + x
> 0

for 0 ≤ x so g(x) ≥ g(0) = 0 and

log(1 + x) ≤ x

for all x ≥ 0.

If f(x) = x2 + log(1 + x)− x, then

f ′(x) = 2x− 1 +
1

1 + x
=

2x2 + x

1 + x
> 0

for 0 ≤ x so f(x) ≥ f(0) = 0 and

log(1 + x) ≥ x− x2

for all x ≥ 0.

The result follows.

(ii) By (i) we know that If n ≥ 2|a|−1∣∣∣a
n
− log

(
1 +

a

n

)∣∣∣ ≤ (a
n

)2

so ∣∣∣a− n log
(

1 +
a

n

)∣∣∣ ≤ a2

n
→ 0

as n→∞.

We have shown that

n log
(

1 +
a

n

)
→ log a

so taking exponentials (
1 +

a

n

)n
→ ea

as n→∞.

(iii) If

n−1∑
r=1

r2 ≤ n3

3
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then
n∑
r=1

r2 ≤ n3

3
+ n2

≤ 1

3
(n3 + 3n2)

≤ 1

3
(n3 + 3n2 + 3n+ 1)

=
(n+ 1)3

3
so, since

1∑
r=1

r2 = 1 ≤ 8

3
=

(1 + 1)3

3
,

the result follows by induction.

[Or we could use known formulae for
∑n

r=1 r
2.]

(iv) Provided that n is so large that N(n)|a|/n < 1/2, we have∣∣∣ra
n
− log

(
1 +

ra

n

)∣∣∣ ≤ (ra
n

)2

for all 1 ≤ r ≤ N(n) and so∣∣∣∣∣∣
N(n)∑
r=1

ra

n
−

N(n)∑
r=1

log
(

1 +
ra

n

)∣∣∣∣∣∣ ≤
N(n)∑
r=1

(ra
n

)2

so∣∣∣∣∣∣N(n)(N(n) + 1)a

2n
−

N(n)∑
r=1

log
(

1 +
ra

n

)∣∣∣∣∣∣ ≤ (N(n) + 1)3a2

3n2
≤ N(n)3a2

n2
.

Thus∣∣∣∣∣∣(1 +N(n)−1)a− 2

N(n)2

N(n)∑
r=1

log
(

1 +
ra

n

)∣∣∣∣∣∣ ≤ (N(n) + 1)3a2

3n2

≤ 2N(n)a2

n
→ 0.

as n→∞ and so

2

N(n)2

N(n)∑
r=1

log
(

1 +
ra

n

)
→ a

as n→∞. Taking exponentials we deduce thatN(n)∏
r=1

(
1 +

ra

n

)2/N(n)2

→ ea.
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(v) We have

Pr(some common birthday = 1− Pr(no common birthday)

= 1−
m∏
r=1

(
1− r

365

)
.

If m is not large, then taking a = −1, n = 365, N(n) = m in (iv) we
have

Pr(some common birthday) ≈ 1− eaN(n)2/2 = 1− e−m2/365.

(vi) Thus the approximate number required for the probability of
joint birthdays to be at least 1/2 is given by

m2/(2× 365) = log 2

so m ≈ 22.49. This suggests 23 people are required.

Exact calculation shows that with 22 people the probability of coin-
cidence is about .48 (and certainly less than 1/2) and with 23 people
the probability of coincidence is about .51 (and certainly more than
1/2).

(vii) We take a 365 day year.

Pr(some common birth-hour) = 1− Pr(no common birth-hour)

= 1−
m∏
r=1

(
1− r

365× 24

)
.

Proceeding as in (vi) and (vii) with a = −1, n = 365× 24, N(n) = m
we see that the approximate number required for the probability of
joint birth-hours to be at least 1/2 is given by

m2/(2× 365× 24) = log 2

so m ≈ 110.19. This suggests 111 people are required.

(viii) This is just the birthday problem again. The probability of two

people getting the same password is approximately 1− e−m2/2n and to
make this small we need m2/2n very small.
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Exercise 10.5.11

(i) This is just the basic case of the AM/GM inequality. A direct
proof is as follows.

(
x+ y

2

)2

− xy =

(
x− y

2

)2

≥ 0

with equality if and only if x = y.

(ii) If we specify who is to have which birthday the probability is
pj(1)pj(2) . . . pj(n). But there are n! ways of assigning birthdays in this
pattern so

Pr(together the n people have birthdays on days j(1), j(2), . . . , j(n))

= n!pj(1)pj(2) . . . pj(n).

and summing over all sets of n distinct birthdays

Pr(the n people do not share birthdays)

= n!
∑

1≤j(1)<j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n).

(iii) Thus collecting terms

∑
1≤j(1)<j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

= p1p2

∑
3≤j(3)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

+ (p1 + p2)
∑

3≤j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

+
∑

3≤j(1)<j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n).
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(iv) If qj and pj are as specified∑
1≤j(1)<j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

= p1p2

∑
3≤j(3)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

+ (p1 + p2)
∑

3≤j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

+
∑

3≤j(1)<j(2)<···<j(n)≤N

pj(1)pj(2) . . . pj(n)

= p1p2

∑
3≤j(3)<···<j(n)≤N

qj(1)qj(2) . . . qj(n)

+ (p1 + p2)
∑

3≤j(2)<···<j(n)≤N

pj(1)qj(2) . . . qj(n)

+
∑

3≤j(1)<j(2)<···<j(n)≤N

qj(1)qj(2) . . . qj(n)

≤ q1q2

∑
3≤j(3)<···<j(n)≤N

qj(1)qj(2) . . . qj(n)

+ (q1 + q2)
∑

3≤j(2)<···<j(n)≤N

qj(1)qj(2) . . . qj(n)

=
∑

1≤j(1)<j(2)<···<j(n)≤N

qj(1)qj(2) . . . qj(n)

with equality if and only if p1 = p2.

This gives the required result.

(v) If it is not true that pj = 1/n for all j then we can find r 6= s with
pr 6= ps. Applying (iv) we can find another set of birthday probabilities
such that coincidences are strictly less probable.

Thus if there is a set of probabilities which minimises the probability
of coincidence, this must be p(j) = 1/N for all j.
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Exercise 10.5.12

If k is small and we book 500 + k people the probability that there
will be j cancellations (with j also small) is approximately

1

j!

(
500 + k

500

)j
exp

(
−500 + k

500

)
≈ 1

j!
e−1.

Thus our expected extra profit if we overbook by k is approximately.

uk = 100k − 200
k∑
r=0

(k − r) Pr(r cancellations)

= 100k − 200
k∑
r=0

1

r!
(k − r)e−1

Now

uk − uk−1 = 100− 200
k∑
r=0

1

r!
e−1 = vk

say. We observe that vk+1 − vk < 0 and vk → −100 as k → ∞. Thus
uk increases to a maximum and then decreases. Now

u1 − u0 = 100− 200e−1 ≈ 26.4 > 0

and
u2 − u1 = 100− 200× 2e−1 ≈ −47.1

so we should make 501 bookings.
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Exercise 10.5.13

The probability that a random combination will not contain 1 to 5
is

44

49
× 43

48
× 42

47

41

46
× 40

45
× 38

44
≈ .49

so about half the combinations are used. In about half the draws a
‘forbidden number will turn up’ and no one will get a prize. In about
half the draws there will be no forbidden draws and the result will be
those of lottery in which the number of possible out comes has been
more or less halved.

In the notation used in this section instead of the chance of any
single participant winning being m/N then (in non-forbidden weeks)
the chance of any single participant winning being 2m/n.

Pr(r winners in non-forbidden week)

Pr(r winners in old scheme)
=

(
(2m)r/r!

)
e−2m(

mr/r!
)
e−m

= 2re−m

and, as one would expect there is a much higher chance of multiple
prize winners.

In cases (C) and (D) the actions of others do not influence the prize.
Whatever you do you have the same expectation of about half a pound.

Now look at (A) and (B). In this case if you do (b) or (c) you are
guaranteed to be sole winner so you are better off than the others.
Cases (b) and (c) offer the same chance of winning. (If there were
other smaller prizes offered you might be better under (b) but that is
a different question.)

In case (d) you have the same chance of winning with k others [k =
0, 1, 2, . . . ] as everybody else. If you do (a) you have probability about
1/2 of ending up in a case like (b) or (c) and a probability about 1/2
of ending up in a case like (d). You are better off than under (d) but
worse off than under (b) or (c).

However, in case (A) if you choose (d) and if there is then a proba-
bility p that you will win, it will then be the case that the probability
that you will win and not share is not far from 6p/7. Thus although
you are better off doing (b) or (c) you are not much better off. If you
do (b) or (c) you have expectation of about half a pound.

In case (B) it is clear that (b) and (c) are much better than (d). The
twenty eight million other players have bought tickets in a lottery where
with probability about 1/2 there is one prize (shared if necessary) of
fourteen million pounds. Each of their tickets is worth 1/4 pounds. You
have bought one ticket with probability about one in fourteen million
you get a prize of fourteen million. Your ticket is worth one pound. If
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there is no roll over of prize money the organisers are delighted since
they have been given twenty eight million and have probability about
1/2 of having to disburse fourteen million.

The value of your ticket if you do (a) is 5/8 pounds since you have
probability 1/2 of gaining a ticket worth 1 and probability 1/2 of gain-
ing a ticket worth 1/4.

Exercise 10.6.1∗

Exercise 10.6.2∗

Exercise 10.6.3∗
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Exercise 11.1.1

(i) I toss r coins. The probability that they all come down heads is
2−r and I stop, otherwise my expected time from then on is ur. Thus

ur = r + (1− 2−r)ur

so
2−rur = r

and
ur = r2−r.

(ii) This is similar to (i) except that the probability that they come
down all heads or all tails is is 2−r + 2−r = 2−r+1 and the argument as
before gives vr = r2−r+1.

(iii) e1 = u1 so e1 = 1 + 2−1e1 and e1 = 2 = 21+1 − 2. The expected
time to reach r heads is er. Once I am at r heads then after one further
throw with probability 1/2 I reach r+ 1 heads or with probability 1/2
I must start again and expect to take er+1 to reach r + 1 heads. Thus

er+1 = er + 1 + 1
2
er+1

and
er+1 − 2er = 2.

Using induction or solving the difference equation we get er = 2r+1−2.

(iii) Let gr be the expected time to throw r heads or tails starting
from one head. Observe that by symmetry gr is the expected time
to throw r heads or tails starting from one tail. Further fr = 1 + gr
(since we must throw heads or tails in our first throw) and g1 = 0. The
expected time to reach r starting from one head is gr. Once I am at r,
then after one further throw with probability 1/2 I reach r+ 1 same or
with probability 1/2 I must start again with one coin already thrown
so my expected time from then to r + 1 is gr+1. Thus

gr+1 = gr + 1 + 1
2
gr+1

and
gr+1 − 2gr = 2.

Solving the difference equation we get

gr = A2r − 2.

Since g1 = 0 we have A = 1, gr = 2r − 2 and fr = 2r − 1.

[Or we could argue that half are all heads and half all tails so er =
2fr.]

(iv) In (i) if a tails appears you have to go on throwing until you
have done a full r tosses before you start again looking for r in a row.
In (iii) you start again immediately after the next throw.
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Exercise 11.2.1∗
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Exercise 11.2.2

number of heads out of 20 0 1 2 3 4 5 6 7

probability if p = 1/20 .122 .270 .285 .190 .090 .032 .009 .002

number of heads out of 20 0 1 2 3 4 5 6 7
probability if p = 1/2 .000 .000 .000 .001 .005 .012 .029 .058

If we reject on 5 heads or less we will reject good coins with probability
about .02 and accept bad coins with probability about .01. (But we
might choose differently if we wished to have very small probability of
rejecting good coins or if we wished to have very small probability of
accepting bad coins.)
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Exercise 11.3.2

Completing the square,

ns2 − as = n(s2 − n−1as) = n
(
s− a

2n

)2

− a2

4n
which is minimised by taking s = a/(2n).
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Exercise 11.3.3

(i) We have

et + e−t

2
=

1

2

(
∞∑
r=0

tr

r!
+
∞∑
r=0

(−1)r
tr

r!

)
∞∑
r=0

t2r

(2r)!
≥ 1

and

et + e−t

2
=
∞∑
r=0

t2r

(2r)!

≤
∞∑
r=0

t2r

2r(r!)

= et
2/2.

(ii) If f(x) = −esx then f ′′(x) = −s2esx < 0 for all x so by concavity

f(x) = f

(
1− x

2
× (−1) +

1 + x

2
× 1

)
≥ 1− x

2
f(−1) +

1− x
2

f(1)

that is to say

esx ≤ 1− x
2

e−s +
1 + x

2
es

for all s and all |x| ≤ 1.

(iii) Using (ii), we have, since |Y | ≤ 1,

esY ≤ 1− Y
2

e−s +
1 + Y

2
es

so taking expectations,

EesY ≤ 1− EY
2

e−s +
1 + EY

2
es

=
es + e−s

2
≤ e−s

2/2.

(iv) If a = 0 the result is trivial. If a > 0 set Y = X/a so |Y | ≤ 1
and

EetY ≤ e−t
2/2.

Now set t = sa to recover

EesX ≤ ea
2s2/2.
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(v) Since the Xj are independent, so are the esXj and, using (iv),

Ees
∑n

j=1Xj = E
n∏
j=1

esXj =
n∏
j=1

EesXj ≤
n∏
j=1

Eea2js2/2 = As2/2.

(vi) Set Y =
∑n

j=1Xj. If s > 0 so y 7→ eys is increasing, we have

Pr(Y ≥ y) ≤ EesPr(Y≥y)

esy
≤ exp

(
As2

2
− sy

)
and setting s = A/y we obtain

Pr(Y ≥ y) ≤ exp

(
− y

2

2A

)
.

Replacing Xj by −Xj or repeating the argument we have

Pr(Y ≤ −y) ≤ exp

(
− y

2

2A

)
and so, combining our two results

Pr(|Y | ≤ y) ≤ 2 exp

(
y2

2A

)
.

(vii) Set Zj = 1 if the jth toss is heads and Zj = 0 if the jth toss is
tails. If we set

Xj = Zj − p
then EXj = 0 and |Xj| ≤ p so

Pr(|Yn − np| ≥ Kn1/2) = Pr

(∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣ ≤ Kn1/2

)

≤ 2 exp

(
−(Kn1/2)2

2np2

)
≤ 2 exp

(
−K

2

2p2

)
for all K > 0.

If 1/2 ≥ p ≥ 0 then since

Yn − np = −
(
(n− Yn)− n(1− p)

)
we can reverse the roles of heads and tails to get

Pr(|Yn − np| ≥ Kn1/2) ≤ 2 exp

(
− K2

2(1− p)2

)
.
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Exercise 11.3.4

We have

Pr
(
|Yn − nq| ≤ nε

)
≤ Pr

(
|Yn − np| ≥ nε

)
≤ 2 exp

(
− nε2/2).
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Exercise 11.4.1

The symmetry of our demands suggest we try for n odd and ac-
cept the drug if number of successes exceeds 0 and reject if number of
successes less than 0.

In the notation of Exercise 11.3.3 (vii) with p = .55 we want

Pr(Yn − .5n < 0) ≤ .05

ie
Pr(Yn − .55n < −.05n) ≤ .05

so setting, K = .05n1/2 ,we see that the result of Exercise 11.3.3 (vii)
guarantees this if

exp

(
−(.05n1/2)2

2(.55)2

)
≤ .05

ie if
exp(−n/(2× 112),≤ .05

ie
n ≥ 2× 112 log 20

so taking n = 725 will give the desired outcome.
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Exercise 11.4.2

If we have an excess of r with −a+1 ≤ r ≤ a−1 and make a further
throw then with probability p we will then have an excess r + 1 and
the probability of acceptance will be ur+1 and with probability q we
will then have an excess r − 1 and the probability of acceptance will
be ur−1. Thus

ur = qur−1 + pur+1.

If r = a then we accept so ua = 1. If r = −a we reject so u−a = 0.

We have

(pE2 − E + qI)ur = 0

so

(E − I)(pE − qI)ur = 0

and

ur = A+B

(
q

p

)r
for some A and B. Setting r = a and r = −a we get

1 = A+B

(
q

p

)a
0 = A+B

(
q

p

)−a
so subtracting we have

1 = B

((
q

p

)a
−
(
q

p

)−a)
.

Thus

ur =

(
q
p

)r
−
(
q
p

)−a
(
q
p

)a
−
(
q
p

)−a
Setting r = 0 we see that the probability of acceptance is

u0 =
1−

(
q
p

)−a
(
q
p

)a
−
(
q
p

)−a
=

1(
q
p

)a 1

1 +
(
q
p

)−a
1

1 +
(
q
p

)a
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The probability of acceptance increases as p increase so the probability
of rejection is smaller than 0.05 for p ≥ .55 is given by

1

1 +
(
.45
.55

)a ≥ .95

that is to say

1 +

(
9

11

)a
≤ 20

19
ie (

9

11

)a
≤ 1

19
ie

a ≥ log 19

log(11/9)
≈ 14.7

We should take a = 15. By symmetry this will also ensure that the
probability of acceptance is less than 0.05 if p ≤ .45.

If a = b then fixing a to give a certain probability of acceptance for
given p = p′ also fixes the probability of rejection. for given p = p′′. If
we can chose b as well we can choose both probabilities.
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Exercise 11.4.3

If the excess is r then, if a− 1 ≥ r ≥ 1− a, making one further trial
there is a probability 1/2 we throw a head, so we now expect to wait
er+1 to the end of the trial, and a probability 1/2 we throw a tail, so
we now expect to wait er−1 to the end of the trial. If r = −a or r = a,
the number of further throws required is 0 so ea = e−a = 0. Thus

er = 1 + 1
2
er−1 + 1

2
er+1 for −a+ 1 ≤ r ≤ a− 1,

and ea = e−a = 0.

A complementary solution of our difference equation

(E − I)2ur = −1

is ur = Cr2 with

C
(
(r + 1)2 − 2r2 + (r − 1)2

)
= −2

ie C = −1. Thus
er = A+Br − r2.

Since ea = u−a, B = 0. Since ua = 0 A = a2. Thus

er = a2 − r2

and the expected number of trials when we start is a2.

If a = 15 this gives 225 expected trials.
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Exercise 11.4.4

(i) Write er = er(p). If −a + 1 ≤ r ≤ a − 1, then if the excess of
successes is r then, after 1 further trial, with with probability p we will
have an excess r + 1 and the expected number of trials remaining will
be er+1 while with probability q we will have an excess r − 1 and the
expected number of trials remaining will be er−1. Thus

er = 1 + qer−1 + per+1

If the excess is a or −a, no further trials are required so ea = e−a.

We have

(pE2 − E + qI)er = 1

or

(pE − q)(E − 1)er = 1.

We seek a particular solution of the for er = Kr obtaining K = (p −
q)−1. Thus

er = A+B
q

p

r

+
r

p− q
.

Setting r = a and r = −a we obtain

0 = A+B
q

p

a

+
a

p− q

0 = A+B
q

p

−a
− a

p− q
Thus

er(p) =
2a

p− q

 1−
(
q
p

)r+a(
1−

(
q
p

)2a
)
− r + a

p− q
.

Setting r = 0 we see that the expected number of trials required by
our test is

e0 =
2a

p− q

 1−
(
q
p

)a(
1−

(
q
p

)2a
)
− a

p− q

=
a

p− q

 2(
1 +

(
q
p

)a)
− 1


=

a

p− q

1−
(
q
p

)a
1 +

(
q
p

)a
 .
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(ii) If

f(x) =

( 1
2
− x

1
2

+ x

)a
then

f ′(x) = a

( 1
2
− x

1
2

+ x

)a−1(
− 1

1
2

+ x
−

1
2
− x

(1
2

+ x)2

)
and

f ′(0) = −4a

Thus setting p = 1
2

+ δ so q = 1
2
− δ

a

p− q

(
1−

(
q

p

)a)
=

a

2δ

(
f(0)− f(δ)

)
→ −a

2
f ′(0) = 2a2

and

R(p, a)→ 2a2

2
= a2 = R(1

2
, a)

as p→ 0.

(iii) We have

a1R(p, a) =
1

p− q

1−
(
q
p

)a
1 +

(
q
p

)a
→ 1

p− q
1− 0

1 + 0
=

1

p− q

as a → ∞. By the law of large numbers, we expect that if we have
a large number of trials N (which we must have if a is large), then
roughly Np will be success and Nq failures (with high probability) so
if we finish after N trials

a ≈ Np−Nq
and we expect N ≈ a(p− q)−1.

If p < 1/2

a−1R(p, a)→ 1

q − p
as a→∞.

(iii) We have a = 15, p = 2/3, q = 1/3 so

R(p, a) =
15

1/3

215 − 1

215 + 1
≈ 45.
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Exercise 12.1.1

If A ≥ 0 then setting u = 1, v = 0 we see that the economists’ con-
dition fails. Thus the economists’ condition implies A < 0. Similarly
the economists’ condition implies C < 0. If A, C < 0

Av2 − 2Buv + Cu2 = A(v − uBA−1)2 + (C −B2A−1)u2.

Setting u = 1, v = BA−1 we see that the economists’ condition implies
C −B2A−1 < 0, ie CA−B2 > 0 so CA > B2.

Conversely, if A, C < 0 and CA > B2 then

Av2 − 2Buv + Cu2 ≥ 0

implies
A(v − uBA−1)2 + (C −B2A−1)u2 ≥ 0

so v − uBA−1 = 0 and u = 0 whence u = v = 0. Thus the economists’
condition holds.
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Exercise 12.1.2

We require x0 = y0 > 0, a, b > 0, u, v > 0, B2 < AC, av − bu = 0,
A,C < 0. We could take a = b = x0 = y0 = u = v = 1, A = C = −2
B = 1.
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Exercise 12.1.3

We have

F u4x+ v4y = 4c
and

ãv − b̃u = 0

where
ã = a+ A4x+B4y, and b̃ = b+B4x+ C4y.

Thus
(a+ A4x+B4y)v − (b+B4x+ C4y)u = 0.

But au− bv = 0 so

(Av −Bu)4x− (Bv − Cu)4y = 0

Using F, this gives

(Av +Bu)(4c− v4y)− u(Bv + Cu)4y = 0

so
(Av2 − 2Buv + Cu2)4y = (Av +Bu)4c

ie

4y =
Av +Bu

Av2 − 2Buv + Cu2
4c.

y will decrease as c increases if Av +Bu > 0.
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Exercise A.1

(ii) Rescale y axis by a and x axis by a−1. If f(x) = 1/x the graph
is unchanged.

(iii) Make the change of variable s = a−1x to obtain∫ b

a

1

x
dx =

∫ b/a

1

1

as
ads =

∫ b/a

1

1

s
ds.

(iv) We have, using (iii),

log uv =

∫ uv

1

1

x
dx

=

∫ u

1

1

x
dx+

∫ uv

u

1

x
dx

=

∫ u

1

1

x
dx+

∫ v

1

1

x
dx

= log u+ log v.
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Exercise A.2

(ii) By the fundamental theorem of the calculus (looked at in (i)) log
is differentiable and

log′(t) =
d

dt

∫ t

1

1

x
dx =

1

t
.
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Exercise A.3

(i) Since log′(t) = 1/t > 0, log is a strictly increasing function.

(ii) Observe that

log 1 =

∫ 1

1

1

x
dx = 0.

(iii) Since 2 > 1, we have log 2 > log 1 = 0 so

log 2n = n log 2→∞.

(iv) Since log is increasing (iii) tells us that

log x→∞
as x→∞.

(v) Since 1/x→∞ as x→ 0+

log x = − log(1/x)→ −∞
as x→∞.

(vi) We have
d2

dx2
log x =

d

dx

1

x
=
−1

x2
< 0.
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Exercise A.4

(iii) By part (ii), exp is differentiable with

d

dx
expx =

d

dx
log−1 x =

1

log′ x
=

1

x−1
= x.

(iv) An appropriate answer is that log is defined only on the strictly
positive reals. But there are other ways of looking at this.
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Exercise A.5

(i) We have

log
(
(expx)(exp y)

)
= log expx+ log exp y = x+ y,

so applying exp to both sides yields

(expx)(exp y) = exp(x+ y).

(ii) Observe that exp′ x = expx > 0.

(iii) log expx = x→∞ as x→∞ so exp x = x→∞ as x→∞.

(iv) expx = 1/(exp−x)→ 0 as x→ −∞.
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Exercise A.6

(i) expn log x = exp log xn = xn. (If you need a more detailed proof,
use induction.)

(ii) If n = 0, exp 0 log x = exp 0 = 1. If n < 0,

x−n(expn log x) = exp(−n log x) exp(n log x) = exp 0 = 1

so expn log x = xn.

(iii) We have(
exp

(m
n

log x
))n

= expn
(m
n

log x
)

= expm log x = xm

and so
exp

(m
n

log x
)

= xm/n

where xm/n has its standard elementary meaning.

(iv) We have

ex = exp(a log e) = exp(a log exp 1) = exp(a× 1) = exp a.
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Exercise A.7

(i) Observe that

(xy)a = exp(a log xy) = exp
(
a(log x+ log y)

)
= exp(a log x+ a log y) = (exp a log x)(exp a log y) = xaya.

(ii) Observe that

xa+b = exp
(
(a+ b) log x

)
= exp(a log x+ b log x)

= exp(a log x) exp(b log x) = xaxb.

(iii) Observe that

xab = exp(ab log x) = exp
(
a(b log x)

)
= exp

(
a log(xb)

)
= (xb)a.

Thus
xab = xba = (xa)b.
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Exercise A.8

(i) We have

log(1 + h)

h
=

log(1 + h)− log 1

h
→ log′ 1 = 1

as h→ 0.

(ii) Taking h = a/n in (i), we get

log(1 + a/n)

a/n
→ 1

as n→∞.

(iii) Multiplying through by a and simplifying, we get

n log(1 + a/n)→ a

as n→∞.

(iv) Taking the exponential of both sides we get(
1 +

a

n

)n
→ ea

as n→∞.

(v) We want (
1 +

x

100

)n
= 2

so

n log
(

1 +
x

100

)
= log 2.

If x is small, part (i) gives

x

100
≈ log 2

so

n ≈ 100× log 2

x
≈ 69

n
≈ 72

n
(note that 72 has many small factors).

As an example suppose x = 4. The rule of 72 gives a doubling time
of 72/4 = 18 years. In fact(

1 +
4

100

)18

≈ 2.03

which is not bad.

If we take x = 8 we have(
1 +

8

100

)9

≈ 2.
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If we take x = 24 (a rate more often on the lips of snake oil salesmen
than respectable bankers), then(

1 +
24

100

)3

≈ 1.91.
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Exercise A.9

(i) Observe that

(1− t)(1 + t+ t2 + · · ·+ tn) = 1− tn+1

so, dividing by (1− t) and rearranging, we get

1

1− t
= 1 + t+ · · ·+ tn +

tn+1

1− t
.

Integrating both sides, gives∫ x

0

1

1− t
dt =

∫ x

0

(
1 + t+ · · ·+ tn +

tn+1

1− t

)
dt

x+
x2

2
+ · · ·+ xn

n
+Rn(x)

where

Rn(x) =

∫ x

0

tn+1

1− t
dt.

But making the substitution s = 1− t gives∫ x

0

1

1− t
dt = −

∫ 1−x

1

1

s
ds = − log(1− x),

so

− log(1− x) = x+
x2

2
+ · · ·+ xn

n
+Rn(x).

(ii) If |t| ≤ |x| < 1, then |1− t| ≥ 1− |t| ≥ 1− |x| so∣∣∣∣ tn+1

1− t

∣∣∣∣ ≤ |x|n+1

|1− t|
≤ |x|

n+1

1− |x|
and so

|Rn(x)| ≤
∣∣∣∣∫ x

0

|x|n+1

1− |x|
dt

∣∣∣∣ ≤ |x|n+2

1− |x|
→ 0

as n→∞.

(iii) Combining (i) and (ii),

x+
x2

2
+ · · ·+ xn

n
= − log(1− x)−Rn(x)→ − log(1− x)

as n→∞. In other words,

− log(1− x) = x+
x2

2
+ · · ·+ xn

n
+ . . .

for all |x| < 1.

Setting x = −y, we obtain

log(1 + y) = y − y2

2
+ · · ·+ (−1)n+1yn

n
+ . . .

for all |y| < 1.
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Exercise A.10

(i) Set

h+(x) =

{
h(x) if h(x) ≥ 0,

0 otherwise,

and

h−(x) =

{
h(x) if h(x) ≤ 0,

0 otherwise.

Then ∣∣∣∣∫ b

a

h(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

h+(x) + h−(x) dx

∣∣∣∣
=

∣∣∣∣∫ b

a

h+(x) dx+

∫ b

a

h−(x) dx

∣∣∣∣
≤ max

(∫ b

a

h+(x) dx,−
∫ b

a

h−(x) dx

)
= max

(∫ b

a

h+(x) dx,

∫ b

a

(
− h−(x)

)
dx

)
.

But

0 ≤ −h−(x) ≤ g(x)

so ∫ b

a

(
− h−(x)

)
dx ≤

∫ b

a

g(x) dx.

Similarly ∫ b

a

h+(x) dx ≤
∫ b

a

g(x) dx

so ∣∣∣∣∫ b

a

h(x) dx

∣∣∣∣ ≤ ∫ b

a

g(x) dx.

(ii) If 1 ≤ r ≤ n and

f (r)(x) ≤ A
|x|n−r

(n− r)!
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then, using part (i),

|f (r−1)(x)| =
∣∣∣∣∫ x

0

f (r)(t) dt

∣∣∣∣
≤
∣∣∣∣∫ x

0

A
|x|n−r

(n− r)!
dt

∣∣∣∣
=

∫ |x|
0

A
xn−r

(n− r)!
dt

= A
|x|n−r+1

(n− r + 1)!
.

Thus, by induction,

|f(x)| ≤ A
|x|n

n!
for all |x| ≤ X.

(iii) Since exp is increasing

0 < expx ≤ expX

for all x ≤ X.

Now set

f(x) = exp x−
(

1 + x+
x2

2
+ · · ·+ xn−1

(n− 1)!

)
.

By induction

f (r)(x) = exp x−
(

1 + x+
x2

2
+ · · ·+ xn−r−1

(n− r − 1)!

)
for 0 ≤ r ≤ n− 1 and

f (n)(x) = exp x.

Thus |f (n)(x)| ≤ expX for all |x| ≤ X and f(0) = f ′(0) = f ′′(0) =
· · · = f (n−1)(0) = 0. By part (ii)

|f(x)| ≤ expX
|x|n

n!
for all |x| ≤ X.

(iv) Thus∣∣∣∣expx−
(

1 + x+
x2

2
+ · · ·+ xn−1

(n− 1)!

)∣∣∣∣ ≤ eX
|x|n

n!
→ 0

for all |x| ≤ X. But X was arbitrary so∣∣∣∣expx−
(

1 + x+
x2

2
+ · · ·+ xn−1

(n− 1)!

)∣∣∣∣→ 0

as n→∞ and this is the required result.
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Exercise A.11

We use the following form of Taylor’s theorem, obtained by integrat-
ing by parts and true if f is n+ 1 times continuously differentiable.

f(x) =
n∑
j=0

f (j)(0)xj

j!
+Rn(f, x)

where

Rn(f, x) =
1

n!

∫ x

0

f (n+1)(t)(x− t)n dt.

If f(x) = exp(x) then f (r)(x) = exp x so

expx =
n∑
j=0

xj

j!
+Rn(x)

where

|Rn(x)| =
∣∣∣∣ 1

n!

∫ x

0

exp(t)(x− t)n dt
∣∣∣∣ ≤ 1

n!
|x|n exp(|x|)→ 0

(observe (|x|n+1/(n+ 1)!)/(|x|n/n!) = |x|/(n+ 1)→ 0. Thus

expx =
∞∑
j=0

xj

j!
.

If f(x) = log(1 − x) then f ′(x) = −(1 − x)−1 for |x| < 1 and, by
induction,

f (r)(x) = − (r − 1)!

(1− x)r

for all r ≥ 1. Thus if |x| < 1

log(1− x) = −
n∑
j=0

xj

j
+Rn(x)

where

|Rn(x)| =
∣∣∣∣∫ x

0

(x− t)n

1− t)n+1
dt

∣∣∣∣ .
Now, if 0 ≤ t ≤ x,

0 ≤ x− t
1− t

= 1− 1− x
1− t

≤ 1− (1− x) = x = |x|

and, if x ≤ t ≤ 0, ∣∣∣∣x− t1− t

∣∣∣∣ ≤ |x| − |t|1− |t|
≤ |x|.

Thus

|Rn(x)| ≤
∫ |x|

0

|x|n 1

1− |x|
dt ≤ |x|

n+1

1− |x|
→ 0
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as n→∞. Thus

log(1− x) = −
∞∑
j=0

xj

j!

for |x| < 1.
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Exercise A.12

(i) We have

aloga x = exp

(
log a× log x

log a

)
= exp log x = x.

(ii) We have

loga xy =
log xy

log a
=

log x+ log y

log a
=

log x

log a
+

log y

log a
= loga x+ loga y.

(iii) We have

loga x
k =

log xk

log a
= k

log x

log a
= k loga x.

(iv) We have

loge x =
log x

log e
=

log x

1
= log x.

(v) We have

loga b logb a =
log b

log a
× log a

log b
= 1.
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Exercise A.13

(i) We have

log10 5 = log10 10− log10 2 ≈ 1− 0.301029996 ≈ .699

log10 6 = log10 3 + log10 2 ≈ 0.477121255 + 0.301029996 ≈ .778

correct to three decimal places.

Now
log10(3100/1047) = 100 log10 3− 47 ≈ .712

correct to three decimal places so

log10 5 < log10(3100/1047) < log10 6

whence, since log10 is increasing,

5 < 3100/1047 < 6.

Thus
5× 1047 < 3100 < 6× 1047.

and the first digit of 3100 is 5.

(ii) We have
log10 21000 = 301 + .029

correct to three decimal places so

10301 < 21000 < 2× 10301

and the first digit of 21000 is 1.

We have

log10 210 000 < 3010 + .300 < 3010 + log10 2

so
103010 < 210 000 < 2× 103010

so the first digit of 210 000 is 1.

We have

30103 > log10 2100 000 > 30102+999 > 30102+2 log10 3 = 30102+log10 9

so
1030103 > 2100 000 > 9× 1030102

and the first digit of 2100 000 is 9.

(iii) We have

2100 000 ≡ (210)5 ≡ 45 =≡ 210 = 4 mod 10

so the last digit of 2100 000 is 4.

We have
3100 ≡ (32)50 ≡ (−1)50 =≡ 1 mod 10

so the last digit of 3100 is 1.
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Exercise B.1

Pr(at least one shows 1) = 1− Pr(none show 1)

= 1− Pr(single die does not show 1)3

= 1−
(

5

6

)3

=
91

216
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Exercise B.2

(i) If y = x+ d then x = y − d and

xn + a1x
n−1 + · · ·+ a0 = (y − d)n + a1(y − d)n−1 + · · ·+ a0

yn + (a1 − dn)yn−1 + b2y
n−2 + b3y

n−3 + · · ·+ bn

for appropriate bj.

Taking d = a1/n we have

xn + a1x
n−1 + · · ·+ a0 = yn + b2y

n−2 + b3y
3 + · · ·+ bn

so xn + a1x
n−1 + · · ·+ an = 0 if and only if yn + b2y

n−2 + · · ·+ bn = 0.

Suppose
x3 + ax2 + bx+ c = 0.

Setting y = x− a/3 we obtain

y3 +Bx+ C = 0.

If α is a root of the new equation (which we can solve) then α+ a/3 is
a root of the old and vice-versa.

(ii) By long division (or you can establish the result by induction on
n if you prefer).

xn + a1x
n−1 + · · ·+ an = (x− α)(xn−1 + b1x

n−2 + · · ·+ b0) +R

for some bj and some R. Write

P (x) = xn + a1x
n−1 + · · ·+ an, Q(x) = xn−1 + b1x

n−2 + · · ·+ b0.

Since
P (x) = (x− α)Q(x) +R

it follows that if α is a root of P ,

0 = 0 +R

so R = 0 and
P (x) = (x− α)Q(x)

Thus

β is a root of P ⇔ P (β) = 0

⇔ Q(β) = 0 and/or β = α

⇔ β is a root of Q and/or β = α.

(iii) By the arguments of (ii)

xn + a1x
n−1 + · · ·+ an =

n∏
j=1

(x− αj)
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where the αj are the roots. Thus

xn + a1x
n−1 + · · ·+ an = xn −

n∑
j=1

αjx
n−1 + · · ·+ (−1)n

n∏
j=1

αj

so, equating coefficients,

a1 = −
n∑
j=1

αj, an = (−1)n
n∏
j=1

αj.
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Exercise B.3

We wish to find x and y such that x+ y = 10 and xy = 40.

The first equation yields y = 10−x so substituting in the second we
have

10x− x2 = 40

or
x2 − 10x+ 40 = 0

so, using the standard formula

x =
10±

√
100− 400

2
= 5(1± 31/2i)

and
y = 10− x = 5(1± 31/2i).

Thus either x = 5(1 + 31/2i), y = 5(1 − 31/2i) or x = 5(1 − 31/2i),
y = 5(1 + 31/2i). By inspection these are solutions.
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Exercise B.4

By Exercise B.1, the probability of getting at least one 1 on any
particular throw is 91/216. Thus, by independence, the probability of
getting least one 1 on each of three throws is(

91

216

)3

≈ 1

13.373

so the probability is a little less than 1/13 and the odds a little greater
than 12 to 1.
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Exercise B.5

If we consider the 216 ways in which three dice can land we see that
nine can be produced by the following combinations of dice in any order

1, 2, 6 appearing in 6 ways

1, 3, 5 appearing in 6 ways

1, 4, 4 appearing in 3 ways

2, 2, 5 appearing in 3 ways

2, 3, 4 appearing in 6 ways

3, 3, 3 appearing in 1 ways

so that nine can appear in 25 ways.

On the other hand ten can be produced by the following combina-
tions of dice in any order

1, 3, 6 appearing in 6 ways

1, 4, 5 appearing in 6 ways

2, 2, 6 appearing in 3 ways

2, 3, 5 appearing in 6 ways

2, 4, 4 appearing in 3 ways

3, 3, 4 appearing in 3 ways

so that ten can appear in 27 ways.

Thus nine has probability p = 25/216 and ten q = 27/216.

If we throw dice until either 9 or 10 comes up then the mathematics
of the one-sided duel shows that the bettor on 10 has a probability

q

p+ q
≈ 0.519

so an expected return on a stake of 1 unit of .038. Again I wonder if the
query arose directly from play. (It seems to me more likely that people
knew that ‘numbers closer to the average are thrown more often’.)
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Exercise B.6

(i) If f(x) = x3 + ax− b then f ′(x) = 3x2 + a ≥ a > 0 for all x so f
is strictly increasing. Since f(x) → −∞ as x → −∞ and f(x) → ∞
as x→∞, the function f has exactly one real zero.

(ii) If we set x = u1/3 + v1/3, then

x3 + ax = u+ v + 3u1/3v2/3 + 3u2/3v1/3 + au1/3 + av1/3

= u+ v + (3u1/3v1/3 + a)(u1/3 + v1/3).

(iii) If

uv = −a
3

27
u+ v = b.

then

x3 + ax = b+ 0× (u1/3 + v1/3) = b.

(iv) Observe that, if u and v are as stated, u = v − b and

−a
3

27
= uv = v(v − b) = v2 − bv

so v and (by symmetry u) are the of roots

t2 − bt− a3

27
= 0.

Since u 6= v they are the distinct roots.

(v) Solving the quadratic of (iv), we get roots

b±
√
b2 + 4a3

27

2

so x3 + ax = b has the root

b+
√
b2 + 4a3

27

2

1/3

+

b−
√
b2 + 4a3

27

2

1/3

.
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(vi) Note that uv must be real. Thus the only allowable possibilities
are b+

√
b2 + 4a3

27

2

1/3

+

b−
√
b2 + 4a3

27

2

1/3

,

ω

b+
√
b2 + 4a3

27

2

1/3

+ ω2

b−
√
b2 + 4a3

27

2

1/3

,

ω2

b+
√
b2 + 4a3

27

2

1/3

+ ω

b−
√
b2 + 4a3

27

2

1/3

.

It is easy to check directly (or by looking at u + v) that these are all
solutions.

(vi) By Exercise B.2 it suffices to solve

z3 + az = b.

Our earlier manipulations remain valid (though we must be careful
about taking cube roots).

(vii) and (viii) See for example Ian Stewart’s excellent Galois Theory.



434

Exercise C.1

(i) We have

Pr(at least one six in four tosses) = 1− Pr(no six in four tosses)

= 1− Pr(no six in one toss)4

= 1−
(

5

6

)4

≈ .5177

His expected winnings if he stakes one unit is about .035. This is a
house advantage of 31

2
%. A casino would certainly be happy to run

such a game but I think it would be very hard work for an individual
to make it pay whilst retaining the appearance of a gentleman.

(ii) We have

Pr(at least one double six in 24 tosses)

= 1− Pr(no double six in 24 tosses)

= 1− Pr(no double six in one toss)24

= 1−
(

35

36

)24

≈ 0.4914

If you stake one unit at evens against a double six appearing your
expected winnings are about .017. Of course, it would be possible for
an individual to lose or make a fortune making this bet, just as it is
possible for an individual to lose or make a fortune betting heads and
tails, but it would take a very long run of games and very accurate
record keeping to detect the house advantage.

(iii) We have

Pr(at least one double six in 24 tosses)

= 1− Pr(no double six in 24 tosses)

= 1− Pr(no double six in one toss)24

= 1−
(

35

36

)25

≈ 0.5055

The house advantage is about 1%.



435

Exercise C.2

Writing N = N(p), we want

1

2
≈ Pr(at least one in N goes)

= 1− Pr(none in N goes)

= 1− Pr(not in 1 go)N

= 1− (1− p)N

so (1− p)N ≈ 1/2, Taking logarithms and using the standard approxi-
mation of Exercise A.8, we get

− log 2 = log
1

2
= N log(1− p) ≈ −Np

so

N(p) ≈ log 2

log p
.

As p gets smaller all our approximations improve.

Thus if p and q are small. Using the results of Exercise C.1 (and the
observation that 1 − (5/6)3 ≤ .42 < 1/2) we know that N(1/6) = 4
and N(1/36) = 25

Now
log 2

1/6
≈ 4.159

and
log 2

1/36
≈ 24.953

so the estimates are good.
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Exercise C.3

(i) We have

Pr(second side wins stake)

= Pr(second side wins innings three times in a row)

= (1/2)3 = 1/8.

Thus the expected winnings of the second team are 22/8 ducats.

(ii) Suppose team A wins an innings with probability p and team B
wins an innings with probability q where p + q = 1. Team A wins if
they win r + 1 innings before player B wins s + 1 innings. Otherwise
team B wins. If the winner gets K what are the expected winnings of
A?

We answer as follows.

Pr(A wins stake)

=
s∑
j=1

Pr(A wins r ins and B wins j ins, then A wins an in)

=
s∑
j=0

Pr(A wins r ins and B wins j ins) Pr(A wins an in)

= pr+1

s∑
j=0

(
r + j

j

)
qj

Thus A has expected winnings

Kpr+1

s∑
j=0

(
r + j

j

)
qj.
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Exercise C.4

(i) The probability of A winning in a single throw is r = 5/36. The
probability of A winning in two throws is

p = 1− Pr(A loses both) = 1−
(

31

36

)2

=
335

1296
.

The probability of B winning in a single throw is r = 6/36. The
probability of A winning in two throws is

q = 1− Pr(B loses both) = 1−
(

30

36

)2

=
396

1296
.

If A fails to win on his first throw we have a two sided duel with B
starting so B has probability of winning

q

q + p− qp

and B’s probability of winning the game is

(1− r) q

q + p− qp
=

31

36
× 396× 1296

(335 + 396)× 1296− (335× 396)

=
31× 396

(335 + 396)× 36− (335× 11)

=
12276

22631

so A’s probability of winning is

1− 12276

22631
=

10355

22631

and the ratio is as stated. (In those days men were men when it came
to arithmetic.)

(ii) (1) We observe that

Pr(A wins) = Pr(A wins on 1st draw)

+ Pr(A wins on 4th draw) + Pr(A wins on 7th draw)

=
4

12
+

8

12
× 7

11
× 6

10
× 4

9

+
8

12
× 7

11
× 6

10
× 5

9
× 4

8
× 3

7
× 4

6

=
165 + 56 + 10

11× 5× 9
=

77

165
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Pr(B wins) = Pr(B wins on 2nd draw)

+ Pr(B wins on 5th draw)

+ Pr(B wins on 8th draw)

=
8

12
× 4

11
+

8

12
× 7

11
× 6

10
× 5

9
× 4

8

+
8

12
× 7

11
× 6

10
× 5

9

+
4

8
× 3

7
× 26× 4

5

=
120 + 35 + 4

11× 5× 9
=

53

165

Thus the ratio of probabilities is 77 : 53 : 35.

(2) Each player has probability 1/3 of winning a go. If pA is the
probability of A winning, pB of B and pC of C then considering the
result of the first trial

pA = 1
3

+ 2
3
pC

pB = 2
3
pA

pC = 2
3
pB

Thus pA = 1
3

+ (2
3
)3pA and

27pA = 9 + 8pA.

If follows that pA = 9/19, pB = 6/19 and pC = 4/19.

Thus the ratio of probabilities is 9 : 6 : 4.

(3) We say that the game goes to the kth round if A, B and C have
each drawn k − 1 counters. The kth round consists of the draws then
made by A and then (if A fails) by B and then by C if B fails.

We observe that if we reach the kth round A has probability

pA(k) =
4

13− k
of winning in that round, B has probability

pB(k) = (1− pA(k))
4

13− k
=

9− k
13− k

4

13− k
of wiining that round and C has probability

pC(k) = (1− pA(k))(1− pB(k))
4

13− k
=

(
9− k
13− k

)2
4

13− k
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and the probability that we go to the next round is

PX(k) =

(
9− k
13− k

)3

.

We note that pA(9) = 1, pB(9) = pC(9) = 0.

The probability that we reach the kth round is thus given by PY (k)
where PY (1) = 1 and

PY (k) =
k−1∏
j=1

PX(k) =

(
k−1∏
j=1

9− k
13− k

)3

.

The probability of A winning is

9∑
k=1

PY (k)
4

13− k
,

the probability of B winning is

8∑
k=1

PY (k)
9− k
13− k

4

13− k
,

and the probability of C winning is

8∑
k=1

PY (k)

(
9− k
13− k

)2
4

13− k
.

(iii) The probability of a particular correct hand is

p =
40

40
× 30

39
× 20

38
× 10

37
=

1000

13× 19× 37
=

1000

9139

so the proportion of their chances is

pA
1− pA

=
1000

8139
.

(iv) The probability of any particular arrangement such as

BWBWBWB

is

q =
8

12
× 7

11
× 6

10
× 5

9
× 4

8
× 3

7
× 2

6
There are (

7

3

)
= 35

different arrangements so the probability of A winning is

35q = 35×× 1

11
× 1

9
=

35

99
.

The proportion of chances is 35 to 64.
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If we allow A to win if he gets 3 or more white then we must consider
the probability that he gets 4 white. The probability of a particular 4
white hand is

p =
4

12
× 3

11
× 2

10
× 1

9
=

1

11
× 1

5
× 1

9

and there are (
7

3

)
= 35

different arrangements so the probability of A winning with 4 white
pieces

35q =
7

99
.

Thus A’s probability of winning with three or more white counters is

35

99
+

7

99
=

42

99

and the proportion of chances is 42 to 57 ie 14 to 19.

(v) Enumerating we can throw 11 by throwing

1, 4, 6 in some order (6 ways)

1, 5, 5 in some order (3 ways)

2, 3, 6 in some order (6 ways)

2, 4, 5 in some order (6 ways)

3, 3, 5 in some order (3 ways)

3, 4, 4 in some order (3 ways).

Thus we have probability p = (6 + 3 + 6 + 6 + 3 + 3)×6−3 = 27×6−3

of throwing 11.

Enumerating we can throw 14 by throwing

2, 6, 6 in some order (3 ways)

3, 5, 6 in some order (6 ways)

4, 4, 6 in some order (3 ways)

4, 5, 5 in some order (3 ways)

Thus we have probability q = (3 + 6 + 3 + 3) × 6−3 = 15 × 6−3 of
throwing 11.

If un is the probability that A will win if he has n pieces of money
then u24 = 1, u0 = 0 and by considering the effect of one throw

un = pun+1 + (1− p− q)un + qun−1
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for 1 ≤ n ≤ 23. Thus

pun+1 − (p+ q)un + qun−1 = 0.

Now we solve our difference equation by observing that

pm2 − (p+ q)m+ q = (m− 1)(pm− q)
so

un = A+B(q/p)n

for some constants A and B.

Since u0 = 0, B = −A so

un = A(1− (p/q)n)

and, using the fact that u24 = 1.

un =
(1− (p/q)n

(1− (p/q)24

In particular

u12 =
1

1 + (p/q)12
.

Thus A probability of winning is

1512

1512 + 2712

and the ratio of A’s chance to B’s chances is(
15

27

)12

=

(
5

9

)12

=
244140625

282429536481
.



442

Exercise C.5

(i) Take Xj = 1 (heads) if Yj is even, Xj = −1 (tails) if Yj is odd.

(iii) The expected time to return to zero is infinite.

(v) The Kelly method is scale invariant (if you double your fortune,
you double your bet) so the bumpiness is unaffected by the size of your
fortune.

If α > 1 then there will be an α′ < 1 which gives the same long term
expected rate of increase. The ride with α′ is less bumpy than the ride
with α.


