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Inequalities lie at the heart of analysis. In this section we prove some in-

equalities which lie at the heart of this course.
We start with some observations from Part 1A.

Exercise 1.1. Suppose f : (0,00) — R is twice differentiable with f"(x) < 0

forallz e R. Then if 0 <t <s and 0 < XA < 1, it follows that

M) + (1= N f(s) < F(M+ (1= N\)s).

In other words, if f”(z) < 0, then f is strictly concave. Applying the

result with f = log, we obtain the following result.



Lemma 1.2. Suppose p, q are real and positive with

S+ =1
P q

Then, if a, b > 0, we have

al/Ppl/e < @ + é
p q
with equality if and only if a = D.
Our result remains true if a, b > 0.

We can now obtain our first version of the Holder inequality'. (Here and
elsewhere we will write F to mean either R or C. This reflects the fact that
many theorems of Linear Analysis apply both to real and complex vector
spaces. However, just as in other branches of analysis and algebra, there are
important theorems which apply only to complex or only to real spaces.)

Theorem 1.3. Suppose p, q are real and positive with

If a;, b; € F, then

n n 1/p n 1/‘1
S oty < (zw) (zw)
j=1 j=1 j=1

with equality if and only if we can find A, B € R, not both zero, with A|b;|? =
Bla;? for all1 < j <n.

I will probably leave out the examination of the case of equality in The-
orems 1.3 and 1.5 but once you have mastered the main proof it a very
instructive exercise to look closely the cases of equality.

If we set p = 2 in Holder’s inequality we recover the Cauchy-Schwarz
inequality.

Our Holder inequality is complemented by a ‘reverse Holder inequality’.

' Mathematical nomenclature should not be confused with historic truth. Hélder’s paper
makes it clear that he is discussing an inequality previously proved by L. G. Rogers (1862—
1933). Rogers was Professor of Mathematics at Yorkshire College (now the University of
Leeds) and a fine mathematician ‘with little ambition or desire for recognition’. In 1913,
Ramanujan conjectured some remarkable identities which no-one could prove. In 1917,
whilst looking through old journals, Ramanujan came across a 1894 paper of Rogers in
which a more general form of the identities were proved. Rogers’ election to the Royal
Society followed.



Theorem 1.4. (i) Suppose p, q are real and positive with

S+ =1
P q

If a; € F and
n n 1/q
NAEN bl
=1 =1
for all choices of b; € IF then

n 1/p
(Z |aj|p> < A

J=1

(ii) (Stronger version) Suppose p, q are real and positive with

S+ =1
P q

n 1/q
<A (Z |bj|q>
j=1

If a; € F and

n

> ajb;

j=1
for all choices of b; € IF then

n 1/p
(Z |aj\p> < A
j=1

Putting Holder’s inequality and the reverse Holder inequality together,
we get Minkowski’s inequality.

Theorem 1.5. Suppose p > 1. Then

n 1/p n 1/p n 1/p
(Z |aj|p) + <Z |bj|p> > (Z |a; + bj”’)
j=1 j=1 j=1

with equality only if we can find o, 3 € F, not both zero, such that Ba; = ab,
forall1 <7 <n.

(Exercise 22.2 contains an apparently simpler proof, but the explicit use
of the reverse Holder inequality in the proof above may help fix it in the
reader’s mind.)

For us, as for Minkowski, this has a clear geometrical interpretation.
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Theorem 1.6. Suppose p > 1. Then

n 1/p
Jal, = (z W)
j=1

We can extend most of our results (but not all) to the cases p = 1 and
p = oo.

Exercise 1.7. (i) Show that

defines a norm on F™.

defines a norm on F™.
(i) Show that

lalloe = max |a|

defines a norm on F".
(#1i) Show that, if a, b € F", then

n
> lajllbi] < llalloc bl
j=1

(iv) State and prove the two ‘reverse Holder’ inequalities corresponding
to (iii).

(v) If la+ blly = ||a]l1 + ||b]|1, does it follow that we can find a, 3 € F,
not both zero, such that Ba; = ab; for all 1 < j < n? Give reasons.

(vi) If |]a+Db||loe = ||aljcc + ||Plec, does it follow that we can find o, 5 € T,
not both zero, such that Ba; = ab; for all 1 < j <n? Give reasons.

2 In finite dimension, norms are equivalent

We have produced a variety of norms on F”, but the following theorem (which
the reader may have seen in Part 1B) shows that they are all equivalent in a
rather strong sense (called Lipschitz equivalence).

Theorem 2.1. Suppose E is a finite dimensional vector space over F. If
I.ll1 and ||.||2 are two norms on E, then we can find a constant K > 0 such
that

K|x|l = [Ix[la > K~|x[x

forallx e E.



Note that the proof depends ultimately on the fundamental axiom of
analysis.

However, the unit balls of the different norms ||.||, look more and more
different as the dimension of the space increases.

Exercise 2.2. (i) If co > s > r > 1 show, by applying Holder’s inequality
with aj = x5, bj =1 and p = s/r, that, if z; > 0, we have

n 1/r n 1/s
) ()
j=1 j=1

with equality if and only if v1 =29 =--- = x,.
Thus, if we work in F",

1

Il <

and we cannot improve the inequality.
(i) If oo > s > r > 1, show, by setting t = x;/||x||s in the inequality
t" >t [0 <t <1], or otherwise, that, if x; >0,

n 1/s n 1/r
(Z ) < (Z )
j=1 j=1

and identify the cases of equality.
Conclude that, if we work in F™,

[1x[ls < 1l

and we cannot improve the inequality.
(#ii) State and prove (the proofs are easy) the corresponding results when
we allow s = 0.

Once we reach the simplest infinite dimensional space Theorem 2.1 fails.

Definition 2.3. We write cyy for the space of sequences
a = (al,ag,...)

with a,, € F and only finitely many a; non-zero. [Warning: The notation coo
is not universal.|



Exercise 2.4. (i) Check that coy is a vector space.

(ii) Check that
00 1/p
lall, = (Z |aj|p>
j=1

defines a norm on cyy for oo > p > 1.
(iii) Define an appropriate norm ||.||s and show that is a norm.
(iv) Show that, given any oo > s >r > 1 and any K > 0, we can find a
non-zero a € cog such that
allr
alls

> K.

3 Banach spaces

It is generally thought that the algebraic properties of large objects are rather
dull and this is certainly the case for normed spaces. The remedy is to
introduce extra analytic structure, in this case completeness.

Definition 3.1. A Banach space is a complete normed space.
We observe that the norms we have placed on ¢y are not complete.
Exercise 3.2. Verify this statement.

Later, in Lemma 6.8, we shall show that coy cannot be given a complete
norm. Thus ¢y is good for nothing except the production of counterexamples.
(But it is very good for this purpose.)

However, the work we have already done enables us to produce some nice
infinite dimensional Banach spaces.

Theorem 3.3. Let 1 < p < oo. If [P is the collection of sequences
a = (CLl,CLQ,...)

with a, € F and

Z la;|P convergent,

j=1
then [P is a vector space with the usual coordinatewise definition of addition
and multiplication by scalars. If we set

00 1/p
Jall, = (zw) |
j=1

then |||, is a complete norm on IP.



Lemma 3.4. If [ is the collection of bounded sequences
a=(ag,as,...)

with a, € F, then [*° is a vector space with the usual coordinatewise definition
of addition and multiplication by scalars. If we set

alloc = sup|ay|
1<j

then ||.||oo is a complete norm on [*°.

At some point, it became fashionable to write [, instead of [P. The reader
must be prepared for both notations.

Exercise 3.5. (i) Show that, if oo > s >r > 1, then " CI°, " #1°,

(i) If oo > s > r > 1 show that, if x € I", then x € I and ||x||s <
|Ix||. Give an explicit ezample of a sequence x(k) € I" with ||x(k)||s = 1 but
|x(k)||, — oo as k — oo.

Although we seek to study infinite dimensional Banach spaces by using
geometrical intuition, they differ in important respects from finite dimen-
sional spaces. Here is one example.

Theorem 3.6. The closed unit ball
B={xeFE: x| <1}
of an infinite dimensional Banach space (E,||.||) is not compact.
Our proof depends on two results which are of independent interest.
Lemma 3.7. Any finite dimensional subspace of a Banach space is closed.

Theorem 3.8. [Lemma of F. Riesz| If F' is a closed subspace of a Banach
space (E,|.]]) and F' # E, then, given any € > 0, we can find an e € E with
lle]| =1 such that

le—f|| >1—¢

forall f € F.

The technique that we use to prove Theorem 3.8 is very useful in a wide
variety of circumstances.



4 Continuous linear functions

When we studied linear maps on finite dimensional normed spaces we made
repeated use of the fact that they were continuous.

Exercise 4.1. Suppose (U,||.|v) and and (V,||.||v) are finite dimensional
normed spaces. Show that every linear map o : U — V' 1is continuous.

We cannot make this assumption when we study linear maps on infinite
dimensional spaces.

Exercise 4.2. Consider the space cog of sequences of complex numbers only
finitely many of which are non-zero, equipped with the norm

o0
lalh = lal-
j=1

Give an example of a linear map « : cog — F which is not continuous.

The treatment of continuous linear maps on infinite dimensional vector
spaces is much aided by some simple observations.

Lemma 4.3. Suppose (U, ||.||v) and and (V,||.||v) are normed spaces and
a: U — V is linear. The following statements are equivalent.

(i) « is continuous everywhere.

(i1) « is continuous at 0.

(i1i) There ezists a C' such that

lou]ly < Cllully
forallueU.

For this reason continuous linear maps are sometimes called bounded
linear maps.

We can define the operator norm and derive its elementary properties in
exactly the same way as in the finite dimension case.

Definition 4.4. Suppose (U, ||.||lv) and (V, ||.|lv) are normed spaces and « :
U — V is continuous and linear. We define the operator norm ||a|| of a as
follows.

lafl = sup f[aufy.
o<1



Exercise 4.5. (i) Suppose (U, ||.||v) and (V,|.|v) are normed spaces. The
collection L(U, V') of continuous linear maps o : U — V' forms a vector space
under pointwise addition and multiplication by scalars. The operator norm
is indeed a norm on L(U, V).

(i1) Suppose (U,||.||lv) is a normed space. Then the identity map 1 €
LU, U) and ||t|| = 1.

(iii) Suppose (U, ||.\lv), (Vi|.|lv) and (W,||.||w) are normed spaces. If
a€ LWU,V) and 5 € L(V,W), then fa € LU, W) and

1Ball < I8l

Theorem 4.6. If (U, ||.||v) and and (V,]|.||v) are Banach spaces, it follows
that (L(U,V),|.l) is a Banach space.

(For an improvement see Exercise 18.8.) A particularly important exam-
ple of the space (L(U, V), ||.||) occurs when V =T.

Definition 4.7. If (U, ||.||y) is a normed space over F we say that a con-
tinuous linear map T : U — T is a bounded linear functional. The space
U' = L(U,F,|.||) is called the dual space of U.

Theorem 4.8. Ifoo > p > 1 andp~'4+q~' = 1, then (IP)’ = 19 (More exactly,
there is a natural identification of (IP) and 1?. When we have introduced more
definitions, you may prefer the statement that there is a natural isometric
isomorphism between (IP)" and 19.)

The following important exercise illustrates both our method of proving
Theorem 4.8 and its limitations.

Exercise 4.9. (i) Show that c, the set of all sequences a such that a; tends
to a limit as j — 00, is a closed subspace of I°° with its usual norm. Show
that cy, the set of all sequences a such that a; — 0 as j — o0, is a closed
subspace of [°° with its usual norm.

Because of these results we may consider ¢ and ¢y as Banach spaces under
the supremum norm (that is to say the [*° norm).

(ii) Show that ¢}, can be identified in a natural manner with I*.

(#1) Identify the elements of ¢ in a reasonably natural manner.

It is an important fact that the method we use to prove Theorem 4.8 fails
when we try to find the dual of [*°. In some sense [* is too large for us to
deal with. Lemma 4.12 make it clear what is going on.

Definition 4.10. We say that a subset E of a metric space (X,d) is dense
in X, if given any x € X, we can find x,, € E with x, — x.
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Definition 4.11. A metric space (X, d) is separable if we can find a countable
dense subset of X.

Lemma 4.12. The space [P is separable if oo > p > 1 but [*° is not separable.

5 Second duals

Students find it hard to understand the treatment of second duals in 1B
Algebra but the subject actually becomes easier to understand when treated
in a more general setting.

Lemma 5.1. Let U be a normed vector space. Then the map J : U — U”
given by
(Ju)(T)=Tu

forue U and T € U’ is a well defined continuous linear map.

In 1B Algebra, when U is a finite dimensional space it is easy to show
that J is injective. In the infinite dimensional case we need a further idea.

Definition 5.2. [Warning. This is non-standard.] We say that a dual U’ of
a normed space U is sufficiently rich if, whenever u € U,

sup [Tl = lul]
TeU,||T)<1

It is easy to check that all the spaces we have met so far are sufficiently
rich.

Exercise 5.3. (i) Show that the duals of the I spaces are sufficiently rich
[1 <p < o]. (Note that, although we cannot fully identify the dual of 1> we
can, nonetheless, show that it is sufficiently rich.)

(i) Show that if U is a Banach space with sufficiently rich dual then
L(U,U) has sufficiently rich dual. (We need this later in the proof of Lemma 13.8
but the reader should not loose any sleep over this.)

The reader will find it easy to check (and should carry out the check)
that any specific space has a sufficiently rich dual.

If we use the axiom of choice, then it can be shown that all duals are
sufficiently rich. Any text that the reader consults will use the axiom of
choice and will therefore omit the condition that the dual is sufficiently rich.

Lemma 5.4. Let U be a normed vector space with a sufficiently rich dual.
Then the map J : U — U" introduced in Lemma 5.1 is isometric (that is to
say ||Jullpr = ||ullv) and so injective.

11



(Here and everywhere else, we use the operator norm on U" and U”.)
If U’ is sufficiently rich, it is reasonable to use J to give natural identifi-
cation of U with JU and write U C U”.

Lemma 5.5. If U is a Banach space with sufficiently rich dual then (with
the natural identification) U is a closed subspace of U".

In 1B Algebra, when U is a finite dimensional space, a dimensional ar-
gument shows that J is surjective (and so, with the natural identification,
U=U"). If 1 <p < oo then the work we have already done shows that
(IP)" =P,

However, the following important example shows that U may be a proper
subspace of its second dual U”.

Exercise 5.6. (Part (i) and most of part (iii) were done in Ezxercise 4.9.)
Let ¢y be the the subset of [°° consisting of those sequences a such that that
a; — 0 as j — oo.

(i) Show that cy is a closed subspace of I*° and so (co, ||.]|s) i a Banach
space.

(11) Show that ¢y is separable.

(iii) Show that ¢, can be identified in a natural manner with I'. Show
also that the dual of cq is sufficiently rich.

(iv) Deduce that ¢ can identified in a natural manner with 1°° and so the
mapping J : co — ¢y introduced in Lemma 5.1 cannot be surjective.

There are two ways of looking at Banach spaces. One is to study each
space in its own right using the the language and insights of linear analysis
as tools. Each of the spaces [!, [? and [* could be, and has been, the object
of a lifetime’s study. This is the point of view of the present course or, at
least, the present lecturer?.

The second way of looking at Banach spaces is to study them as general
structures. In this case we do not study individual spaces but isomorphism
classes or isometric isomorphism classes of Banach spaces.

Definition 5.7. (i) The normed spaces (U, ||.||u) and (V,||.||v) are isomor-
phic if there exists a vector space isomorphism T : U — V such that both T
and T~ are continuous.

(ii) The normed spaces (U, ||.||v) and (V,].]|v) are isometrically isomor-
phic if there exists a vector space isomorphism T : U — V such that

[Tully = [luflv

forallu e U.

2Who has spent most of his mathematical life studying a particular representation of
I

12



From this point of view, all we know so far about the [ spaces is that [*° is
not isomorphic to I? for 1 < p < co. (If the reader is interested, Exercise 18.9
shows that /! is not isomorphic to [P for p # 1 and Exercise 22.5 shows that
[2 is not isomorphic to [P for p # 2. It has been shown that, in fact, spaces
[P with distinct p are not isomorphic.) We give a very simple example of
Banach space isomorphism in Exercise 6.15.

For the avoidance of doubt, the reader is instructed that, both in the
notes and in examination questions, statements about [’ and similar spaces
refer to their concrete realisations and not to their isomorphism classes. If
isomorphism is to be considered, this will be stated explicitly.

6 Baire category

The Baire category is a profound triviality which condenses the folk wisdom
of a generation of ingenious mathematicians into a single statement.

Theorem 6.1. If (X, d) is a complete metric space and U; is an open dense
subset of X for each j > 1, then (\;2, U; # .

(The same ideas are used to prove a similar result for compact topological
spaces in Exercise 19.5.)

In some sense,the property of belonging to Uj is stable (since U; is open,
small perturbations leave us within U;) and the property of not belonging
to U; unstable (since U, is dense, we can move to U; by arbitrarily small
perturbations).

Exercise 6.2. Consider the space of n xn complex matrices with the operator
norm. Recall that given any matrix A we can find a non-singular matriz B
such that BAB™ is upper triangular. By using this result, or otherwise, show
that the set of of matrices with n distinct eigenvalues is open and dense.

For historical reasons Baire’s theorem is associated with some rather un-
helpful nomenclature.

Definition 6.3. Consider a metric space (X, d). If E; is closed with dense
complement and E C U;il E;, then E 1s said to be of first category.

Baire’s theorem can be restated as follows.

Theorem 6.4. [Baire’s category theorem] If (X, d) is a complete metric
space, then X 1is not of first category.

The following remark is very useful.

13



Lemma 6.5. Consider a metric space (X,d). The countable union of sets
of the first category is of first category.

The next remark that may already have occurred to the reader.

Exercise 6.6. If (X, d) is a complete metric space and E is a subset of first
category, then X \ E is dense in E.

Recall that a point x in a metric space (X, d) is called isolated if we can
find a 0 > 0 such that d(x,y) < § implies y = x.

Lemma 6.7. A complete metric space without isolated points is uncountable.

Observe that this gives us a new proof that R is uncountable (and so
transcendental numbers exist) which does not depend on establishing decimal
representation.

Lemma 6.8. (i) If E is an infinite dimensional Banach space over F, then
E cannot have a countable spanning set. In other words, we cannot find a
sequence ey, es, ...in E such that every u € E can be written

N
u = E )‘jej
=1

for some \; € F and some N > 1.
(i) The space coo cannot be given a complete norm.

Exercise 6.9. Consider the Banach space (7, ||.||,). We know that consid-
ered as a set, [ is a subset of [P whenever p > r > 1. With this convention

U, " is of first category in (17, ||.[|,)-

Banach and Steinhauss used the Baire category theorem to isolate another
piece of folk wisdom.

Theorem 6.10. [Principle of uniform boundedness] Suppose (U, ||.||v)
and (V,||.||) are Banach spaces. If we have a family T of continuous linear
maps T : U — V such that supper [|[Tully < oo for each u € U, then
suprer [T < oo.

Here is a typical use of the principle. We work on the circle T = R/277Z
(but if the reader prefers she may work on [—m,7]). To see why this re-
sult may be interestiong recall applied lecturers writing down the following
‘aspirational prose’.

We have g, — ¢, that is to say the continuous function g, tends to the delta
function, and so

/ an(0) () i — / 4 (D)5(1) dt = £(0).

14



Exercise 6.11. Suppose that g, : T — R is continuous and

L Loy dt — 5(0)

2 Jr

as n — oo for all continuous functions f : T — R. Then the following must
be true.
(i) There exists a constant K such that

1
— <K
- [0l <

foralln > 1.
(i) If 6 > 0 and f is a continuous function with f(t) = 0 for |t| < §, then
1
— t)gn(t)dt — 0
- [ e at —
as n — 0.
(iii) We have
1
— n(t)dt — 1
on [ 9t dt =

as n — oo.
[In Ezercise 22.7 we establish that these necessary conditions are also suf-
ficient. In FEzxercise 22.9 we use Ezercise 6.11 to establish that the Fourier
series of a continuous function need not converge pointwise to that function./

We use the Baire category theorem to prove the following series of rather
more subtle results.

Theorem 6.12. [Open mapping theorem]| Suppose (U, ||.||v) and (V,|.]|)
are Banach spaces. If T € L(U,V) is surjective, then T maps open sets in
U to open sets in V.

Exercise 6.13. It is easy to see that linearity is essential for results like
these. Give an example of a continuous surjective map f : R — R which s
not open.

We give an example of the use of the open mapping theorem in Exer-
cise 18.11 The reader may recall a very useful ‘open mapping theorem’ in
complex variable theory. The following is an immediate consequence of The-
orem 6.12.

Theorem 6.14. [Inverse mapping theorem)?® Suppose that (U, ||.||y) and
(V,||I.llv) are Banach spaces. If T € L(U,V) is bijective, then T is contin-
uous (so T is an isomorphism).

3Called the inversion theorem in the syllabus.

15



(For a variation on this theme, see Exercise 21.4.)
Here is a simple example of the use of Theorem 6.14.

Exercise 6.15. The space ¢ of sequences with limits and the space cq of
sequences with limit zero (both equipped with the supremum norm) are Banach
space isomorphic.

We introduce the last of this group of theorems with an exercise.

Exercise 6.16. (i) Let (X, d) be a metric space. If f : X — X is continuous,
then the graph

{(:L’,f(x)) : xEX}

18 closed with respect to the product metric.
(ii) If g : R — R is given by g(x) = 272 for x # 0 and g(0) = 0, then the

graph
{(z,9(z)) : v € X}
s closed in the usual metric but g is not continuous.

Theorem 6.17. [Closed graph theorem]| Suppose (U, ||.||y) is Banach
space and T : U — U is a linear function. If the graph

{(w.,T(u)) : ueU}
15 closed with respect to the product norm, then T is continuous.

To see how such a theorem can be used, we recall some definitions and
results from from 1B algebra. The reader can check that they apply without
change in the infinite dimensional case.

Exercise 6.18. If U is a vector space, we say that a linear map P : U — U
is a projection if P? = P. Show that, for such a P,

(I — P)"Y0) = P(U) and P~*(0) = (I — P)(U).

Show further that every uw € U can be written uniquely in the form u = v+ w
with v € P(U) and w € P71(0).

Theorem 6.19. Suppose (U, ||.||y) is Banach space and P : U — U is a
projection. Then P is continuous if and only if the kernel P=1(0) and image
P(U) are closed.
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7 Continuous functions

We recall the discussion of continuous functions in the Topological and Metric
Spaces course.

Exercise 7.1. Let (X, 1) and (Y, 0) be topological spaces. The following two
statements about a function f: X — Y are equivalent.

(i) If U € o, then f~1(U) € 7.

(ii) Given x € X and V € o with f(z) € V, we can find a W € T with
zeW and F(W) C V.

Any f satisfying the conditions of Exercise 7.1 is called continuous. We
shall be interested in continuous functions F' : X — F where (X, 7) is a
topological space* and I has its usual topology.

Even if the reader has not seen the next three exercises before, she should
have no difficulty with them.

Exercise 7.2. (i) Let (X,7) be a topological space and let f, : X — F be
continuous. Suppose that f : X — F is such that we can find €, — 0 with

|fu(z) — f(2)| < €, forallz € X.

Show that f is continuous. (In other words, the uniform limit of continuous
functions is continuous.)

(ii) Let Co(X) be the space of bounded continuous functions f : X — F.
Show that

[ flloo = sup [f ()|
zeX

defines a complete norm on Cy(X).

Note that the completeness of [*° is a special case where X = N and 7 is
the discrete topology.

Exercise 7.3. If (X, 7) is compact, show that every continuous function
f X — R s bounded.

Exercise 7.4. Show that, if E is subset of F™ with the usual topology, then
every continuous function f : E — F" is bounded if and only if E is compact.

These results strongly suggest that we should study the space C(X) =
Cr(X) of continuous functions f : X — F with the uniform norm ||f|« =
sup,cy |f(x)] in the case when X is compact.

However, if we simply demand that X is compact, the space C(X) may
not have much to do with the set X.

4As usual, we shall sometimes merely refer to X with the topology 7 being understood.
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Exercise 7.5. If X has the indiscrete topology T = {X, @}, then C(X)
consists of the constant functions.

The following simple observation puts us on a profitable path.

Exercise 7.6. If C(X) is such that, given x # y, we can find an f € C(X)
with f(x) # f(y) (informally, if C(X) separates the points of X ), then X is
Hausdorff.

In this section we prove the remarkable fact that the converse also holds
for compact spaces. Thus it is natural to study C(X) when X is compact
and Hausdorff®.

We need to recall a couple of elementary topological results.

Exercise 7.7. (i) In a compact space, every closed set is compact.
(i) In a Hausdorff space, singleton sets {a} are closed.

We now start our theorem sequence.

Theorem 7.8. If (X,7) is compact and Hausdorff, then, given A and B
non-empty disjoint closed sets, we can find disjoint open sets U and V' such
that ACU and BCV.

(A space satisfying the conclusions of Theorem 7.8 is called normal. See
Exercise 22.11 for more on this topic.)

Theorem 7.9. [Urysohn’s lemma] If (X, 1) is compact and Hausdorff,
then, given A and B mnon-empty disjoint closed sets, we can find an f €
Cr(X) such that 0 < f(z) <1 for allz € X and

fla) =1 whena € A
f(b) =0 when b € B.

Exercise 7.7 now tells us that C'(X) separates points whenever X is com-
pact and Hausdorff. It is, perhaps, worth remarking that Urysohn’s lemma
has a much simpler proof if 7 is derived from a metric.

The following simple remark comes in useful in our proof of Urysohn’s
lemma.

Exercise 7.10. Let (X, 7) be a topological space and let R have its usual
topology. A function f : X — R is continuous if and only if f‘l((—oo,a))
is open and f‘l((—oo,a]) is closed for all a € R.

5This result so impressed a retired French general that he proposed using the word
‘compact’ to mean ‘compact and Hausdorff’. The innovation was not popular but the
reader should be aware of this possible source of confusion.
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In fact we can prove an apparently stronger result than Urysohn’s lemma.

Theorem 7.11. [Tietze’s extension theorem] If Y is closed subset of a
compact Hausdorff space (X, T), then, given any f € Cr(Y) (where Y has
the subspace topology), we can find an F' € Cr(X) such that F(y) = f(y) for
allyeY.

To see that Tietze’s extension theorem is non-trivial consider the following
example.

Exercise 7.12. Consider the closed interval X = [—4,4] with the usual
topology and the open interval Y = (0,1). Show that if f:Y — R is defined
by f(y) = sin(1/y) then f is continuous but there does not exist an F' € C(X)
such that F(y) = f(y) for ally € Y.

We strengthen Theorem 7.11 in two steps.

Corollary 7.13. IfY is closed subset of a compact Hausdorff space (X, T),
then, given any f € Cp(Y'), we can find an F € Cp(X) such that F(y) = f(y)
forallyey.

Corollary 7.14. IfY is closed subset of a compact Hausdorff space (X, T),
then, given any f € Cp(Y'), we can find an F € Cp(X) such that F(y) = f(y)
forally €Y and ||[Flloc = [ fl-

8 The Stone—Weierstrass theorem

Unless the reader has lead a very sheltered life she will have done the following
important exercise many times before. (If not, she should do it at once.)

Exercise 8.1. [Cauchy’s example] Let E(z) = exp(—1/2?) for z # 0 and
E(0) =0.
(i) Show that E is infinitely differentiable on R\ {0} with

E™(x) = Py(1/x)B(x)

for some polynomial P,.

(ii) Show that E is infinitely differentiable everywhere with E™(0) = 0
for all n.

(11i) Use the fact that a power series is infinitely differentiable term by
term to show that we cannot find a; € R with E(x) = > .22 a;a’.

j==o0

(Exercise 19.7, which uses the Baire category theorem from a later section,
provides an even stronger result.) Weierstrass must, therefore, have been
delighted to prove the following result.
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Theorem 8.2. The set of real polynomials is uniformly dense in Cg([a,b]).

In other words, given any continuous real function f : [a,b] — R and any
e > 0, we can find a real polynomial with

[P(t) — f(1)] <e

for all t € [a, b].

When Stone was asked to contribute an article to the first issue of the
American Mathematical Monthly, he produced the following far reaching ex-
tension of Weierstrass’s theorem.

Theorem 8.3. [The Stone—Weierstrass theorem| Consider a compact
Hausdorff space X . Suppose that A is a subspace of Cr(X) with the following
properties.

(i) If f,g € A then f x g € A.

(ii) 1 € A.

(iii) If v, y € X then we can find an f € A such that f(x) # f(y).

Then A is dense in (Cg,||-]|co)-

(If A is a subspace of C(X) satisfying (i), we sometimes say that A is a
subalgebra of C(X).)

Our proof of the Stone-Weierstrass theorem makes use of the following
fact.

Lemma 8.4. We can find a; € R such that

[e.9]

(1-— x)1/2 = Zajxj

j=0
for all real x with |z| < 1.
Our version of the Stone—Weierstrass theorem deals with real valued func-

tions. The following example shows that it will not apply in the complex case
without modification.

Example 8.5. We work in the complex plane C. Let
D={z€C: |z|<1}and D={z€C : |z| < 1}.

We write A(D) for the set of f € C(D) such that f is analytic on D. Then
A(D) is a subspace of Cc(D) with the following properties.
(i) If f, g € A(D) then f x g € A.
(ii) 1 € A(D).
(i) If z, w € D then we can find an f € A(D) such that f(z) # f(w).
However, A(D) is not uniformly dense in C(D).
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Instead we produce the following variation.

Theorem 8.6. [The complex Stone—Weierstrass theorem| Consider a
compact Hausdorff space X. Suppose that A is a subspace of Cc(X) with the
following properties.

(i) If f, g € A, then f x g € A.

(i) 1 € A.

(11i) If z, y € X, then we can find an f € A such that f(x) # f(y).

(i) If f € A, then its complex conjugate f* € A.

Then A is dense in (Cc(X),||.]/c0)-

The following exercise gives a typical application and clears up matters
left vague in the 1B methods course.

Exercise 8.7. We work on the circle T =R/2xZ. If f : T — C is continuous
we write

f(n) = %/Tf(t) exp(—int) dt.

(i) The collection of trigonometric polynomials 7, a;exp(ijt) is uni-
formly dense in Cc(T).

(ii) (Uniqueness of Fourier series.) If f, g € Ce(T) and f(n) = g(n) for
alln € Z, then f = g.

(iii) If f € Ce(T) and Y2°°___|f(n)| converges, then

F =3 fn)exp(int)

forallt € T.

Exercise 19.3 gives another example of Stone-Weierstrass in action.

9 Ascoli—Arzela

It is frequently possible to show that a problem can be solved ‘apart from an
error which can be made as small as we like’. Under these circumstances an
appeal to compactness, if available, will often show that the problem has an
exact solution.

The Ascoli—Arzela theorem enables us to characterise the compact subsets
of C(X) when X is a compact metric space.
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Definition 9.1. Let (X, 7) be a topological space and (Y, p) a metric space.
We say that a collection F of functions f : X — Y is equicontinuous at x if
giwen € > 0 we can find a U € T with x € U such that

y € U implies p(f(x), f(y)) < e forall f € F.

If F is equicontinuous at all points of X we say that F is equicontinuous.

Exercise 9.2. If (X,d) and (Y, p) are metric spaces, write out the definition
of equicontinuity in €, & form.

Theorem 9.3. [Ascoli—Arzela] Let (X, 7) be a compact Hausdorff space.
Then a subset F of C(X) is compact under the the uniform norm if and only
if both the following conditions hold.

(i) F is closed and bounded in the uniform norm.

(i1) F is equicontinuous.

We shall prove the Ascoli-Arzela theorem by a direct attack. A cleaner
proof depending on results from the Metric and Topological course is given
in Exercise 19.11 but the basic ideas of the two proofs are the same.

A typical example of the use of these ideas appears in the proof of the
following nice result.

Theorem 9.4. If n > 0 and f : [xg — n,20 + 1] X [vo — N, y0 + 1] — R is
continuous, then we can find a § withn > 6 > 0 and a differentiable function

¢:(xg—9d,20+0) =R
such that ¢(xg) = yo and
¢'(t) = f(t, (1))
forallt € (xg — §, 20+ 9).

In Part 1B we used the contraction mapping theorem (another idea from
‘abstract analysis’) to prove the following theorem.

Theorem 9.5. Ifn >0, K >0 and f : [xg—n,z0+n] X [vo—1,y0+n] — R
satisfies the Lipschitz condition.

|f(x,y) - f(:vl,y)| < Kl]}—l‘,|

forall x, 2’ € [xg —n, o+ 1| and all y € [yo — 1, yo + 1|, then we can find a
0 with n >0 > 0 and a unique differentiable function

¢ (xo—0,x0+0) = R
such that ¢(xo) = yo and

for allt € (xg — 0,29+ 9).
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Exercise 9.6. By using the mean value theorem, establish that if

filro—mn20+10] X [yo—ny0+n] = R

has continuous first partial derivative O f (x,y)/0x, then it satisfies a Lipschitz
condition.

Our new theorem establishes existence under much more general condi-
tions that those of Theorem 9.5, but the solution need not be unique.

Exercise 9.7. The differential equation z'(t) = 3x(t)*/® has more than one
solution with o = 0.

It is helpful, when considering the form of our proof for Theorem 9.4, to
observe that if there are different solutions of the equations then a series of
‘approximate solutions’ may switch between approximating one solution and
another.

Even in the Lipschitz case we cannot hope to prove more than the exis-
tence of local solutions since no global solution may exist.

Exercise 9.8. Find all the solutions of z'(t) = (1 + x(t)?). Observe that
there is no solution which s valid over an interval of length greater than .

10 Inner product spaces

Since the reader’s first arrival in Cambridge she has been bombarded with
inner product spaces. In this section we recall some of the results she already
knows. She should check where appropriate that the results hold in infinite
dimensional spaces.

Definition 10.1. Let V' be a vector space over C. Suppose that exists a map
p: V? — C such that, writing (u,v) = p(u,v) we have

(i) (Mg + Agug, v) = Ai{ug, v) + Ao(ug, v) for all Ay, Ao € C, uy, ug, v €
V.

(i) (u,v) = (v,u)* for allu, v € V.

(111) (u,u) >0 for allu € V.

(iv) (u,u) =0 implies u = 0.

Then we say that (V,p) is an inner product space. We call p an inner
product.

A similar definition applies with C replaced by R except that the complex
conjugation in condition (ii) is superfluous.
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Exercise 10.2. (i) (Cauchy-Schwarz) If V is an inner product space then
[{u, 0)[* < (u, u) (v, v)

with equality if and only if u and v are linearly dependent.
(i) If V' is an inner product space then

lull3 = (u, u), |lull2 >0

defines a norm on V.
(#i) (Parallelogram law) With the notation of (ii)

lu+ 13 + llu = vll5 = 2(fJull; + [[v]l3)-

We derived the norm from the inner product but the process can be
reversed and we can recover the inner product from the norm.

Exercise 10.3. [The polarisation identity] With the notation and as-
sumptions of Exercise 10.2,

Au,v) = [lu+ o5 = llu—vll; +i(llu+ 5 = [lu—v]]3)
foralluveV.
(For an interesting sidelight see Exercise 22.12.)

Definition 10.4. Let V' be an inner product space.

(i) If u, v € V and (u,v) = 0 we say that v and v are orthogonal and
write u L v.

(i1) A collection E of vectors is said to be orthonormal if, whenevere, f €

E
0 ife
e, /) = {1 z';e 7—5 ?
We have the following extensions of Pythagoras’s theorem.
Exercise 10.5. Consider an inner product space V. Suppose eq, €, ..., €,

are orthonormal vectors in V and f € V. Then
1F =D Nesls = 115 =D [Kfrenl
j=1 j=1
with equality if and only if \; = (f, e;).
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Theorem 10.6. [Bessel’s inequality]| Consider an inner product space V.

Suppose e, €, ... is an orthonormal sequence of vectors in'V and f € V.
Then

D fenl <13

j=1

with equality if and only if

N
||f - Z<f7 €j>€j
j=1

— 0

2
as n — Q.

We illustrate these familiar general results with a familiar special case.
Note that Exercise 10.7 (iii) resolves a problem left open by the 1B mathe-
matical methods course.

Exercise 10.7. We work on T = R/27Z.
(1) Show that if f € Cr(T), f(t) >0 for all t and

1

2r Jr

f@t)dt =0,

then f(t) =0 for all t.
(i1) Show that the formula

(f,9) = %/Tf(t)g(t)*dt =0

defines an inner product on Cc(T). From now on we consider Cc(T) with
this inner product.

(111) Show that, if we write e;(t) = expijt, then the e; are orthonor-
mal. By using the fact that the trigonometric polynomials are dense in
(Ce(T), ||.|loc) (Exercise 8.7), show that the trigonometric polynomials are
dense in (Cc(T), ||.||2). Hence show that

N
|- 3 (e o

j=—M

2

as M, N — oo. R
(w) (Parseval’s formula) Use (iii) to show that, if we write f(j) = (f,e;),

then
> 1k = 5 [ IrePar

j==o0

25



for all f € Cc(T). Show also that

- £ ~ * 1 *

> gy =5 [ gty dr
P— T

However, we note the following important fact.

Exercise 10.8. (C(T), ||.||2) is not complete.

This result needs careful proof. We need to show, not that Cauchy se-
quence does not, converge to the obvious answer, but that it does not converge
to any continuous function. The next exercise illustrates this remark.

Exercise 10.9. Write

A(t) = L—2"t for|t| <27™,
o otherwise.

Show that,if we define f, € C(T) by
fo= ZnAn(t —27r/n),
j=1

then || f|l2 — O.

11 Hilbert space

The work of this section depends on the following key result.

Theorem 11.1. Let V' be an infinite inner product space. The following
statements are equivalent.

(i) V is separable.

(1t) There exists an orthonormal sequence e; such that

Hf - Z<f7 ej>€j

— 0

2

asn — oo forall feV.

Our proof calls on an old friend, the Gramm—Schmidt orthogonalisation
process.
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Exercise 11.2. Suppose V' is an inner product space. If ey, s, ..., €, are
orthonormal and f € V' then either

(Z) f = Z?<f7 €j>€j and f € Span{ela €2, -+, en}; or

(it) f #>_;(f,ej)e; in which case f ¢ span{ei, e, ..., en}. In this case,

setting
n
u=f=Y (fee
J
and eny1 = ||luly u, we have ey, e, ..., eny1 orthonormal and

span{ey, es, ..., €,11} = span{ey, €q, ..., f}.

From now on, if

||f—ij

— 0,
2

we feel free to write .
F=> 1
j=1

Exercise 11.3. (Uniqueness) Let V' be an infinite inner product space. If
we have an orthonormal sequence e;, then, if \; € F,

f: )\jej = 0
j=1

implies \j = 0 for all j.
[Note this is result of analysis and not of algebra since it involves limits.]

Definition 11.4. IfU is an inner product space, we say that an orthonormal
sequence e; in U is a basis® (or more exactly an orthonormal basis) for U if

o0

T = Z(:U,ej)ej

j=1
forallz e U.

We immediately obtain the following remarkable result.

6NB This is not an algebraic basis.
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Theorem 11.5. [Riesz—Fisher| All separable complete infinite dimensional
inner product spaces are inner product isomorphic. More precisely, if U and
V' are separable complete infinite dimensional inner product spaces with inner
products py and py, then there exists a linear map T : U — V' such that

pv(Tz, Ty) = pu(z,y)

forallz, y € U. We note that T is automatically an isometric Banach space
1somorphism.

Since all separable complete infinite dimensional inner product spaces are
isomorphic, we simply talk about the Hilbert” space H. Sometimes people
talk about complete inner product spaces which are not separable and are
then careful to talk about ‘non-separable Hilbert spaces’ but the study of
such large spaces has not yet been very profitable. (If you want to see such
a space, consult Exercise 22.17.)

Our arguments also give the following results more or less for free.

Exercise 11.6. Consider I*. If a, b € I* then Y 7 a;b} is absolutely con-

vergent. Further

(a,b) =Y a;b;
j=1
defines an inner product which induces the norm ||.||2. With this inner prod-
uct, 1? is (inner product isomorphic to) Hilbert space.

Exercise 11.7. Let U be a separable infinite dimensional inner product space.
Then there exists an inner product preserving linear map J : U — H of U
into the Hilbert space H such that J(U) is dense in H.

If the reader knows about such things, she will be able to restate Ex-
ercise 11.7 as the observation that the completion of a separable infinite
dimensional inner product space is (inner product isomorphic to) Hilbert
space.

Lemma 11.8. If U s an inner product space, with basis e;, then U is com-
plete if and only if

DT

j=1

o0 2
converges whenever 3 57, |z;|* converges.

"Hilbert developed the theory H in a non-abstract way for particular purposes. There
is a, no doubt apocryphal, story of his asking ‘What is this Hilbert space which the young
people are talking about?’.
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12 The dual of Hilbert space

We already know that Hilbert space is isometrically isomorphic to 2 and we
know that {? has dual space isometrically isomorphic to itself. Thus the dual
space of Hilbert space is isometrically isomorphic to itself.

However, Hilbert space is the infinite dimensional space in which our
geometrical intuition has freest play and it is instructive to follow a geometric
path to a closely related result. Not only does this avoid the inelegant use of
specific bases, but it provides additional insight into the structure of Hilbert

spaced..

Theorem 12.1. Let U be a complete inner product space. If I is closed
subspace and a € U, then we can find a unique fo € F such that

la = folla < lla = £l
forall f € F.
(See also Exercises 20.4 and 20.5.)

Lemma 12.2. With the hypotheses and notation of Theorem 12.1, fo € F
is the unique element of F' such that a — fo is orthogonal to every element of

F.
We immediately deduce the following pleasing result.

Theorem 12.3. [Riesz representation]| If U is a complete inner product
space and T € U’ (that is to say, T : U — F is a continuous linear map),
then there is a unique w € U with

Tu = (u,w)
forallu e U.

Exercise 12.4. If U is a complete inner product space and we define by
J(v)u = (u,v)

for all u, v € U, then J(v) € U’ for all v € U and J has the following
properties.

(i) J(A1v1 + Agva) = NjJ(v1) + A5 J(v2) for all A, Aa € C and all vy, vy €
V. (We say that J is anti-linear.)

(ii) [ ()] = [[v]l2 for allv e V.

(iii) J is surjective.

8Since we do not use bases, our results will also apply to non-seperable Hilbert spaces
but the reader may ignore this.
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Thus (using the polarisation identity of Exercise 10.3) J : U — U’ is an
inner product anti-isomorphism and U’ is naturally anti-isomorphic to U.
(If the reader is interested, but only if she is interested, she may glance at
Exercise 22.15.)

Theorem 12.1 and Lemma 12.2 also give us information on orthogonal
complements which will be used later.

Lemma 12.5. If F is a closed subspace of a Hilbert space H, then
Ft={gecH:{g,f) =0 foral f € F}

15 a closed subspace of H. Fvery uw € H can be written in one and only one
way as

u=f+g
with f € F and g € F*.

13 The spectrum

When we studied linear maps « : C* — C", we were particularly interested
in those A € C such that a — A\t was not invertible. This interest carries
over to infinite dimensional spaces’. The elementary theory is no harder
for general Banach spaces than for Hilbert spaces!® so we shall work in the

general context.

Definition 13.1. If U is a Banach space over C and T : U — U is a
continuous linear map, we define the spectrum o(T) of T' by

o(T)={X € C : T — X\ not invertible}.

The inverse mapping theorem shows that, if X ¢ o(T), then (T — \I)~! is
a continuous linear map. The structure of the spectrum can be exceedingly
intricate but some useful general results can be obtained by applying the
following simple ‘master theorem’.

Theorem 13.2. If U is a Banach space over C and T : U — U is a contin-
wous linear map with ||T|| <1, then 72 T7 converges in the uniform norm
and I — T 1is invertible with

(I—TrlziiT%

9FEven in the finite dimensional case, the study of such things in real vector spaces
turned out to be less interesting, so we shall stick to complex Banach spaces.
OHowever is only true for the elementary theory.
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Lemma 13.3. IfU is a Banach space over C andT : U — U is a continuous
linear map, then o(T) is bounded.

Lemma 13.4. IfU is a Banach space over C andT : U — U is a continuous
linear map, then o(T') is closed.

Definition 13.5. If U is a Banach space over C and T : U — U is a
continuous linear map, we say that X is an eigenvalue of T' if

ker(T — M) # {0}.

If u is a non-zero element of ker(T' — AI), we call uw an eigenvector with
associated eigenvalue .

Exercise 13.6. With the notation just introduced, every eigenvalue of T' lies
in o(T).

Example 13.7. (i) If K is a non-empty closed bounded set in C, then we
can find a continuous linear map T : > — 1> with o(T) = K.

(ii) We can find a continuous linear map T : 1> — I? such that o(T) = {0}
but 0 is not an eigenvalue.

Recall that every Banach space we have studied has a sufficiently rich
dual in the sense of Definition 5.2.

Lemma 13.8. If U is a Banach space over C with sufficiently rich dual and
T:U — U is a continuous linear map, then o(T) is non-empty.

If we were prepared to develop complex analysis for £L(U, U) valued func-
tions from scratch, we could replace Lemma 13.8 by a stronger and simpler
result.

Lemma 13.9. IfU is a Banach space over C andT : U — U is a continuous
linear map, then o(T) is non-empty.

14 Self-adjoint compact operators on Hilbert
space

In the previous section we developed the elementary theory of the spectrum
for general Banach spaces. From now on we are only interested in Hilbert
space.

The reader will recall the very pretty theory of diagonalisation for self-
adjoint (that is to say, Hermitian) maps o : V' — V on finite dimensional
inner product spaces. We conclude this course by developing a parallel theory
for Hilbert space. We need two definitions of which only the second is really
new.
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Definition 14.1. Let H be a Hilbert space. A continuous linear map T :
H — H is called self-adjoint (or Hermitian) if

(T'z,y) = (z, Ty)
forallz,ye H.

Exercise 14.2. The eigenvalues of a self-adjoint continuous linear map are
real.

Definition 14.3. Let H be a Hilbert space. A continuous linear map T :
H — H s called compact if CI(T(B)), the closure of the image under T' of
the unit ball B = {z : ||z|| < 1}, is compact.

Exercise 14.4. Let H be a Hilbert space. Show that a continuous linear map
T : H — H is compact, if given any x, € H with ||z,| < 1, we can find
n(j) — oo and ay € H such that

| T2y — ylla — 0.

Exercise 21.7 gives some insight into what the compact operators!! look
like.

We state the theorem which we wish to prove.

Theorem 14.5. [The spectral theorem] Let H be a Hilbert space. If
T : H — H is a continuous linear compact self-adjoint map, we can find an
orthonormal basis e,, of eigenvectors whose associated eigenvalues N\, are real
and satisfy the condition \,, — 0 as n — oo.

Exercise 14.6. Show that the following is an equivalent statement of Theo-
rem 14.5.

Let H be a Hilbert space. If T : H — H is a continuous linear compact
self-adjoint map we can find an orthonormal basis e, and a sequence \, of
real numbers with A\, — 0 such that

Tu = Z Aj(u, e;)e;
j=1

for allu e H.

We give yet another equivalent form in Exercise 21.9.

A continuous linear map T : H — H is called an operator.
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Exercise 14.7. Let H be a Hilbert space. with orthonormal basis e,. If A\,
is a sequence of real numbers with A, — 0, then the equation

Tu = Z i, e;)e;
j=1

defines a continuous linear compact self-adjoint map T : H — H.

The proof of Theorem 14.5 parallels its finite dimensional analogue but
additional work is required. For the rest of the section we work in a Hilbert
space H and ‘T is an operator’ will mean that 7' : H — H is a continuous
linear map.

Lemma 14.8. If T is a self-adjoint operator, then

sup |(z,Tz)| = [T}

loflz=1
Lemma 14.9. If T is a compact self-adjoint operator, then at least one of
T or —||T| is an eigenvalue.

The next result recalls 1B Linear Algebra.

Exercise 14.10. If T is a self-adjoint operator and e is an eigenvector for
T, then, writing

et ={f€H: (e f)=0},
we know that T(et) C et. The map T|.. : et — et is self-adjoint and, if T
is compact, o is T'| 1.

Lemma 14.11. If T is a compact operator then, given any e > 0, T" has only
finitely many orthonormal eigenvectors with associated eigenvalues having
absolute values greater than e.

Putting these these results together we obtain the spectral theorem for
compact self-adjoint operators.

Exercise 14.12. Suppose that T is a compact self-adjoint (ie Hermitian)
operator. Consider the following properties which T may or may not have.

(4) T-1(0) = {0}.

(B) T~*(0) has dimension r for some r > 1.

(C) T~1(0) has infinite dimension.

(a) T has infinitely many eigenvalues.

(b) T has s eigenvalues for some s > 1.

Which of the pairs (X ,y) can be true of T and which cannot? Give reasons
or examples.

This completes the course, but I have added two extra sections. The first
is an extended exercise on the use of the spectral theorem which is strongly
recommended to the reader.
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15 Using the spectral theorem

In mathematical methods you studied Sturm-Liouville equations

(0w @)) + a0t = 0

on an interval [a, b] subject to conditions
Ary(a) + Agy'(a) = 0, Biy(b) + Bay'(b) = 0

with (A, A3) # (0,0), (By, B2) # (0,0), p continuously differentiable, f, ¢
continuous and p(t) > 0 for all t € [a,b]. You showed that it is generally
possible to find a continuous Green’s function G : [a,b]* — R with G(s,t) =
G(t, s) such that

y(t) = / G(s,0)f(s) ds

solves the given problem.
We shall not into the details here. (They are in [3] §19 and in [5].) The
next exercise gives a particular case.

Exercise 15.1. (i) If G : R? — R is differentiable and g(t) = G(t,t), write
down ¢'(t).

(i1) By using the fundamental theorem of the calculus and differentiation

under the integral show, that under conditions on F that you should specify,

d t

dt J,

(11i) Show that, if

t
F
F(s,t)ds = F(t,t) + / %—t(s,t) ds.

Gls.1) (I1—=s)t ifl>t>s2>0,
87 == .
s(1—t) if1>s>t>0,

then, if f:[0,1] — R is continuous,
1

= G d

)= [ F6)Gs. 0

defines a twice differentiable function with y(0) = y(1) =0 and

fort €]0,1].
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We now investigate the equation

y(t) = / Gs,1)f(s) ds

using the methods of linear analysis.

Exercise 15.2. Suppose that G : [a,b]* — R is continuous. Show that, if
f i [a,b] — C is continuous, then Lf : [a,b] — C given by

b
Lf(t):/ G(s,t)f(s)ds

1S continuous.

Exercise 15.3. (This is a reprise of parts Exercises 10.7 and 10.8.) Show
that, if we set

(f. ) = / F(t)g(t)" d.

we obtain C([a,b]) as an inner product space. Show that C([a,b]) is an infinite
dimensional separable inner product space but is not complete.

Exercise 15.4. We consider C([a,b]) both with the uniform norm ||.||« and
the inner product derived norm ||.||s. We shall use the Cauchy—Schwarz in-

equality for integrals repeatedly.
(i) Show that

L= (C([a, b), [[-l2) = (C(la, b]), [|-]]s0)

18 a continuous linear map.
(i1) Show that the collection of Lf such that f € C([a,b]) and || f]l2 < 1
1S equicontinuous.
(iii) Show (Ezxercise 19.3 is relevant) that, if G(s,t) = G(t,s) for all
t, s € [a,b], then
(Lf,g9) = ([, Lg)

forall f, g € (C(la,b)).

We know that C([a,b]) is not a complete inner product space, so we
cannot apply the spectral theorem directly. However, Exercise 11.7 tells us

that there exists an inner product preserving linear map J : C([a,b]) — H
of U into the Hilbert space H such that J(C([a,b])) is dense in H.
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Exercise 15.5. The results of this exercise are not hard but the reader should
not sleep walk through them.

(i) Show that, if u € H, u, € C([a,b]) and ||Ju, — ulla — 0, then Lu,
converges uniformly in C([a,b]) to a continuous function g say. Show that if
v, € C(la, b)) and ||Jv, — ulls — 0, then

| Lv, — glleo — O.

Thus we can write Lu = g.
(ii) Show that L is a well defined function L : H — C([a, b]).
(i1i) Show that .
L: H — (C([a,0]), [|-]|o)

1S a continuous linear map. B
(iv) Show that the collection of Lf such that f € H and |f|l2 < 1 is
equicoOntINUOUS.

Exercise 15.6. We now define L=JL.

(i) Show that

L:H— H.

s a continuous linear map.

(ii) Show that L is compact.

(11i) From now on we suppose G(s,t) = G(t,s) for all s, t € [a,b]. Show
that L is self-adjoint.

(iv) Deduce that we can find an orthonormal basis w, and a sequence \,
of real numbers with \, — 0 such that

Lu = Z A (u, wi)w;
j=1

forallu e H.

The result of the previous exercise tells us something about L, which is an
operator on H, and we are interested in L, which is an operator on C([a, b]).
However, this is soon remedied.

Exercise 15.7. (i) If A\; # 0, use the fact that \jw; = f/wj to show that
wj = Jej for some e; € C([a,b]).

(ii) Conclude that, if G : [a,b]* — R is continuous and G(s,t) = G(t, s),
then either we can find an orthonormal sequence v; in C([a,b]) and a sequence
¢; of non-zero real numbers with (; — 0 having the property

— 0

JRCLOREE S

2
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as N — 00, or we can find a finite orthonormal collection v; in C([a,b]) and
¢; non-zero real numbers with

/abf(s) (s,t) dS—ZCJ ,0;)0;(t

(1it) Show that (f,v;) = 0 for all j implies f = 0 whenever f € C([a,b])

iof and only iof )
/ f(t)G(s,t)dt =0

for all s implies f = 0 whenever f € C([a,b]).

Exercise 15.8. Briefly identify the ‘eigenfunctions’ v; associated with non-
zero eigenvalues in the case of Fxercise 15.1.

16 Where next?

In this section which will neither be examined nor lectured, I look at the
different ways in which the ideas of this course can be developed.
Measure theory Measure theory interacts with linear analysis in many ways.
(1) We have seen that C([a, b]) with the usual inner product can be iden-
tified with a dense subset of of a complete inner product space. It is a
surprising fact that we can realise this complete inner product space as a
space of functions L?([a, b]) on [a,b] by using Lebesgue integration.
In much the same way, it can be shown that, if we write

i = ([ 1wpar) "

then ||.||, is a norm on C([a, b]) (see Exercise 18.1) and the completion gives
rise in a natural manner to a space of LP([a,b]) on [a,b]. These spaces are
natural subjects for linear analysis.

(2) Although we have studied the space C([a,b]) with the the uniform
norm, we did not try to identify its dual (for some members of the dual
see Exercise 18.7). It is not hard to show that that the dual space can be
identified with the space of Borel measures.

(3) The theory of compact self-adjoint operators that we have developed
on Hilbert space corresponds to the theory of Fourier sums

i ) exp(ijt).

j=—00
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If we are to get something like the theory of Fourier transforms with the
putative inversion formula

F1) ~ o / " (@) expliat) da

we need to extend our notions of integration. (In fact, we only need to
extend the ideas of Riemann integration, but, nonetheless, the extension is
quite subtle.)

Ezamples Spaces like [P and C([a,b]),||.]|«) are good examples of Banach
spaces to start with because they have a great deal of structure. For the
same reason, they are inadequate if we wish to understand what a general
Banach space might look like.

As a result of seventy years of hard work (including that of our own
Professor Gowers) we know that the good behaviour of 1P, C([a,b]), ||.]|o0)
and similar spaces is not typical of Banach spaces in general. The study of
Banach spaces (like the study of most general mathematical objects) requires
a plentiful stock of examples.

The axiom of choice The reader will be aware of a principle called the aziom
of choice'?. This asserts that, given a non-empty collection A of non-empty
sets, we can find a function

fiA=JA
AcA

such that f(A) € A. (That is to say, f chooses an element f(A) from each
A € A.) Mathematical logicians have shown that, if the ordinary axioms for
set theory are consistent, then they remain consistent if we add the axiom of
choice but that the axiom of choice is not implied by the ordinary axioms.

It turns out that the general study of Banach spaces takes a more elegant
form if we assume the axiom of choice and, for this reason, it is customary
to assume it. Here are some consequences of this assumption.

Theorem 16.1. Assuming the axiom of choice, every vector space V. over F
has an algebraic basis (that is to say a subset E such that any v € V. may be
written uniquely as a finite sum

v = Z Agd
geG

with G a finite subset of E and A\, € F).

12For historical reasons this axiom has acquired an air of glamour and mystery which it
it hardly deserves.
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Using this theorem, it is easy to prove the following result which reinforces
the lesson of Exercise 4.2.

Theorem 16.2. Assuming the axiom of choice, if U is any infinite dimen-
stonal normed vector space over IF, then there exists a linear map o : U — F
which s not continuous.

We can also prove the following supplement to Exercise 2.4.

Theorem 16.3. Assuming the axiom of choice, we can find an infinite di-
mensional vector space U and two complete norms ||.||a ||.||z on U such that

lella _ llulls _

wro |lullB uzo [lulla

(For example we can set up an algebraic isomorphism between /2 and [*°.)

The axiom of choice also enables us to prove a beautiful result of Hahn—
Banach. We shall not discuss this but here are some of its consequence. The
first result sheds light on the paragraph following Theorem 4.8.

Lemma 16.4. We work in I*° and define e,, € [* by

{1 if j=n,
€nj =

0 otherwise.

Assuming the axiom of choice, there there exists a non-zero continuous linear
functional T : 1°° — C such that

Te, =0
for all n.

The second consequence was already stated in the discussion of Defini-
tion 5.2.

Theorem 16.5. Assuming the axiom of choice, every Banach space has a
sufficiently rich dual.

The strengths and weaknesses of linear analysis using the axiom of choice
are well illustrated by Lemma 16.4. On the one hand, it asserts the existence
of an object T without giving any clue as to what it looks like. On the other
hand, if we did not know the result of Lemma 16.4, we could waste an awful
lot of time trying to show that no such object exists.
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17 Books

There are many excellent introductions to linear analysis. The book of Bol-
lobés [1] has the advantage of being based on this course and a subsequent
Part III course. I think that [3] and [2] are nice and reasonably simple.

If you wish to learn more about Hilbert space then [5] is an excellent
introduction and, if you simply want to learn more analysis in a non-exam
driven way, then Rudin’s Real and Compler Analysis is a masterpiece.
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18 First example sheet

Students who are unsure of their ground should check that they can do the
exercises in the main text. Strong students should at least glance at the
supplementary example sheet. The order of the exercises roughly follows the
order of the lectures.

Exercise 18.1. In this exercise, oo > p > 1 and p~t +q¢ ' = 1. We work
with the space C([a,b]) of continuous functions on [a,b].
(i) Prove Hélder’s integral inequality

[irwgorar< ([ If(t)\pdt)l/p ([ ttoear) "

for all f, g € C([a,b]).
(i1) State and prove an appropriate reverse form of Hélder’s integral in-
equality.
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(#ii) Show that

i = ([ o a) "

defines a norm on C([a,b]).

(w) Show that (C([a,b]), ||-|l,) is not complete. (We shall consider the
particular case p = 2 in Ezercise 10.8.)

(v) By applying Hdélder’s integral inequality with g = 1, p = v/u, or
otherwise, show that

u—l_p—1
[F]lw < (b—a) NIF |

when oo > v > u > 1.
(vi) Show that, if co > v > u > 1, then, given any K > 0, we can find
an f € C([a,b]) such that

1fllo > KLl

[Note that the inequalities in (v) and (vi) run in the opposite way to the [P
case.|

(vii) [Optional extra] Show that, if oo > v > u > 1, then given K > 0, we
can find continuous functions f and g which are zero outside some interval

such that
([ 1rta) Tk ([ 1rra) "
([ ot o) Tk ([ ot ac) "

Exercise 18.2. Suppose 1 > p > 0.
(a) Find (x1,73), (y1,y2) € R? such that

1/p

(1 4+ )P + (2 + 1)) " > (af + )P+ () + yh) e

(b) Show, by considering the behaviour of 1 +t? — (1 +t)P, or otherwise,

that, if a, b > 0, then
a? +b” > (a+ b)P.

(¢) Show that, if we write [P for the space of complex sequences a with

o0
Z |aj’p < 00,
j=1
then P can be made into a vector space in the standard way.
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Show that, if we set

[e.e]

d(aa b) = Z ‘aj - bj|p7

j=1
then d is a complete metric on IP.

Exercise 18.3. Show that we can find a constant A,, such that

sup [p'(t)] < A, sup |p(t)]
t€[0,1] t€[0,1]

for every real polynomial of degree n or less.

Exercise 18.4. Let E and F be normed spaces. Let A be a dense subset of
E, and let T, : E — F be a continuous linear map for each n > 1. Show
that if

(a) there exists a K with ||T,|| < K for all n, and

(b) T,.(a) — 0 for all a € A,
then T,,(e) — 0 for alle € E.

Is the result true if condition (a) is dropped? Give a proof or a counterex-
ample.

If (a) and (b) hold, does it follow that ||T,,|| — 0 as n — 0o ? Give a proof
or a counterexample.

Exercise 18.5. (A useful fact.) Let (V,|.||) be a normed space. Show that
it is a Banach space if and only if 372, x; converges whenever 77, ||zl
converges.

In the special case when V. = C and ||z|| = |z| deduce that absolute
convergence implies convergence.

Exercise 18.6. (i) Consider C([0,1]) with the uniform norm. Show that

E={fec(0,1]) : f(0) =0}

is a closed subspace of C([0,1]) and explain why this means that E is a
Banach space under the uniform norm.

Show that )
F—{feE : / f(t)dt_O}
0

15 a closed subspace of . Show that there does not exist a g € E such that
g[lc =1 and

lg = flle =1
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forall f € F.

Thus Theorem 3.8 cannot be improved in general.

(i1) Show, however, that, if F' is a subspace of a finite dimensional normed
space space (E,||.||) and F # E, then we can find an e € E with |le| = 1
such that

le—£] > 1.

forall f € F.

Exercise 18.7. In this question we work with real valued continuous func-

tions although similar results hold for the complex valued case.
(i) Consider the space (C([a,b]),|.||s)- Show that, if s € [a,b] and

ds(g9) = g(s),

then 65 € C([a,b]). What is ||0s|| and why? Can you find a g € C(la,b))
with ||g]lec = 1 and 65(g) = ||0s||? Give reasons. Show that C([a,b]) has a
sufficiently rich dual in the sense of Definition 5.2.

(i1) Consider the space (C([a, b)), ||-ll). If F € C(la,b]) set

b
Tr(g) = / Ft)g(t) dr.

Show that Tr € C([a,b])'. What is ||Tr|| and why? Can you always find a
g € C([a,b]) with ||g]lc =1 and Tr(g) = ||TF||? Give reasons.
(i11) Consider the space (C(la, b)), ||-|l1) where, as usual,

b
lglh = / ()] dt.

If 05 and Tg are defined as before, show that o, is not continuous, but Tg is.
(iv) [Optional extra] Continuing with the ideas of (iii), find ||Tr| and
prove your answer.

Exercise 18.8. (i) Show that if (U, ||.|v) is a normed space and (V, ||.||v) is
a Banach space, then (L(U,V),|.||) is a Banach space.
(i) Consider coo (the space of sequences with all but finitely many terms

zero) with the norm
oo
lafl. = |ajl
j=1

and the space I' with its usual norm. Let L(I',Cyo) be defined as in Theo-
rem 4.0.
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If we set
T,(a) = (a1,2 as, 37 as,...,n a,,0,0,...),

show that T, € L(I',cop). Show that the T, form a Cauchy sequence in
L(I*, cop) with no limit point.
Thus Theorem 4.6 may fail if (V. ||.||) is not complete.

Exercise 18.9. IfT : U — V 1is an isomorphism between the Banach spaces
U and V (that is to say, a linear bijection such that T and T~ are con-
tinuous), show that the map T" : V' — U’ between the dual spaces given
by
T' (v )u =v'(Tu)
for allv' € V' and u € U is a well defined isomorphism between V' and U’.
(Observe, that, on general grounds, the verification must consist of routine
and rather easy steps.)
Deduce that I* cannot be isomorphic to IP for any p > 1.

Exercise 18.10. Suppose that X, Y and Z are Banach spaces. Suppose that
F: X XY — Z s linear and continuous in each variable separately, that is
to say that, if y is fixed,

F(,y): X —-2Z

1S a continuous linear map and, if x 1s fixed,
F(z,):Y = Z

1s a continuous linear map. Show, by using the principle of uniform bound-
edness, that there exists an M such that

1E (@, y)llz < Mzl x]lylly
forallz € X, y €Y. Deduce that F is continuous.

Exercise 18.11. Suppose that U is a vector space with two complete norms
|.lla and ||.||g. By applying the open mapping theorem to an appropriate
linear map, show that if there exists a K such that

Kljulla = [lulls
for all uw € U, then there ezists a K' such that
K'llulls = [lull

for allw € U. Thus comparable complete norms are equivalent.
[We could also use the inverse mapping theorem but this comes to much the
same thing./
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Exercise 18.12. (i) (Dini’s theorem) Let (X,d) be a compact metric space.
Suppose f, : X — R is a sequence of continuous functions such that, for
each fivzed x € X, f,(z) is a decreasing sequence with f,(z) — 0 as n — oo.
By considering

B, ={x : fu(zx) <€}
for any fixed € > 0 show that f, — 0 uniformly on X.

(ii) Show, by means of an example, that the condition (X,d) compact
cannot be dropped. Show, by means of an example, that the condition f, de-
creasing cannot be dropped. Show, by means of an example, that the condition
fn continuous cannot be dropped.

(iti) Set po = 0 and pni1(2) = 122 + pu(x) — $pa(x)?. Explain why p, is
a polynomial. Show that

Pn(2) < ppga(z) < |z

and all n > 0 for all x € [0,1]. Hence deduce that p,(z) — |x| as n — oo
for all x € [0,1]. Now use Dini’s theorem to show that the convergence is
uniform.

Ezxplain how to use this result as a replacement for Lemma 8.4 in the
proof of the Stone—Weierstrass theorem.

19 Second example sheet

Students who are unsure of their ground should check that they can do the
exercises in the main text. Strong students should at least glance at the
supplementary example sheet. The order of the exercises roughly follows the
order of the lectures.

Exercise 19.1. (i) Here is a typical use of the Stone—Weierstrass theorem.
If f € C[0,1], we say that f has nth moment

Eu(f) = /0 Ftye d.

Show that, if all the moments of f vanish, then

/1 FOPH)dt =0

for all polynomials. Use the Stone—Weierstrass theorem to deduce that

/0 f(B)g(t) dt = 0
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for all g € C[0,1]. Deduce that f = 0.
(i) (Optional) Let w = exp(im/4). Show that

/ ye Y dy = nlw™"!
0
and deduce that
/ i3 exp(—2712y) sin(2712y) dy = 0.
0

By making the substitution x = y*/4, show that
/ 2" exp(—z'/*) sin(z"*) dy = 0
0

for all n although = +— exp(—x'/*)sin(x'/*) is a well behaved non-zero con-
tinuous function. Why does the argument of part (i) fail?

[Both parts have obvious relevance to the question of what we can say about
a random variable X from knowledge of its moments.]

Exercise 19.2. (The Riemann—Lebesque lemma) (i) The Riemann—Lebesgue
lemma tells us that, if f € C(T), then f(n) — 0 as |n| — oco. There are
many ways of proving this but you are asked to prove it by finding a dense
subalgebra of C(T) for which the result is true ‘for obvious reasons’ and then
using a density argument to extend the result to all of C(T).

(ii) (Optional) Suppose that ¢(n) > 0 and ¢(n) — 0. Show that we can
find 0 < ny < ny < ... such that Zj; ¢(n;) converges. By considering
> i1 ¢(ny) cosnjx, or otherwise, show that there exists an f € C(T) such

that ¢(n) =L f(n) - 0. Thus part (i) cannot be improved.

Exercise 19.3. In this question you may use results about Riemann integra-
tion in one dimension but not in higher dimensions.

(i) Suppose that f : [0,1]> — R is continuous. Explain why the function
g:[0,1] = R defined by

g(r) = /0 f(z,y)dy

/01 (/Olfcc,y)dy) d
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(ii) Show that, if u, v : [0,1] — R are continuous,

/o1 (/olu(x)v(y) dy) dr = /01 (/01 u(z)v(y) dx) dy.

(iii) Use the theorem of Stone—Weierstrass to show that the collection of
functions h of the form

h(z,y) = Z uj(z)v;(y)

with u;, v; : [0,1] — R continuous, is uniformly dense in C([0,1]%).
(iv) Deduce that

[ ([ o) as= [ (f o) a

for all f € C([0,1]?).

Exercise 19.4. (i) Show that we cannot find a sequence P, of polynomials
such that P,(x) — exp(z) uniformly on [0,00) asn — co. Show that we can-
not find a sequence Q,, of polynomials such that Q,(x) — exp(—x) uniformly
on [0,00) as n — 00.

Why do these results not contradict the Stone—Weierstrass theorem?

(i) Let Ay be the subset of Cgr([0, 1]) consisting of polynomials of the form
> iy a;al. Show that Ag is not uniformly dense in Cr([0,1]). Why does this
not contradict the Stone—Weierstrass theorem? Identify the uniform closure
of Ag and prove your statement.

(iii) Let Ay be the subset of Cgr([0,1]) consisting of polynomials of the
form 370y a;x®. Show that Ay is uniformly dense in Cg([0, 1]).

(11i) Let Ag be the subset of Cr(|—1,1]) consisting of polynomials of the
form 370 g aa¥. Show that Ay is not uniformly dense in Cr([—1,1]). Why
does this not contradict the Stone—Weierstrass theorem? Identify the uniform
closure of Ay and prove your statement.

Exercise 19.5. (i) Show that a topological space (X,T) is compact if and
only if it satisfies the following condition:—
If F is a non-empty collection of closed sets such that, whenever

b, By, ..., F, e F,

we have (\;_, F; # @, then Nper F # @.
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(ii) By quoting the appropriate theorem or (if you need the practice, re-
proving the result which is used in obtaining that theorem) show that if (X, T)
is compact and Hausdorff, then, given V € 7 and x € V', we can find a closed
set I and an open set U with

reUCFCV.

(71i) (Baire’s theorem for compact Hausdorff spaces.) If (X,7) is a com-
pact Hausdorff topological space and U; is an open subset of X with the
property that U; NV # & for all non-empty open V [j > 1], show that

ﬂ?il U; # @.

Exercise 19.6. (i) If A is a set of first category in a complete metric space
(X, d) without isolated points show that X \ A is uncountable.

(i) If A is a set of first category in a complete metric space (X, d) without
1solated points, show, by considering the subspace

CHz : d(z,y) < d},

or otherunse, that
{o: d(z,y) <\ A

1s uncountable for all y € X and 6 > 0.
[Be careful. A subspace may have isolated points even if the original space
does not.|

Exercise 19.7. Consider the space C([0,1]) of infinitely differentiable real
functions on [0,1] (with appropriate conventions about left and right deriva-
tives at end points).

(i) Show that, if we define
A(f.9) =3 min(@9 £ — g0,
=0

then d is a complete metric on C°([0,1]).
(i) Suppose q is a point of [0,1]. Show that

En(q) ={f € Cg([0,1)) : |[f9(q)] < m x j! x j7 for all j > 0}

s closed in the d metric and its complement is dense.
(iii) Deduce that we can find an F ¢ |J°_, En(q). Show that

FU) J
FO@Il _

lim sup |
g!

J—00
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for ally # 0. Deduce that the Taylor expansion of F' around q diverges except
at q (ie has zero radius of convergence).

() If F is as in (iii), explain why F' cannot have a power series expansion
valid in any open interval containing q.

(v) Up to now we have kept q fized. Extend our argument to show the
existence of an infinitely differentiable function G : [0,1] — R which does
have a power series expansion valid in any open interval.

Exercise 19.8. The object of this exercise is to prove the following form of
the Tietze extension theorem.

If (X, 7) is a topological space and Y is a compact subset of X such that,
given any x,y € Y with x # y, we can find a g € Cr(X) with g(x) # g(y)
then, given any f € Cr(Y'), we can find an F € Cr(X) such that F(y) = f(y)
forallyey.

(i) Prove Tietze’s extension theorem in the form given in Theorem 7.11
using Urysohn’s lemma and the result just stated.

(ii) From now on, we assume that (X, 7) and Y satisfy the hypotheses of
our theorem. Let us write A for the collection of f € Cr(Y') such that we
can find an F € Cr(X) with F(y) = f(y) for all y € Y. Use the Stone-
Weierstrass theorem to show that A is uniformly dense in Cgr(Y).

(#ii) Show that, if f € A, we can find fe Cr(X) with f(y) = f(y) for all
y €Y and ||flloo = ||fllos. Use this result to show that A is uniformly closed
in Cr(Y'). Deduce that A = Cr(Y') and our theorem holds.

Exercise 19.9. We work in C and write
0D ={z€C : |z| =1}

Suppose K is a compact subset of C and ¢ : K — 0D 1is continuous. By
considering functions of the form ®(z)/|®(z)|, or otherwise, show that there
1s an open set ) O K and a continuous function gz~5 : Q) — aD.

Ezxplain, giving an explicit K and ¢ and using ideas from complex analysis
or topology (you are not asked for proofs), why we cannot always take 2 = C.

Exercise 19.10. We work with continuous functions on [0, 1].

(i) Show that, if f, — f, uniformly then the set F = {f, : n > 1} is
equicoONtINUOUS.

(ii) Show that, if F = {f, : n > 1} is equicontinuous and f,(q) — f(q)
as n — oo at each rational point q € [0, 1], then f, — [ uniformly.

Exercise 19.11. Recall the definition of total boundedness from the met-
ric and topological spaces course. Let (X, T) be a compact Hausdorff space.
Suppose that F is a subset of C(X).
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(i) Ezplain why F is complete under the natural metric d (that is the
restriction of the metric induced by ||.|| ) if and only if F is closed in C(X).
Explain why this means that F is compact if and only if F is closed and
totally bounded.

(ii) Show that F is totally bounded if and only if it is uniformly bounded
and equicontinuous.

(71i) Deduce the Ascoli-Arzela theorem (Theorem 9.3).

Exercise 19.12. Find all continuously differentiable functions xr : R — R
with

o' (t) = 3x(t)*® for all t
subject to the condition x(0) = 0 and show (formally or informally according

to taste) that you have found them all.
[Note that x +— 2%/ is differentiable (and so satisfies a Lipschitz condition)

forxz #0.]

20 Third example sheet

Students who are unsure of their ground should check that they can do the
exercises in the main text. Strong students should at least glance at the
supplementary example sheet. The order of the exercises roughly follows the
order of the lectures.

Exercise 20.1. We work with the set A(D) of functions analytic on
D={2eC: |z| <1}

(i) Let 1 > R > r. By considering Cauchy’s formula with the contour
2 = Re”, or otherwise, show that

Fr(M)={f € AD) : |f(z)] <M forall |z| < R}

is equicontinuous at every point z with |z| <r.
(i) If f, € F and |fu(2)] < M for all |z| < R, show that we can find a
continuous function
F:{zeC: |z|<r}—-C
and n(j) — oo such that f,;)(2) — F(z) uniformly for |z| < r. Ezplain why
F is analytic on D, ={z : |z| < r}.
(#i) Show that the formula

[e.9]

d(f,g) =) 27min(l, sup |f(z) = g(2)))

j=1 |z|<1-2-J
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gives a complete metric on A(D). Show that the set
F(M)={f€AD) : |f(z)] <M forall |z| <1}

15 compact in this metric.
[Simple developments of these ideas produce the powerful method of normal
families in complex variable theory./

Exercise 20.2. Consider the space of continuous functions C([0, 1]) with the
uniform norm. Suppose that E is a closed subspace consisting of continuously
differentiable functions.

(i) By applying the closed graph theorem, or otherwise, show that the
differentiation map D : E — C([0,1]) (given by Df = f') is continuous.

(7i) Deduce, using the Ascoli-Arzela theorem, or otherwise that the unit
ball in E is compact.

(11i) Deduce, quoting the appropriate theorem, that E is finite dimen-
stonal.

Exercise 20.3. Suppose K is a compact Hausdorff space and C(K) is the
countable union of equicontinuous sets. Show that C(K) is the countable
union of bounded and closed (in the uniform norm) equicontinuous sets. De-
duce, using three of the ‘big theorems’ of the course, or otherwise, that C(K)
is finite dimensional and so K 1is finite.

Exercise 20.4. (i) Let U be a complete inner product space. If F is closed
convex subset of U and a € U, show that we can find a unique fy € F such
that

la = foll2 < fla = fll2

forall f € F.
[A set F is convex if, whenever x,y € F and 1 > X\ > 0, it follows that
A+ (1-=NyeF.]

(ii) Give an example of a closed convex subset F' of 1*° and a point a € [
with the property that the equation

Ja— gllsc = inf fla— £l

has more than one solution with g € F'.

Exercise 20.5. We work in [2. Let F' be the collection of x € I* such that
all but finitely many x; are zero and let

a=(1,1/2,1/3,...).
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Show that F is a subspace of 12, but, given f € F, we can always find a g € F
such that
la—fl[2 > [la —gll2.

Why does this not contradict Theorem 12.17

Exercise 20.6. (i) Use Theorem 12.1 and Lemma 12.2 to show that, if U is
complete separable inner product space and F is closed subspace of U, then
F, considered as a space in its own right (inheriting the inner product from
U), is itself a complete separable inner product space.

(ii) Suppose that U is an inner product space and F' is closed subspace
of U. Suppose further that F considered as a space in its own right has an
orthonormal basis ey, ey, .... Use the arguments which we used to establish
Bessel’s inequality to show that, if a € U and Y37 |x;|* < oo, then

00
E xjej —a
Jj=1

with equality only if x; = (a,e;). Deduce the conclusions of Theorem 12.1
and Lemma 12.2 in this case.

o0

Z(a, e;)ej —a

j=1

>

2 2

Exercise 20.7. (i) Consider the inner product space coo of sequences with
only finitely many non-zero terms and inner product

(a,b) = a;b;.
j=1
Show that the formula
Tu = Zj_lu]'
j=1

defines a continuous linear map T : cog — C but there does not exist a w € ¢y
such that
Tu= (u,w).

Why does this not contradict the Riesz representation theorem (Theorem 12.3)7
(i) Find a closed subspace F' of cop and an a € ¢y such that, givenf € F,
we can always find a g € F such that

la = fll2 > [la - gll2.

Why does this not contradict Theorem 12.1¢
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Exercise 20.8. Suppose that U is an inner product space and e, €s, ...are
orthonormal. Show that

(fren) —

as n — oo.
Use this result to give another proof of the Riemann—Lebesgue lemma (see
FEzercise 19.2).

Exercise 20.9. Suppose that ey, es, ...1s an orthonormal basis for an inner
product space E. Show reasonably carefully that

(e o]
E (x,e)(y,e;)"
J=1

Exercise 20.10. Consider a Hilbert space H with a closed subspace E and T :
E — C a continuous linear functional. Show that there exists a continuous
linear functional T : H — C such that T|g =T and |T|| = ||T].

[You can prove this using bases but well brought up people do not use bases
unless they have to. (However, if they have to, they instantly forget their

upbringing.)]

Exercise 20.11. Let E be an inner product space. We say that a non-zero
continuous linear map P : E — E is a projection if P> = P. We say that P
is an orthogonal projection if P(U) L P~1(0).

(1) Give a example of an orthogonal projection Q : 1> — [? such that both
Q(U) and Q~(0) are infinite dimensional.

(ii) Give a example of a projection R : C* — C? which is not an orthog-
onal projection.

(11i) If E is an inner product space and P : E — E is a projection, show
that P is an orthogonal projection if and only if | P|| = 1.

Exercise 20.12. Suppose that H is a Hilbert space. If C is a subset (NB no
algebraic structure is implied) of H we write

={g€eH :{g,f)=0 forall feC}.

(i) Show that C* is a closed subspace of H.
(ii) Show that C++ = C if and only if C is a closed subspace of H.
(iii) Show that C++ = Clspan C.
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21 Fourth example sheet

Students who are unsure of their ground should check that they can do the
exercises in the main text. Strong students should at least glance at the
supplementary example sheet. The order of the exercises roughly follows the
order of the lectures.

Exercise 21.1. Let ey, es, ... be an orthonormal basis for the Hilbert space
H. Write

Up = €2p—1

—1
Up = €p—1+ N "€y

and let U be the closed subspace generated by the u, (ie the smallest closed
subspace containing the u,) and V' be the closed subspace generated by the
Up-

(1) Show that U NV = {0}.

(i1) Show that every x € U 4+ V has a unique expression as x = Px + Qx
with Pr € U and Qx = V. Show that P : U +V — U 1is linear and satisfies
P? = P (so P is a projection) but that P is not continuous.

(#i) Show that U +V is dense in H but U +V # H.

Exercise 21.2. Let H be Hilbert space. Suppose that T : H — H 1is linear
and self-adjoint (that is to say (Tx,y) = (x,Ty) for all z, y € H). Use the
the principle of uniform boundedness to show that T is continuous.

Exercise 21.3. Let U be a normed space and T : U — U a continuous linear
map. Ezxplain why
p(T) = liminf |||/

1s well defined.
By making the observation that

[T < 7T
or otherwise, show that, in fact
1TV — p(T)

asn — oco. (We call p(T') the spectral radius of T'.)

Now suppose that U is a Banach space. Show that NI — T is invertible
(that is to say, has continuous inverse) for all |\| > p(T).

By considering maps of the form

(21,29, x3,...) — (0,121, 2o, . . .)
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with appropriate c;, show that we can find T : 1> — I* such that T™ is injective
(so, in particular, T™ # 0) for alln > 1 but p(T) = 0.

Exercise 21.4. Let U and V' be Banach spaces. Suppose T : U — V is a
continuous injective linear map such that T(U) is dense in V. Show that the
following three statements are equivalent.

(i) There ezists a ¢ > 0 with the property that

1 Tullv = ellullu

forallu e U.
(i1) T is surjective.
(iii) T is invertible (that is to say, has continuous inverse).

Exercise 21.5. (i) Consider the the shift map S : 1> — 1% given by
S(al,(lg, .. ) = (0,@1,@2,. . )

Show that S is a well defined continuous linear map and find its adjoint.

(i) Let U be a finite dimensional space and T : U — U a linear map.
Explain why NI — T fails to be invertible if and only if there exists a u # 0
such that Tu = Au.

(iii) Give an example of a continuous linear map Ry : 1> — [ which
15 surjective but not bijective. Give an example of a continuous linear map
Ry : 2 — 2 which is injective but not bijective.

(iv) By using Exercise 21.4, or otherwise, show that, if U is a Banach
space and T : U — U is a continuous linear map, then X\ € o(T) if and only
if at least one of the following conditions hold.

(A) X is an eigenvalue of T', that is to say, there exists a u # 0 such that
Tu = \u.

(B) X is not an eigenvalue of T' but X is an approximate eigenvalue of T,
that is to say, there exist u; € U with ||u;|| = 1 such that ||Tu; — Au;|| — 0.

(C) (M —T)(U) is not dense in V.

(v) Give an example of a continuous linear map T : 1> — I* such that
o(T) = {0} but 0 is not an eigenvalue of T
[The moral of this question is that the spectrum is much more a complicated
than at first appears. We find an interesting spectrum in Ezxercise 22.16.]

Exercise 21.6. (i) Let U be a Banach space and T : U — U a continuous
linear map. Suppose that X is in the frontier of o(T') (that is to say A\ lies in
o(T) and in the closure of the complement of o(T')). By examining possibility
(C) in Exercise 21.5, show that X is an approximate eigenvalue (this includes
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the possibility that A is an eigenvalue). In other words, the frontier of the
spectrum is composed of approrimate eigenvalues.

(ii) Now suppose T : H — H is a continuous Hermitian (that is to say,
self-adjoint) linear map. Show that the approximate eigenvalues of T are
real. Deduce from (i) that the spectrum of T  consists of real numbers.

Exercise 21.7. (This quite long, though instructive. Those who want a
shorter, thought still non-trivial, question should ignore parts (i) and (iii),
and do that part of (ii) which says that the limit of finite rank operators is
compact.)
Consider Hilbert space H. Let us write B(H) for the space of continuous
linear maps T : H — H.
(i) Show that the following statements about a bounded sequence x,, are
equivalent.
(A) Every subsequence of the sequence has a convergent subsequence.
(B) Given any € > 0 we can find a finite dimensional subspace E such
that, if P is the orthogonal projection onto E, we have ||(I — P)z,||2 < €.
(i1) We say that an S € B(H) is of finite rank if the image space S(H)
is finite dimensional. Show that T € B(H) is compact if and only if we can
find finite rank S,, such that ||S, — T| — 0 as n — oo.
[It may be helpful to recall that H is separable]
(71i) Show that the collection of compact operators is a closed nowhere
dense (ie having dense complement) subset of B(H).

Exercise 21.8. (i) We work on the Hilbert space 2. Show that

S(al,ag,ag,...) = (aQ,ag,a4...)

is a continuous linear map from I* to 1> and find its adjoint map S*. Find
IS and ||57]].

(ii) We use the notation of Exercise 21.7. Show that the collection of
self-adjoint operators is a closed nowhere dense subset of B(H).

Exercise 21.9. Check that the following statement is equivalent to the spec-
tral theorem for compact self-adjoint operators (Theorem 14.5). Let H be a
Hilbert space. If T : H — H is a continuous linear compact self-adjoint map
we can find a finite or infinite sequence Py, Ps, ... of orthogonal projections
(that is to say continuous linear maps P; : H — H with P; ' ({0}) L P;(H))
which are mutually orthogonal (that is to say Pj(H) L Py(H) for j # k) and
have finite dimensional non-trivial images (that is to say 1 < dim P;(H) <
00) together with distinct non-zero real \;, with A, — 0 as n — oo if the
sequence 1s infinite, such that

T=> NP
J
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[Although this is just a simple rewrite of Theorem 14.5 it provides a better
Jumping off point for generalisation.]

Exercise 21.10. Suppose T': H — H 1is a compact self-adjoint operator on

a Hilbert space H. Let \ be a non-zero real number and lety € H. Consider
the two equations

Tx = \x, (1)

Tx = x+Yy. (2)

Prove the Fredholm alternative which states that either (1) has no non-zero

solutions and (2) has a unique solution or the space of solutions Ey of (1)

contains non-zero vectors and (2) has solutions if and only if y L E\. In the
second case, if z is a solution of (2), the set of solutions is

{z+w : weE\}

[Hint: If this was a 1B mathematical methods question you would consider it
rather easy.]

Exercise 21.11. Work through Section 15.

Exercise 21.12. In this exercise we work in a Hilbert space H .
(i) Suppose that T and S are commuting compact self-adjoint continuous
maps from H to H. If we write

Ex={x e H :Tx = Az}

show that S(E\) C E\. By repeated use of Theorem 14.5, or otherwise, show
that we can find an orthonormal basis fi, fa, f3, ...such that each f; is an
eigenvector of both T and S.

(i1) A continuous linear map R : H — H is called normal if RR* = R*R.
By considering T = (R+ R*)/2 and S = (R — R*)/(2i), or otherwise show
that, if R a compact normal continuous linear map from H to H, we can
find an orthonormal basis f; of H and \j € C with \; — 0 such that

Ru=>Y X(u, f;)f;
j=1
forallu e U.

(1it) Show conversely that if f; is any orthonormal basis of of H and \;
any sequence in C with \; — 0 then the formula

Ru=7 X{u, f;)f;
j=1

for all w € U defines a continuous linear map R : H — H which is compact
and normal.
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22 Supplementary exercises

These exercises are not intended to be harder but are less closely linked to
the immediate needs of the course. They do, however, provide background
and anyone intending to do more analysis should at least glance at them.

Exercise 22.1. (Revision of 1A) We say that a function f : [a,b] — R is
strictly concave if, whenever a <t < s <band0 <\ <1, it follows that

M)+ (1= N f(s) < FOME+ (1= N)s).

(i) Show that, if g : [a,b] — R is twice differentiable with ¢"(t) < 0 for
all t € (a,b), then g is strictly concave.

(i1) Give an example of a strictly concave function g : [—1,1] — R which
s not differentiable at 0.

(7ii) Suppose that f : [a,b] — R is strictly concave. By using induction,
or otherwise, prove Jensen’s inequality which states that if v, xs, ..., x, are
distinct points of [a,b] and M1, X, ..., A\ are strictly positive real numbers

with Y77 Aj =1, then

Deduce that if x1, xs, ..., x, are points of a,b] and A1, Ay, ..., \, are
strictly positive real numbers with Z?Zl Aj =1, then

f (Z)\j%’) = Z%’f(%’)

if and only if x1 =29 ="+ = x,.
() Use Jensen’s inequality to show that, if a; > 0, then

(a1a2-..an)1/n§ a1+(l2—|—-..+an.

n
(This is Cauchy’s arithmetic-geometric inequality.) What are the conditions
for equality?

(v) Suppose that p > 1 and let g(x) = (1 + x'/P)?. Show that g is a
concave function.

Suppose that a1, as, ..., a, >0, Z?:l ag.’ =1andby, by, ..., b, >0. By
applying Jensen’s inequality with xx = b} /ay and Ny chosen appropriately,
prove Minkowski’s inequality.

n 1/p n 1/p n 1/p
(Z(aj + bj)p) < (Z a?) + (Z b?)

j=1 j=1
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and obtain the conditions for equality. Why does the result fllow for general
values of 377, af?

Exercise 22.2. Obtain Minkowsk:i’s inequality by applying Holder’s inequal-
ity to the observation

D lag P < gl gDyl g
j=1 j=1 j=1

Is this really a different proof to the one given in the lectures using the reverse
Holder inequality?

Exercise 22.3. The results of Ezercise 2.2 depend on clever inequalities'
but there are other ways of arriving at the results.

Let oo > s > r > 1. Investigate mazima and minima of Z?Zl x; subject
tox; >0, > 7 a% =1 using the calculus of variations. (Unless we take care,
which you are not asked to do, the results will not be rigorous but, once we
know what is happening, it is much easier to prove that it happens by some

other technique.)

Exercise 22.4. If V is a vector space over F, we say that E is an algebraic
basis (that is to say a basis in the sense of 1B algebra) if every v € V' can be
written uniquely as a finite sum

n
v = E )\jej
j=1

with ey, ez, ..., e, distinct elements of E' and \; € F. The collection V* of
linear maps o : V. — T is called the algebraic dual (that is to say, the dual
space in the sense of 1B algebra). The proofs of 1B algebra show that U* can
be given the structure of a vector space.

Let cog be the vector space of complex sequences with only a finite number
of non-zero terms. Explain why coo has a countable basis. Identify cjy, in a
natural manner with the space CN of all complex sequences. Show that c,
does not have a countable basis. (The argument is not difficult but you should
not sleep walk through it.)

Although this question deals only with one space the reader should require
little convincing that, if we only deal with algebraic duals, the algebraic dual
of an infinite dimensional space will be very much bigger than the the space
(and the dual of the dual will be even bigger).

13To the writer all inequalities seem clever.
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Exercise 22.5. (i) Prove the parallelogram law
la+ b3 + [la = bz = 2(/lall> + bl|3)

for alla, b € [2.
(11) Use induction to show that, for each n, we can find (;(n) = £1 such
that

DD Grmak)|| =2 llak)]3
j=1 [ k=1 2 k=1

for all a(k) € I,
(iii) If (U, ||.||) is isomorphic to (12, ]|.||2) explain why there is a constant
K independent of n such that

2 2

gn on on A 2n
K | crmu®)| =20 Ju®)ly =KD 1S Ge(nju(k)
J=1 [l k=1 U j=1 J=11lk=1 U

for allu(k) e U.
() Show that 1% is not isomorphic to [P when p # 2.

Exercise 22.6. Consider the space of n x n complex matrices with the oper-
ator norm. Prove the Cayley—Hamilton theorem by using the fact proved in
Exercise 6.2 that the set of of matrices with n distinct eigenvalues is dense.
Exercise 22.7. Suppose that g, : T — R is continuous and satisfies the
conditions set out in Ezercise 6.11 as follows.

(i) There exists a constant K such that

1
— ) dt < K
5 [0l <

for alln > 1.
(i1) If > 0 and f is a continuous function with f(t) = 0 for |t| < J, then

1

— t)g,(t) dt

5 [ )t —o

as n — Q.
(iii) We have

1

— (1) dt 1
5 Tg() —

as n — Q.
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If f: T — R is continuous and 6 > 0 observe that

1 1
n t)ydt— f(0) = — n(t t)— f(0))dt
37 Loroa =0 =5 [ oo~ o)
1 1
v 35 [ 000~ ronars (5 [a)a 1) x o)
and, by estimating the three terms separately, show that
= [ o= 1o

as n — 0.
Show that condition (ii) is implied by
(i1) If 6 > 0 then g,(t) — O uniformly for t ¢ (—4,0).
Show also, by considering the Riemann—Lebesque lemma or otherwise, that
condition (ii) does not imply (i) .

Exercise 22.8. Let f: T — C be continuous. We write
o 1 )
f(n) = —/f(t) exp(—int) dt.
2T T

(i) Show that Zg:_N ri"l exp(int) converges uniformly, to P.(t) say, for
teT as N — oo for each fized r with 0 < r < 1. Deduce that

Z vl F ) Qﬂ/f t:%Af(t)Ptdt

Show that
1 — 72

Po(t) = .
(*) 1 —2rcost + r?

(ii) Show that
(A)P()>Ofo7"allt.
(8) o [ Pty =1.

(C) PT( )T—> 0 uniformly as r — 1— fort & (=9,9).

(7ii) Deduce, by the arguments of Exercise 22.7, or otherwise, that

o0

> ) = f(0)

n=—oo
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as v — 1—. By considering the Fourier coefficients of f, given by f,(t) =
f(t —a), or otherwise, show that

[e.e]

S 1 f(n) explint) — £

n=—oo

asr — 1—.

Exercise 22.9. Let f: T — C be continuous. We write

fn) = %/Tf(t) exp(—int) dt.

(i) We write Dy (t) => "

i=_nexp(ijt). Show that, if t # 0,
sin ((n + 3)t)

it
SH12

Dn(t) =

What is the value of D,,(0)?
(ii) Show that

> f) =5 [ 10Dt =5 [ oD ar

Jj=—n
(iii) Show that

Aln+ 1)

D,(t)| >
Du)] = S

|sin ((n+ 3)t)]
forallrm/(n+3) <|t| < (r+1)7w/(n+3) and1 <r <n—1 for some A >0
(to be chosen to fit your convenience) independent of n.

(iv) Deduce that

1
— D,(t)|dt > Bl
= [ 1Da(0ldt = Blogn

for alln > N and some B > 0 (where both N and B are chosen to fit your
convenience).

(v) Use Exercise 6.11 to show that there exists a continuous function f
whose Fourier sum does not converge to f at 0.

Exercise 22.10. Let (X, 7) be a topological space. Write x ~ y if f(z) =
f(y) whenever f € C(X) the space of real valued continuous functions on X.
(i) Show that ~ is an equivalence relation.
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(ii) Show that, if we give X/ ~ the quotient topology 7/ ~, then the
function J : C(X) — C(X/~) given by J(f)[x] = f(z) (where [x] denotes
the equivalence class of x) is a well defined linear isometry.

(11i) Show that (X/~,7/~) is Hausdorff.

(i) If (X, T) is compact, show that (X/~,1/~) is also compact.

Exercise 22.11. In this exercise we discuss various separation axioms for
topological spaces (X, T).

A topological space (X, 1) is said to be Ty if, given a, b € X with a # b,
at least one of these statements is true. (o) There exists a U € T such that
ac€Uandb ¢ U. (B) There exists a V € T such that a ¢ V and b e V. A
topological space (X, T) is called Ty if given a, b € X with a # b, at both of
these statement are true.

(1) Show that (X, 7) is Ty if and only if every singleton set {x} is closed.

(i1) Consider N. If the elements of oo are & and sets of the form {m €
N : m > n} show that o1 is a topology and (N, o1) is Ty but not T;.

(iii) Consider N. If the elements of U € oy if and only if A= @ or N\ A
is finite show that oy is a topology and (N, oy) is Ty but not Hausdorff. (In
this classification, Hausdorff spaces are called T.)

(iv) Show that every Ty normal space is Hausdorff but give an example
of a normal space which is not Hausdorff. (Recall that a topological space is
said to be normal if, given A and B non-empty disjoint closed sets, we can
find disjoint open sets U and V' such that AC U and BCV.)

[There are very small and simple examples.]

(v) Carry out us much of the proof of Urysohn’s lemma and the Tietze
extension theorem as you need* to show that Urysohn’s lemma holds with
the hypothesis ‘compact and Hausdorff’ replaced by ‘normal’ and the Tietze
extension theorem holds in the following form.:-

If'Y is closed subset of a normal topological space (X, 1), then, given any
bounded continuous real valued function f on'Y (where Y has the subspace

topology), we can find a bounded continuous real valued function F on X
such that F(y) = f(y) for ally € Y.

Exercise 22.12. We work with a real vector space to simplify the algebra
but similar results can be obtained in the complex case.
(i) Consider a real inner product space. Obtain the formulae

4, v) = Jlu+ vl = lu—vll3

and
lu+ o3+ [lu—vll3 = 2(]Jull; + [|v]3).

MEither do the whole thing as a revision exercise or just cast your eyes over your notes.
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(i) Suppose that V' is a real normed vector space such that
lu+ ol + [lu = ofl* = 2(]lul® + [o]?).
Show that if we set
p(u,v) = (lu+ol* = [lu = v[[*)/4

then
plu+w,v) = p(u,v) + p(w,v).
[It may or may not be helpful to consider the parallelepiped associated with

u, v and w./
(i1i) Continuing with the hypotheses and notation of (ii), show that

p(nu,v) = np(u,v)

for n a strictly positive integer. Deduce that p(Au,v) = Ap(u,v) when X is
rational. Show that p is an inner product and ||.|| is the norm associated with

p.
Exercise 22.13. In some of the exercises we used metrics rather than norms.
This ezercise shows why the need may arise. We work in C*([0,1]).

(i) Show that d(f,g) = Y32, 277 min(1, || f9) — g9||o) is a metric. Show
that 9 — 9 uniformly on [0,1] for each j if and only if d(f., f) — O.
Show that d is a complete metric.

(7i) The object of the rest of this question is to show that there is no norm
with this property. To this end, suppose that ||.|| is a norm on C°°([0,1]).

such that || f, — fll — O implies f,gj) — f9 uniformly on [0,1] for each j.
Show, by reductio ad absurdum, or otherwise, that there must exist €; > 0
with the property that || f9V]|o > 1 implies || f| > ¢;.
(7ii) Show that we can find a sequence of f, € C*°([0,1]) such that
1l < 27" for0 < j <n—1
£ oo > 276,

Show that f,sj) — fU) uniformly on [0,1] for each j but || f,| — oc.

Exercise 22.14. Suppose that we have a sequence of metrics d; on a space
X.
(i) Show that

d(z,y) = ZQ‘j min (1, d;(z,y))

j=1
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is a metric on X such that the identity map ¢ : (X, d) — (X, d;) is continuous
for each j.

(ii) Show that if p is a metric on X such that the identity map ¢ : (X, p) —
(X, d;) is continuous for each j then v: (X, p) — (X,d) is continuous.

Exercise 22.15. (This easy exercise discusses anti-isomorphism!.) If (U, +, ., C)
is a vector space show that, if we write

Aeu = \u,

then (U, +,e,C) is a vector space. Show that (U,+,.,C) and (U, +,e,C) are
algebraically anti-isomorphic.

Exercise 22.16. (i) (This is about difference equations in the sense of the
1A differential equations course.) If X € C, X # 0, find the general solution
of the difference equation

Ay, — Uy = 0 [n € Z].
(ii) Find the general solution of the the difference equation.
My — Upt1 =0 [n €Z, n#0].

(Note that there are two arbitrary constants.)
(#1i) Find the general solution of the the difference equation.

0 ifn#0
)\un_unJrl: .
1 ifn=0.

(iv) From now on we work in 1*(Z) the vector space of two sided square
summable sequences of complex numbers

a = (...7CL_2,CL_1,(10,CL1,CL2,...)
with norm
o 1/2
Jall = ( > |aj|2) |
j=—00

Show that, if 0 < |\| < 1, there is exactly one u € I*(Z) such that

0 ifn#0
Aun_un—i-l: .
1 ifn=0,

15 And shows that there is not much to discuss
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and that the same is true if |\| > 1.

(i) Show that the shift operator S defined by Sa =b with b; = a4 is a
well defined continuous linear map from 1*(Z) to itself. Show that, if |\| # 1,
then \ ¢ o(S).

(v) Show that 1 is not an eigenvalue of S. By considering v with

N2 4f1<n<N
Up =
0 otherwise,

show that 1 is an approximate eigenvalue of S'.
(vi) Show that
o(S)={ eC: |\ =1},
that all the points of o(S) are approximate eigenvalues and that none of them

are eigenvalues.

Exercise 22.17. The object of this exercise is to exhibit a complete inner
product space which is not separable.

(i) Let X be a non-empty set and a : X — R a function such that a(x) > 0
for all x € X and such that there exists a K with

Za(z) <K

whenever F is a finite subset of X. Show that
Y={xeX :a(x)#0}

s countable.
Using the fact that the sum of a sequence of positive numbers is unaffected
by the order of summation, this means that we can define

Z a(z) = Z a(x).

Suppose b : X — R a function such that b(x) > 0 for all x € X. In what
follows we say that )\ b(x) converges if Y . b(x) < K whenever F is a
finite subset of X and we write

D bx)= ) blx).
zeX b(x)#0

(ii) If X is a non-empty set and a : X — C, we say that a € I*(X) if
Y wex la(@)> converges. Show that 1*(X) is a vector space. Show further

that
(a,b) = a(w)b(x)"

zeX
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gives a well defined inner product on I*(X).
(iii) Show that [*(X) is separable if and only if X is countable.
(iv) Show that I>(X) is complete.
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