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1 Introduction

This course splits into two parts. The first part takes a look at the Baire
category theorem, Tychonov’s theorem the Hahn Banach theorem together
with some of their consequences. There will be two or three lectures of
fairly abstract set theory but the the rest of the course is pretty concrete.
The second half of the course will look at the theory of distributions. (The
general approach is that of [3] but the main application is different.)

I shall therefore assume that you know what is a normed space, and what
is a a linear map and that you can do the following exercise.

Exercise 1. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be normed spaces.
(i) If T : X → Y is linear, then T is continuous if and only if there exists

a constant K such that
‖Tx‖Y ≤ K‖x‖X

for all x ∈ X.
(ii) If T : X → Y is linear and x0 ∈ X, then T is continuous at x0 if and

only if there exists a constant K such that

‖Tx‖Y ≤ K‖x‖X

for all x ∈ X.
(iii) If we write L(X, Y ) for the space of continuous linear maps from X

to Y and write

‖T‖ = sup{‖Tx‖Y : ‖x‖X = 1, x ∈ X}

then (L(X, Y ), ‖ ‖) is a normed space.

I also assume familiarity with the concept of a metric space and a complete
metric space. You should be able to do at least parts (i) and (ii) of the
following exercise (part (iii) is a little harder).

Exercise 2. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be normed spaces.
(i) If (Y, ‖ ‖Y ) is complete then (L(X, Y ), ‖ ‖) is.
(ii) Consider the set s of sequences x = (x1, x2, . . . ) in which only finitely

many of the xj are non-zero. Explain briefly how s may be considered as a
vector space.

(iii) If (X, ‖ ‖X) is complete does it follow that (L(X, Y ), ‖ ‖) is? Give
a proof or a counter-example.

2



The reader will notice that I have not distinguished between vector spaces
over R and those over C. I shall try to make the distinction when it matters
but, if the two cases are treated in the same way, I shall often proceed as
above.

Although I shall stick with metric spaces as much as possible, there will
be points where we shall need the notions of a topological space, a compact
topological space and a Hausdorff topological space. I would be happy, if
requested, to give a supplementary lecture introducing these notions. (Even
where I use them, no great depth of understanding is required.)

I shall also use, without proof, the famous Stone-Weierstrass theorem.

Theorem 3. (A) Let X be a compact space and C(X) the space of real valued
continuous functions on X. Suppose A is a subalgebra of C(X) (that is a
subspace which is algebraically closed under multiplication) and

(i) 1 ∈ A,
(ii) Given any two distinct points x and y in X there is an f ∈ A with

f(x) 6= f(y).
Then A is uniformly dense in C(X).
(B) Let X be a compact space and C(X) the space of complex valued

continuous functions on X. Suppose A is a subalgebra of C(X) and
(i) 1 ∈ A,
(ii) Given any two distinct points x and y in X there is an f ∈ A with

f(x) 6= f(y). Then A is uniformly dense in C(X).

The proof will not be examinable, but if you have not met it, you may
wish to request a supplementary lecture on the topic. I may mention some
measure theory but this is for interest only and will not be examinable1. I
intend the course to be fully accessible without measure theory.

2 Baire category

If (X, d) is a metric space we say that a set E in X has dense complement2

if, given x ∈ E and δ > 0, we can find a y /∈ E such that d(x, y) < δ.

Exercise 4. Consider the space Mn of n × n complex matrices with an ap-
propriate norm. Show that the set of matrices which do not have n distinct
eigenvalues is a closed set with dense complement.

1In this course, as in other Part III courses you should assume that everything in
the lectures and nothing outside them is examinable unless you are explicitly told to the
contrary. If you are in any doubt, ask the lecturer.

2If the lecturer uses the words ‘nowhere dense’ correct him for using an old fashioned
and confusing terminology
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Theorem 5 (Baire’s theorem). If (X, d) is a complete metric space and E1,
E2, . . . are closed sets with dense complement then X 6=

⋃∞
j=1Ej.

Exercise 6. (If you are happy with general topology.) Show that a result
along the same lines holds true for compact Hausdorff spaces.

We call the countable union of closed sets with dense complement a set
of first category. The following observations are trivial but useful.

Lemma 7. (i) The countable union of first category sets is itself of first
category.

(ii) If (X, d) is a complete metric space, then Baire’s theorem asserts that
X is not of first category.

Exercise 8. If (X, d) is a complete metric space and X is countable show
that there is an x ∈ X and a δ > 0 such that the ball B(x, δ) with centre x
and radius δ consists of one point.

The following exercise is a standard application of Baire’s theorem.

Exercise 9. Consider the space C([0, 1]) of continuous functions under the
uniform norm ‖ ‖. Let

Em = {f ∈ C([0, 1]) : there exists an x ∈ [0, 1] with

|f(x+ h)− f(x)| ≤ m|h| for all x+ h ∈ [0, 1]}.

(i) Show that Em is closed in (C([0, 1], ‖ ‖∞).
(ii) If f ∈ C([0, 1]) and ǫ > 0 explain why we can find an infinitely

differentiable function g such that ‖f − g‖∞ < ǫ/2. By considering the
function h given by

h(x) = g(x) + ǫ
2
sinNx

with N large show that Em has dense complement.
(iii) Using Baire’s theorem show that there exist continuous nowhere dif-

ferentiable functions.

Exercise 10. (This is quite long and not very central.)
(i) Consider the space F of non-empty closed sets in [0, 1]. Show that if

we write
d0(x, E) = inf

e∈E
|x− e|

when x ∈ [0, 1] and E ∈ F and write

d(E, F ) = sup
f∈F

d0(f, E) + sup
e∈E

d0(e, F )
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then d is a metric on F .
(ii) Suppose En is a Cauchy sequence in (F , d). By considering

E = {x : there exist en ∈ En such that en → x},

or otherwise, show that En converges. Thus (F , d) is complete.
(iii) Show that the set

An = {E ∈ F : there exists an x ∈ E with (x− 1/n, x+ 1/n) ∩ E = {x}}

is closed with dense complement in (F , d). Deduce that the set of elements
of F with isolated points is of first category. (A set E has an isolated point
e if we can find a δ > 0 such that (e− δ, e + δ) ∩ E = {e}.)

(iv) Let I = [r/n, (r + 1)/n] with 0 ≤ r ≤ n − 1 and r and n integers.
Show that the set

Br,n = {E ∈ F : E ⊇ I}

is closed with dense complement in (F , d). Deduce that the set of elements
of F containing an open interval is of first category.

(v) Deduce the existence of non-empty closed sets which have no isolated
points and contain no intervals.

3 Non-existence of functions of several vari-

ables

This course is very much a penny plain rather than tuppence coloured3. One
exception is the theorem proved in this section.

Theorem 11. Let λ be irrational We can find increasing continuous func-
tions φj : [0, 1] → R [1 ≤ j ≤ 5] with the following property. Given any
continuous function f : [0, 1]2 → R we can find a function g : R → R such
that

f(x, y) =
5

∑

j=1

g(φj(x) + λφj(y)).

The main point of Theorem 11 may be expressed as follows.

Theorem 12. Any continuous function of two variables can be written in
terms of continuous functions of one variable and addition.

3And thus suitable for those ‘who want from books plain cooking made still plainer by
plain cooks’.
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That is, there are no true functions of two variables! (We shall explain
why this statement is slightly less shocking than it seems at the end of this
section.)

For the moment we merely observe that the result is due in successively
more exact forms to Kolmogorov, Arnol’d and a succession of mathematicians
ending with Kahane whose proof we use here. It is, of course, much easier
to prove a specific result like Theorem 11 than one like Theorem 12.

Our first step is to observe that Theorem 11 follows from the apparently
simpler result that follows.

Lemma 13. Let λ be irrational. We can find increasing continuous functions
φj : [0, 1] → R [1 ≤ j ≤ 5] with the following property. Given any continuous
function F : [0, 1]2 → R we can find a continuous function G : R → R such
that ‖G‖∞ ≤ ‖F‖∞ and

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

F (x, y)−

5
∑

j=1

G(φj(x) + λφj(y))

∣

∣

∣

∣

∣

≤
999

1000
‖F‖∞.

Next we make the following observation.

Lemma 14. We can find a sequence of functions fn : [0, 1]2 → R which are
uniformly dense in C([0, 1])2.

This enables us to obtain Lemma 13 from a much more specific result.

Lemma 15. Let λ be irrational and let the fn be as in Lemma 14. We can
find increasing continuous functions φj : [0, 1] → R [1 ≤ j ≤ 5] with the
following property. We can find continuous functions gn : R → R such that
‖gn‖∞ ≤ ‖fn‖∞ and

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

fn(x, y)−

5
∑

j=1

gn(φj(x) + λφj(y))

∣

∣

∣

∣

∣

≤
998

1000
‖fn‖∞.

Now that we have reduced the matter to satisfying a countable set of
conditions, we can use a Baire category argument. We need to use the
correct metric space.

Lemma 16. The space Y of continuous functions φ : [0, 1] → R5 with norm

‖φ‖∞ = sup
t∈[0,1]

‖φ(t)‖

is complete. The subset X of Y consisting of those φ such that each φj is
increasing is a closed subset of Y . Thus if d is the metric on X obtained by
restricting the metric on Y derived from ‖ ‖∞ we have (X, d) complete.
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Exercise 17. Prove Lemma 16

Lemma 18. Let f : [0, 1]2 → R be continuous and let λ be irrational. Con-
sider the set E of φ ∈ X such that there exists a continuous g : R → R such
that ‖g‖∞ ≤ ‖f‖∞

sup
(x,y)∈[0,1]2

∣

∣

∣

∣

∣

f(x, y)−
5

∑

j=1

g(φj(x) + λφj(y))

∣

∣

∣

∣

∣

<
998

1000
‖f‖∞.

Then X \ E is a closed set with dense complement in (X, d).

(Notice that it is important to take ‘<’ rather than ‘≤’ in the displayed
formula of Lemma 18.) Lemma 18 is the heart of the proof and once it is
proved we can easily retrace our steps and obtain Theorem 11.

By using appropriate notions of information Vitushkin was able to show
that we can not replace continuous by continuously differentiable in Theo-
rem 12. Thus Theorem 11 is an ‘exotic’ rather than a ‘central’ result.

4 The principle of uniform boundedness

We start with a result which is sometimes useful by itself but which, for us,
is merely a stepping stone to Theorem 22.

Lemma 19 (Principle of uniform boundedness). Suppose that (X, d) is a
complete metric space and we have a collection F of continuous functions
f : X → R which are pointwise bounded, that is, given any x ∈ X we can
find a K(x) > 0 such that

|f(x)| ≤ K(x) for all f ∈ F .

Then we can find a ball B(x0, δ) and a K such that

|f(x)| ≤ K for all f ∈ F and all x ∈ B(x0, δ) .

Exercise 20. (i) Suppose that (X, d) is a complete metric space and we have
a sequence of continuous functions fn : X → R and a function f : X → R

such that fn converges pointwise that is

fn(x) → f(x) for all x ∈ X.

Then we can find a ball B(x0, δ) and a K such that

|fn(x)| ≤ K for all n and all x ∈ B(x0, δ) .
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(ii) (This is elementary but acts as a hint for (iii).) Suppose y ∈ [0, 1].
Show that we can find a sequence of continuous functions fn : [0, 1] → R such
that 1 ≥ fn(x) ≥ 0 for all x and n, fn converges pointwise to 0 everywhere,
fn converges uniformly on [0, 1]\(y−δ, y+δ) and fails to converge uniformly
on [0, 1] ∩ (y − δ, y + δ) for all δ > 0.

(iii) State with reasons whether the following statement is true or false.
Under the conditions of (i) we can obtain the stronger conclusion that we can
find a ball B(x0, δ) such that

fn(x) → f(x) uniformly on B(x0, δ).

Exercise 21. Suppose that (X, d) is a complete metric space and Y is a
subset of X which is of first category in X. Suppose further that we have a
collection F of continuous functions f : X → R which are pointwise bounded
on X \ Y , that is, given any x /∈ Y , we can find a K(x) > 0 such that

|f(x)| ≤ K(x) for all f ∈ F .

Show that we can find a ball B(x0, δ) and a K such that

|f(x)| ≤ K for all f ∈ F and all x ∈ B(x0, δ) .

We now use the principle of uniform boundedness to prove the Banach-
Steinhaus theorem4.

Theorem 22. (Banach-Steinhaus theorem) Let (U, ‖ ‖U) and (V, ‖ ‖V )
be normed spaces and suppose ‖ ‖U is complete. If we have a collection F
of continuous linear maps from U to V which are pointwise bounded then we
can find a K such that ‖T‖ ≤ K for all T ∈ F .

Here is a typical use of the Banach-Steinhaus theorem.

Theorem 23. There exists a continuous 2π periodic function f : R → R

whose Fourier series fails to converge at a given point.

The next exercise contains results that most of you will have already met.

Exercise 24. (i) Show that the set l∞ of bounded sequences over F (with
F = R or F = C)

a = (a1, a2, . . . )

4You should be warned that a lot of people, including the present writer, tend to
confuse the names of these two theorems. My research supervisor took the simpler course
of referring to all the theorems of functional analysis as ‘Banach’s theorem’.
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can be made into a vector space in a natural manner. Show that ‖a‖∞ =
supj≥1 |aj| defines a complete norm on l∞.

(ii) Show that s, the set of convergent sequences and s0 the set of sequences
convergent to 0 are both closed subspaces of (l∞, ‖ ‖∞).

(iii) Show that the set l1 of sequences

a = (a1, a2, . . . ) such that

∞
∑

j=1

|aj | converges

can be made into vector space in a natural manner. Show that ‖a‖1 =
∑∞

j=1 |aj| defines a complete norm on l1.

(iv) Show that, if a ∈ l1, then

Ta(b) =

∞
∑

j=1

ajbj

defines a continuous linear map from l∞ to F and that ‖Ta‖ = ‖a‖1.

Here is another use of the Banach-Steinhaus theorem.

Lemma 25. Let aij ∈ R [i, j ≥ 1]. We say that the aij constitute a sum-
mation method if whenever cj → c we have

∑∞
j=1 aijcj convergent for each i

and
∞
∑

j=1

aijcj → c

as i→ ∞.
The following conditions are necessary and sufficient for the aij to con-

stitute a summation method:-
(i) There exists a K such that

∞
∑

j=1

|aij | ≤ K for all i.

(ii)
∞
∑

j=1

aij → 1 as i→ ∞.

(iii) aij → 0 as i→ ∞ for each j.

Exercise 26. Cesàro’s summation method takes a sequence c0, c1, c2, . . .
and replaces it with a new sequence whose nth term

bn =
c1 + c2 + · · ·+ cn

n
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is the average of the first n terms of the old sequence.
(i) By rewriting the statement above along the lines of Lemma 25 show

that if the old sequence converges to c so does the new one.
(ii) Examine what happens when cj = (−1)j. Examine what happens if

cj = (−1)k when 2k ≤ j < 2k+1.
(iii) Show that, in the notation of Lemma 25, taking an,2n = 1, an,m = 0,

otherwise, gives a summation method. Show that taking an,2n+1 = 1, an,m =
0, otherwise, also gives a summation method. Show that the two methods
disagree when presented with the sequence 1, −1, 1, −1, . . . .

Another important consequence of the Baire category theorem is the open
mapping theorem. (Recall that a complete normed space is called a Banach
space.)

Theorem 27 (Open mapping theorem). Let E and F be Banach spaces and
T : E → F be a continuous linear surjection. Then T is an open map (that
is to say, if U is open in E we have TU open in F .)

This has an immediate corollary.

Theorem 28 (Inverse mapping theorem). Let E and F be Banach spaces
and let T : E → F be a continuous linear bijection. Then T−1 is continuous.

The next exercise is simple, and if you can not do it this reveals a gap in
your knowledge (which can be remedied by asking the lecturer) rather than
in intelligence.

Exercise 29. Let (X, d) and (Y, ρ) be metric spaces with associated topologies
τ and σ. Then the product topology induced on X×Y by τ and σ is the same
as the topology given by the metric

△((x1, y1), (x2, y2)) = d(x1, x2) + ρ(y1, y2).

The inverse mapping theorem has the following useful consequence.

Theorem 30 (Closed graph theorem). Let E and F be Banach spaces and
let T : E → F be linear. Then T is continuous if and only the graph

{(x, Tx) : x ∈ E}

is closed in E × F with the product topology.
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5 Countable choice and Baire’s theorem

Most of this course is ‘practical’ but the next couple of sections deal with
‘foundational matters’.

We discuss The axiom of choice Let A be a non-empty collection of
non-empty sets. Then there exists a function

f : A →
⋃

A∈A

A

such that f(A) ∈ A for all A ∈ A.
Note that we do not require a specific axiom if A only contains one set,

or, indeed, a finite set of sets.
However we do need an axiom to make a countable set of choices.

The axiom of countable choice Let A1, A2, . . . be non-empty sets. Then
there exists a function

f : Z++ →
∞
⋃

j=1

Aj

such that f(j) ∈ Aj for all j ≥ 1.
The standard proof of the next lemma requires the axiom of countable

choice.

Lemma 31. A closed subset of a separable metric space is separable.

Note that it may not be necessary to use the axiom of countable choice
to prove specific cases of Lemma 31 when (X, d) carries other structures.

Lemma 32. A non-empty closed subset of [0, 1] (the closed interval with the
usual metric) is separable.

In fact, logicians have shown that several elementary theorems of analysis
require a strictly stronger axiom than the axiom of countable choice. The
axiom of countable choice enables us to use arguments of the type ‘choose
a1 ∈ A1, choose a2 ∈ A2, choose a3 ∈ A3 and so on’. However, sometimes we
want to use arguments of the type ‘choose a1 ∈ A1, choose a2 ∈ A2 depending
on a1, choose a3 ∈ A3 depending on a1 and a2 and so on’. For this we require
an axiom which logicians have shown to be strictly stronger than the axiom
of countable choice.
The axiom of countable dependent choice Suppose that X and R are
sets with R ⊆ X ×X and such that

{y ∈ X : (x, y) ∈ R} 6= ∅
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for all x ∈ X. Then there exists a function g : Z++ → X such that
(

g(n), g(n+ 1)
)

∈ R for all n ≥ 1.
We can easily obtain the version of the axiom which we usually use.

Lemma 33. Let A1, A2, . . . and Y1, Y2, . . . be sets with the following prop-
erties.

(i) A1 = Y1 and A1 is non-empty.
(ii) Yn ⊆ A1 × A2 × · · · × An for all n ≥ 1.
(iii) If aj ∈ Aj for 1 ≤ j ≤ n then the set

{y ∈ Yn+1 : yj = aj for all 1 ≤ j ≤ n} 6= ∅.

for all n ≥ 1
Then there exists a function

f : Z++ →
∞
⋃

j=1

Aj

such that
(

f(1), f(2), . . . , f(n)
)

∈ Yn

for all n ≥ 1.

If we now look at our proof of the Baire category theorem (Theorem 5)
she will see that we made use of the axiom of countable dependent choice.

A clever argument of Blair show that we cannot avoid this and that indeed
the Baire category theorem is equivalent to the axiom!

Theorem 34. The following two statements are equivalent.
(A) If (E, d) is a complete metric space, then E cannot be written as the

union of a countable collection of closed sets with empty interior.
(B) Suppose that X and R are sets with R ⊆ X ×X and such that

{y ∈ X : (x, y) ∈ R} 6= ∅

for all x ∈ X. Then there exists a function G : Z++ → X such that
(

G(n), G(n+ 1)
)

∈ R for all n ≥ 1.

We have seen that use of the axiom of countable dependent choice is
deeply embedded in ordinary analysis. Logicians have shown that if the other
rules of reasoning and axioms of set theory are free from contradiction then
adding this axiom will not produce contradictions. The mode of reasoning
expressed by the axiom seems so natural to almost all mathematicians that
they are happy to accept it5.

5It is possible to produce a version of analysis which does not use the axiom or any
related ‘non-constructive rule of reasoning’. Bishop’s book [1] shows that the result is of
comparable elegance to ordinary analysis but it is a very different theory.
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6 Zorn’s lemma and Tychonov’s theorem

In the previous section we considered ‘making a countable number of choices’.
In this section we consider the full axiom of choice.
The axiom of choice Let A be a non-empty collection of non-empty sets.
Then there exists a function

f : A →
⋃

A∈A

A

such that f(A) ∈ A for all A ∈ A.
Most mathematicians are happy to add the axiom of choice to the stan-

dard axioms and this is what we shall do. Note that if we prove something
using the standard axioms and the axiom of choice then we will be unable
to find a counter-example using only the standard axioms. Note also that,
when dealing with specific systems we may be able to prove the result for
that system without using the axiom of choice.

The axiom of choice is not very easy to use in the form that we have
stated it and it is usually more convenient to use an equivalent formulation
called Zorn’s lemma.

Definition 35. Suppose X is a non-empty set. We say that � is a partial
order on X, that is to say, that � is a relation on X with

(i) x � y, y � z implies x � z,
(ii) x � y and y � x implies x = y,
(iii) x � x

for all x, y, z.
We say that a subset C of X is a chain if, for every x, y ∈ C at least

one of the statements x � y, y � x is true.
If Y is a non-empty subset of X we say that z ∈ X is an upper bound for

Y if z � y for all y ∈ Y .
We say that m is a maximal element for (X,�) if x � m implies x = m.

You must be able to do the following exercise.

Exercise 36. (i) Give an example of a partially ordered set which is not a
chain.

(ii) Give an example of a partially ordered set and a chain C such that
(a) the chain has an upper bound lying in C, (b) the chain has an upper
bound but no upper bound within C, (c) the chain has no upper bound.

(iii) If a chain C has an upper bound lying in C, show that it is unique.
Give an example to show that, even in this case C may have infinitely many
upper bounds (not lying in C).
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(iv) Give examples of partially ordered sets which have (a) no maximal
elements, (b) exactly one maximal element, (b) infinitely many maximal el-
ements.

(v) how should a minimal element be defined? Give examples of partially
ordered sets which have (a) no maximal or minimal elements, (b) exactly
one maximal element and no minimal element, (c) infinitely many maximal
elements and infinitely many minimal elements.

Axiom 37 (Zorn’s lemma). Let (X,�) be a partially ordered set. If every
chain in X has an upper bound then X contains a maximal element.

Zorn’s lemma is associated with a proof routine which we illustrate in
Lemmas 38 and 40

Lemma 38. Zorn’s lemma implies the axiom of choice.

The converse result is less important to us but we prove it for complete-
ness.

Lemma 39. The axiom of choice implies Zorn’s lemma.

Proof. (Since the proof we use is non-standard, I give it in detail.) Let X
be a non-empty set with a partial order � having no maximal elements. We
show that the assumption that every chain has a upper bound leads to a
contradiction.

We write x ≻ y if x � y and x 6= y. If C is a chain we write

Cx = {c ∈ C : x ≻ c}.

Observe that, if C is a chain in X , we can find an x ∈ X such that x ≻ c
for all c ∈ C. (By assumption, C has an upper bound, x′, say. Since X has
no maximal elements, we can find an x ∈ X such that x ≻ x′.) We shall take
∅ to be a well ordered chain.

We shall look at well ordered chains, that is to say, chains for which every
non-empty subset has a minimum. (Formally, if S ⊆ C is non-empty we can
find an s0 ∈ C such that s � s0 for all s ∈ S. We write minC = s0.) By the
previous paragraph

AC = {x : x ≻ c for all c ∈ C} 6= ∅.

Thus, if we write W for the set of all well ordered chains, the axiom of choice
tells us that there is a function κ : W → X such that κ(C) ≻ c for all c ∈ C.

We now consider ‘special chains’ defined to be well ordered chains C such
that

κ(Cx) = x for all x ∈ C.
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(Note that ‘well ordering’ is an important general idea, but ‘special chains’
are an ad hoc notion for this particular proof. Note also that if C is a special
chain and x ∈ C then Cx is a special chain.)

The key point is that, if K and L are special chains, then either K = L
or K = Lx for some x ∈ L or L = Kx for some x ∈ K.
Subproof If K = L, we are done. If not, at least one of K \ L and L \K is
non-empty. Suppose, without loss of generality, that K \ L 6= ∅. Since K is
well ordered, x = minK \ L exists. We observe that Kx ⊆ L. If Kx = L, we
are done.

We show that the remaining possibility Kx 6= L leads to contradiction.
In this case, L \Kx 6= ∅ so y = minL \Kx exists.

If Ly = Kx then
y = κ(Ly) = κ(Kx) = x

so x = y ∈ L ∩K contradicting the statement that x ∈ K \ L.
If Ly 6= Kx let z be the least member of Kx \ Ly. Observe that, since

Kx ⊆ L and so

w ∈ Ly, z
′ ∈ Kx, w ≻ z′ ⇒ z′ ∈ L, y ≻ w ≻ z′ ⇒ z′ ∈ Ly

whence
z′ /∈ Ly, z

′ ∈ Kx, w ≻ z′ ⇒ w /∈ Ly.

Thus Kz = Ly and
y = κ(Ly) = κ(Kz) = z

so y = z ∈ K ∩ L contradicting the definition of y.
End subproof

We now take S to be the union of all special chains. Using the key
observation, it is routine to see that:

(i) S is a chain. (If a, b ∈ S, then a ∈ L and b ∈ K for some special
chains. By our key observation, either L ⊇ K of K ⊇ L. Without loss of
generality, K ⊇ L so a, b ∈ K and a � b or b � a.)

(ii) If a ∈ S, then Sa is a special chain. (We must have a ∈ K for some
special chain K. Since K ⊆ S, we have Ka ⊆ Sa. On the other hand, if
b ∈ Sa then b ∈ L for some special chain L and each of the three possible
relationships given in our key observation imply b ∈ Ka. Thus Sa ⊆ Ka, so
Sa = Ka and Sa is a special chain.)

(iii) S is well ordered. (If E is a non empty subset of S, pick an x ∈ E. If
Sx ∩E = ∅, then x is a minimum for E. If not, then Sx ∩E is a non-empty
subset of the special, so well ordered, chain Sx, so minSx ∩E exists and is a
minimum for E.)
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(iv) S is a special chain. (If x ∈ S, we can find a special chain K such
that x ∈ K. Let y = κ(K). Then L = K ∪ {y} is a special chain. As in (ii),
Sy = Ly, so Sx = Lx and κ(Sx) = κ(Lx) = x.)

We can now swiftly obtain a contradiction. Since S is well ordered κ(S)
exists and does not lie in S. But S is special, so S∪κ(S) is, so S∪κ(S) ⊆ S,
so κ(S) lies in S. The required result follows by reductio ad absurdum6.

Lemma 40 (Hamel basis theorem). (i) Every vector space has a basis.
(ii) If U is an infinite dimensional normed space over F then we can find

a linear map T : U → F.
(iii) If U is an infinite dimensional normed space over F then we can find

a discontinuous linear map T : U → F.

[Note that we do not claim that T in (ii) is continuous.]

Exercise 41. (i) Show that, if f : R → R is continuous and satisfies the
equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ R, then there exists a c such that f(x) = cx for all x ∈ R.
(ii) Show that there exists a discontinuous function f : R → R satisfying

the equation
f(x+ y) = f(x) + f(y)

for all x, y ∈ R.
[Hint. Consider R as a vector space over Q.]

The rest of this section is devoted to a proof of Tychonov’s theorem. We
recall a definition.

Definition 42. Let (Xα, τα) be a topological space for each α ∈ A. The
product (or Tychonov or weak) topology τ on

∏

α∈AXα is the collection of
sets U such that if u ∈ U we can find α1, α2, . . . , αn ∈ A and Oαj

∈ ταj
such

that uαj
∈ Oαj

for 1 ≤ j ≤ n and x ∈ U whenever xαj
∈ Oαj

for 1 ≤ j ≤ n.

Exercise 43. We retain the notation of Definition 42 and write παx = xα.
(i) Show that τ is indeed a topology and that, with this topology, the maps

πα : X → Xα are continuous.
(ii) Show that τ is the weakest topology for which the πα are continuous.

[Thus, if σ is a topology for which the πα are continuous, we have σ ⊇ τ .]
(iii) Show that if all the τα are Hausdorff so is τ .

6To the best of my knowledge, this particular proof is due to Jonathon Letwin (Amer-

ican Mathematical Monthly, Volume 98, 1991, pp. 353–4). If you know about transfinite
induction, there are more direct proofs.
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(iv) Suppose that A = [0, 1] and Xt = R and τt is the usual Euclidean
topology on Xt. Explain how an f ∈

∏

t∈[0,1]Xt can be identified in a natural

manner with a function f : [0, 1] → R. With this identification show that the
sequence of functions fn → f pointwise if and only if, given any U ∈ τ with
f ∈ U we can find an N such that fn ∈ U for all n ≥ N .

Theorem 44 (Tychonov). The product of compact spaces is itself compact
under the weak topology.

We follow the presentation in [2]. (The method of proof is due to Bour-
baki.)

The following result should be familiar to almost all of my readers.

Lemma 45 (Finite intersection property). (i) A topological space is com-
pact if and only if whenever a non-empty collection of closed sets F has the
property that

⋂n

j=1 Fj 6= ∅, for any F1, F2, . . . , Fn ∈ F it follows that
⋂

F∈F F 6= ∅.
(ii) A topological space is compact if and only if whenever a non-empty

collection of sets A has the property that
⋂n

j=1Aj 6= ∅ for any A1, A2, . . . ,

An ∈ A it follows that
⋂

A∈A Ā 6= ∅.

Definition 46. A system F of subsets of a given set S is said to be of finite
character if

(i) whenever every finite subset of a set A ⊆ S belongs to F it follows
that A ∈ F and

(ii) whenever A ∈ F every finite subset of A belongs to F .

Lemma 47 (Tukey’s lemma). If a system F of subsets of a given set S has
finite character and F ∈ F then F has a maximal (with respect to inclusion)
element containing F .

We now prove Tychonov’s theorem.

Exercise 48. If (X, τ) is a Hausdorff space and G is a maximal collection
of sets with the finite intersection property explain why

⋂

G∈G Ḡ consists of
one point.

If you are interested, examine how the second (but not the first) appeal to
the axiom of choice may be avoided in our proof of Tychonov’s theorem if all
our spaces are Hausdorff.

The reason why Tychonov’s theorem demands the axiom of choice is made
clear by the final result of this section.

Lemma 49. Tychonov’s theorem implies the axiom of choice.
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7 The Hahn-Banach theorem

A good example of the use of Zorn’s lemma occurs when we ask if given a
Banach space (U, ‖ ‖) (over C, say) there exist any non-trivial continuous
linear maps T : U → C. For any space that we can think of, the answer
is obviously yes, but to show that the result is always yes we need Zorn’s
lemma7. Our proof uses the theorem of Hahn-Banach.

One form of this theorem is the following.

Theorem 50. (Hahn–Banach) Let U be a real vector space. Suppose p :
U → R is such that

p(u+ v) ≤ p(u) + p(v) and p(au) = ap(u)

for all u, v ∈ U and all real and positive a.
If E is a subspace of U and there exists a linear map T : E → R with

Tx ≤ p(x) for all x ∈ E then there exists a linear map T̃ : U → R with
Tx ≤ p(x) for all x ∈ U and T̃ (x) = Tx for all x ∈ E.

[Note that we do not assume that the vector space U is normed but we do
assume that the vector space is real.]

Exercise 51. We say that a function f : R → R is convex if

f
(

λx+ (1− λ)y
)

≤ λf(x) + (1− λ)f(y)

for all x, y ∈ R. Using the ideas of the proof of the Hahn–Banach theorem
but not the result itself show that a convex function f is continuous and that
given any a ∈ R we can find a c such that

f(x) ≥ f(a) + c(x− a)

for all x ∈ R. Give an example to show that f need not be differentiable.

Exercise 52. Let X be a real vector space and p, q : X → R be functions
such that p(λx) = λp(x), q(λx) = λq(x) for all λ ∈ R with λ ≥ 0 and all
x ∈ X, whilst

p(x+ y) ≤ p(x) + p(y), q(x) + q(y) ≤ q(x+ y)

for all x, y ∈ X.

7In fact the statement is marginally weaker than Zorn’s lemma but you need to be
logician either to know or care about this.
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(i) Suppose that Y is a subspace of X and S : Y → R a linear function
such that

S(y) ≤ p(x+ y)− q(x)

for all x ∈ X, y ∈ Y . Show that

S(y′)− p(x′ + y′ − z) + q(x′) ≤ −S(y) + p(x+ y + z)− q(x)

for all x, x′, z ∈ X and y, y′ ∈ Y .
(ii) Suppose that Y0 is a subspace of X and T0 : Y → R a linear function

such that
T0(y) ≤ p(x+ y)− q(x)

for all x ∈ X, y ∈ Y0. Show that there exists a linear function T0 : X → R

such that
T (y) ≤ p(x+ y)− q(x)

for all x, y ∈ X and Tu = Tu0 for all u ∈ Y0. Show that

q(x) ≤ T (x) ≤ p(x)

for all x ∈ X.
(iii) Suppose p(x) ≥ q(x) for all x ∈ X. Show that there exists a linear

function (possibly the zero function) U : X → R such that

q(x) ≤ U(x) ≤ p(x)

for all x ∈ X.
(iv) Let X = R2, n be a unit vector and p(x) = |n.x| (the absolute value

of the usual inner product) and q(x) = −|n.x|. Show that p and q obey the
conditions of the introductory paragraph and part (iii). What can you say
about U?

We have the following important corollary to Theorem 50.

Theorem 53. Let (U, ‖ ‖) be a real normed vector space. If E is a subspace
of U and there exists a continuous linear map T : E → R, then there exists
a continuous linear map T̃ : U → R with ‖T̃‖ = ‖T‖.

The next result is famous as ‘the result that Banach did not prove’.

Theorem 54. Let (U, ‖ ‖) be a complex normed vector space. If E is a
subspace of U and there exists a continuous linear map T : E → C then
there exists a continuous linear map T̃ : U → C with ‖T̃‖ = ‖T‖.

We can now answer the question posed in the first sentence of this section.
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Lemma 55. If (U, ‖ ‖) is normed space over the field F of real or complex
numbers and a ∈ U with a 6= 0, then we can find a continuous linear map
T : U → F with Ta 6= 0.

The importance of this lemma becomes more obvious if we state it in
reverse. If Ta = 0 for all continuous linear maps then a = 0.

Some analysts are consciously or unconsciously unwilling to use the Hahn–
Banach theorem because of its association with the axiom of choice. This
is a MISTAKE. If we have a ‘concretely presented’ normed vector space
then we can prove the appropriate Hahn–Banach using, at worst, countable
dependent choice8.

Exercise 56. If Let (U, ‖ ‖) be a real separable normed vector space. If E is
a subspace of U and there exists a continuous linear map T : E → R, show
using only countable dependent choice that there exists a continuous linear
map T̃ : U → R with ‖T̃‖ = ‖T‖.

Here are a couple of results proved by Banach using the full power of his
theorem.

Theorem 57 (Generalised limits). Consider the vector space l∞ of bounded
real sequences. There exists a linear map L : l∞ → R such that

(i) If xn ≥ 0 for all n then Lx ≥ 0.
(ii) L((x1, x2, x3, . . . )) = L((x0, x1, x2, . . . )).
(iii) L((1, 1, 1, . . . )) = 1.

The theorem is illustrated by the following lemma.

Lemma 58. Let L be as in Theorem 57. Then

lim sup
n→∞

xn ≥ L(x) ≥ lim inf
n→∞

xn.

In particular, if xn → x then L(x) = x.

Exercise 59. (i) Show that, even though the sequence xn = (−1)n has no
limit, L(x) is uniquely defined.

(ii) Find, with reasons, a sequence x ∈ l∞ for which L(x) is not uniquely
defined.

Banach used the same idea to prove the following odd result.

8This sentence is a slogan but a good one.
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Lemma 60. Let T = R/Z be the unit circle and let B(T) be the vector space
of real valued bounded functions. Then we can find a linear map I : B(T) →
R obeying the following conditions.

(i) I(1) = 1.
(ii) If ≥ 0 if f is positive.
(iii) If f ∈ B(T), a ∈ T and we write fa(x) = f(x− a) then Ifa = If .

Exercise 61. Show that if I is as in Lemma 60 and f is Riemann integrable
then

If =

∫

T

f(t) dt.

However, Lemma 60 is put in context by the following.

Lemma 62. Let G be the group freely generated by two generators and B(G)
be the vector space of real valued bounded functions on G. If f ∈ B(G) let
us write fc(x) = f(xc−1) for all x, c ∈ G.

There exists a function f ∈ B(G) and c1, c2, c3 such that f(x) ≥ 0 for
all x ∈ G and

f(x) + fc1(x)− fc2(x)− fc3(x) ≤ −1

for all x ∈ G.

Exercise 63. If G is as in Lemma 62 then there is no linear map I : B(G) →
R obeying the following conditions.

(i) I(1) = 1.
(ii) If ≥ 0 if f is positive.
(iii) Ifc = If for all c ∈ G.

It can be shown that there is a finitely additive, congruence respecting
integral for R and R2 but not Rn for n ≥ 3.

8 Three more uses of Hahn-Banach

The following exercise provides background for our first discussion but is not
examinable. For the moment C([a, b]) will be the set of real valued continuous
functions.

Exercise 64. We say that a function G : [a, b] → R is of bounded variation
if there exists a K such that whenever we have a dissection

D = {x0, x1, x2, . . . , xn}
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a = x0 < x1 < x2 < · · · < xn = b we have

n
∑

j=1

|G(xj)−G(xj−1)| ≤ K.

We write

‖G‖BV = sup
D

n
∑

j=1

|G(xj)−G(xj−1)|

where the supremum is taken over all possible dissections.
Suppose f : [a, b] → R is continuous. Let us write

S(D, f, G) =
n

∑

j=1

f(xj)
(

G(xj)−G(xj−1)
)

.

If D = {x0, x1, x2, . . . , xn} and D′ = {x′0, x
′
1, x

′
2, . . . , x

′
n′} are such that

|f(t)−f(s)| < ǫ for all t, s ∈ [xj−1, xj] [1 ≤ j ≤ n] and for all t, s ∈ [x′j−1, x
′
j ]

[1 ≤ j ≤ n′] show by considering D ∪D′, or otherwise that

|S(D, f, G)− S(D′, f, G)| ≤ 2Kǫ.

Hence, or otherwise, show that there exists a unique I(f,G) such that,
given any ǫ > 0 we can find a δ > 0 such that, given any

D = {x0, x1, x2, . . . , xn}

with |xj−1 − xj | < δ [1 ≤ j ≤ n] we have

|S(D, f, G)− I(f,G)| < ǫ.

We write

I(f,G) =

∫ b

a

f(t) dG(t).

(i) Let [a, b] = [0, 1]. Find elementary expressions for
∫ b

a
f(t) dG(t) in the

three cases when G(t) = t, when G(t) = −t and when G(t) = 0 for t < 1/2,
G(t) = 1 for t ≥ 1/2.

(ii) Show that the map T : (C([a, b]), ‖ ‖∞) → R given by

Tf =

∫ b

a

f(t) dG(t)

is linear and continuous with ‖T‖ ≤ ‖G‖BV .
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(In order to obtain the more satisfactory result ‖T‖ = ‖G‖BV we must
put an extra condition on G such as left continuity.)

Exercise 65. (i) Suppose G : R → R is of bounded variation in every interval
[a, b]. Show that if we write

G+(t) = G(a)+sup

{

m
∑

j=1

G(bj)−G(aj) : a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ am ≤ bm ≤ t, m ≥ 1

}

and

G−(t) = sup{

m
∑

j=1

G(aj)−G(bj) : a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ am ≤ bm ≤ t, m ≥ 1}

then G+, G− : [a, b] → R are increasing functions with

G(t) = G+(t)−G−(t)

and ‖G‖BV = (G+(b)−G+(a)) + (G−(b)−G−(a)).
(ii) By first considering increasing functions, or otherwise, show that if

G is a function of bounded variation in every interval then the left and right
limits

G(t+) = lim
h→0,h>0

G(t + h), G(t−) = lim
h→0,h>0

G(t− h)

exist everywhere.

Theorem 66. If T : C([a, b]) → R is a continuous linear function then we
can find a left continuous function G : R → R of bounded variation in every
interval such that

Tf =

∫ b

a

f(t) dG(t)

for all f ∈ C([a, b]).

If you know a little measure theory you can restate the theorem in more
modern language.

Theorem 67. (The Riesz representation theorem.) The dual of C([a, b])
is the space of Borel measures on [a, b].

The method used can easily be extended to all compact spaces.
Our second result is more abstract. We require Aloaoglu’s theorem.

Theorem 68. The unit ball of the dual of a normed space X is compact in
the weak star topology.
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Our proof of the Riesz representation theorem used the Hahn-Banach
theorem as a convenience. Our proof of the next result uses it as basic
ingredient.

Theorem 69. Every Banach space is isometrically isomorphic to some sub-
space of C(K) for some compact space K.

(In my opinion this result looks more interesting than it is.)
Our third result requires us to recast the Hahn Banach theorem in a

geometric form.

Lemma 70. If V is a real normed space and E is a convex subset of V
containing B(0, ǫ) for some ǫ > 0, then, given any x /∈ E we can find a
continuous linear map T : V → R such that Tx = 1 ≥ Te for all e ∈ E.

Theorem 71. If V is a real normed space and F is a closed convex subset
of V , then, given any x /∈ F we can find a continuous linear map T : V → R

and a real α such that Tx > α > Tk for all k ∈ F .

Definition 72. Let V be a real or complex vector space. If K is a non-empty
subset of V we say that E ⊆ K is an extreme set of K if, whenever u, v ∈ K,
1 > λ > 0 and λu + (1 − λ)v ∈ E, it follows that u, v ∈ E. If {e} is an
extreme set we call e an extreme point.

Exercise 73. Define an extreme point directly.

Exercise 74. We work in R2. Find the extreme points, if any, of the fol-
lowing sets and prove your statements.

(i) E1 = {x : ‖x‖ < 1}.
(ii) E2 = {x : ‖x‖ ≤ 1}.
(iii) E3 = {(x, 0) : x ∈ R}.
(iv) E4 = {(x, y) : |x|, |y| ≤ 1}.

Theorem 75. (Krein–Milman). A non-empty compact convex subset K
of a normed vector space has at least one extreme point.

Theorem 76. A non-empty compact convex subset K of a normed vector
space is the closed convex hull of its extreme points (that is, is the smallest
closed convex set containing its extreme points).

Our hypotheses in our version of the Krein–Milman theorem are so strong
as to make the conclusion practically useless. However the hypotheses can
be much weakened as is indicated by the following version.
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Theorem 77. (Krein–Milman). Let E be the dual space of a normed
vector space. A non-empty convex subset K which is compact in the weak
star topology has at least one extreme point.

Theorem 78. Let E be the dual space of a normed vector space. A non-
empty convex subset K which is compact in the weak star topology is the weak
star closed convex hull of its extreme points.

The results follow at once from a new version of Lemma 70

Lemma 79. If V is a real normed space and E is a convex subset of the dual
space V ′ containing an open (in the wek topology) neighbourhood of 0, then,
given any x /∈ E we can find a continuous (in the weak topology) linear map
T : V ′ → R such that Tx = 1 ≥ Te for all e ∈ E.

Lemma 80. The extreme points of the closed unit ball of the dual of C([0, 1])
are the delta masses δa and −δa with a ∈ [0, 1].

9 The Rivlin-Shapiro formula

In this section we give an elegant use of extreme points due to Rivlin and
Shapiro.

Lemma 81. Carathéodory We work in Rn. Suppose that x ∈ Rn and we
are given a finite set of points e1, e2, . . . , eN and positive real numbers λ1,
λ2, . . . , λN such that

N
∑

j=1

λj = 1,
N
∑

j=1

λjej = x.

Then after renumbering the ej we can find positive real numbers λ′1, λ
′
2,

. . . , λ′m with m ≤ n+ 1 such that

m
∑

j=1

λ′j = 1,
m
∑

j=1

λ′jej = x.

Exercise 82. Show by means of an example that we can not necessarily take
m = n in Carathéodory’s lemma.

Lemma 83. Consider Pn, the subspace of C([−1, 1]) consisting of real poly-
nomials of degree n or less. If S : Pn → R is linear then we can find an
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N ≤ n + 2 and distinct points x1, x2, . . . , xN ∈ [−1, 1] and non-zero real
numbers λ1, λ2, . . . , λN such that

N
∑

j=1

|λj| = 1, ‖S‖

N
∑

j=1

λjP (xj) = SP

for all P ∈ Pn.

Lemma 84. We continue with the hypotheses and notation of Lemma 83
There exists a P∗ ∈ Pn such that

P∗(xj) = ‖P∗‖∞ sgnλj

for all j with 0 ≤ j ≤ N . Further, if P ∈ Pn satisfies

P (xj) = ‖P‖∞ sgnλj

then ‖P‖∞‖S‖ = SP .

The following results are of considerable interest in view of Lemma 84.

Lemma 85. We have cosnθ = Tn(cos θ) where Tn is a real polynomial of
degree n. Further

(i) |Tn(x)| ≤ 1 for all x ∈ [−1, 1].
(ii) There exist n+ 1 distinct points x1, x2, . . . , xn+1 ∈ [−1, 1] such that

|Tn(xj)| = 1 for all 1 ≤ j ≤ n+ 1.

Lemma 86. Suppose that P is a real polynomial of degree n or less such that
(i) |P (x)| ≤ 1 for all x ∈ [−1, 1] and
(ii) there exist n + 1 distinct points x1, x2, . . . , xn+1 ∈ [−1, 1] such that

|P (xj)| = 1 for all 1 ≤ j ≤ n + 1.
Then P = ±Tn.

Note that Lemma 86 tells us that there is no real polynomial of degree
n or less which takes its extreme absolute value on [−1, 1] at n + 2 points.
(Thus we can replace the condition N ≤ n+ 2 in Lemma 83 by N ≤ n+ 1.)

Theorem 87. If P is a real polynomial of degree at most n and t /∈ [−1, 1],
then

|P (t)| ≤ sup
|x|≤1

|P (x)||Tn(t)|.

Exercise 88. If P is a real polynomial of degree at most n and t /∈ [−1, 1],
then then

|P (r)(t)| ≤ |T (r)(t)| sup
|x|≤1

|P (x)|.
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Exercise 89. (This exercise is part of the course.) (i) Show that if n ≥ 1
the coefficient of tn in Tn(t) is 2

n−1.
(ii) Show that if n ≥ 1 and P is a real polynomial of degree n or less with

|P (t)| ≤ 1 then the coefficient of tn in P (t) has absolute value at most 2n−1.
(iii) Find, with proof, a polynomial P of degree at most n − 1 which

minimises
sup

t∈[−1,1]

|tn − P (t)|.

Show that P is unique. (Tchebychev introduced his polynomials Tn in this
context.)

10 Uniqueness of Fourier series

The subject of distributions has its roots in the study of partial differential
equations and the study of trigonometric series. Most of its applications lie
in the study of partial differential equations but I shall consider one from
harmonic analysis.

Recall that T = R/2πZ, that the Fourier coefficient f̂ of of a continuous
function f : T → C is given by

f̂(n) =
1

2π

∫

T

f(t)χ−n(t) dt

where χn(t) = exp(2πint). We are used to the idea of studying the Fourier
sum

∞
∑

n=−∞

f̂(n)χn

where f is some continuous function.

Lemma 90. (i) If f : T → C is continuous and f̂(n) = 0 for all n ∈ Z then
f = 0.

(ii) If f : T → C is continuous and
∑∞

n=−∞ |f̂(n)| <∞ then

N
∑

n=−N

anχn(t) → f(t)

as N → ∞ for all t ∈ T

What happens if we study general trigonometric sums

∞
∑

n=−∞

anχn
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with an ∈ C? One of the first questions about such sums is the problem of
uniqueness. If

N
∑

n=−N

anχn(t) → 0

as N → ∞ for all t ∈ T does it follow that an = 0 for all n?

Exercise 91. (Easy.) Show that, if
∑N

n=−N anχn(t) → 0 as N → ∞ for all
t ∈ T then an → 0 as |n| → ∞.

Riemann had the happy idea of considering the effect of formally inte-
grating twice to obtain

F (t) = A +Bt+
a0t

2

2
−

∞
∑

n=−∞

an
n2
χn(t).

Exercise 92. (Easy.) Suppose that an → 0 as |n| →. Explain why F is a
well defined continuous function.

When
∑N

n=−N anχn(t) converges to a certain value we can recover that
value by looking at the ‘generalised second derivative’

lim
h→0

F (+h)− 2F (t) + F (t− h)

4h2
.

Exercise 93. If f : R → R is twice differentiable at 0 with f(0) = f ′(0) =
f ′′(0) = 0 use the mean value theorem to show that

f(h)− 2f(0) + f(−h)

4h2
→ 0

as h→ 0.
Deduce that if g : R → R is twice differentiable at 0, then

g(h)− 2g(0) + g(−h)

4h2
→ g′′(0)

as h→ 0.

Exercise 94. Suppose that an ∈ C, an → 0 as |n| → ∞. If

F (t) = A +Bt+
a0t

2

2
−

∞
∑

n=−∞

an
n2
χn(t),

show that

F (x+ h)− 2F (x) + F (x− h)

4h2
= a0 +

∑

n 6=0

anχn(x)

(

sin 2πnh

nh

)2

.
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Lemma 95. If
∑∞

n=0 bn converges then

b0 +

∞
∑

n=1

bn

(

sinnh

nh

)2

→

∞
∑

n=0

bn

as h→ 0.

Exercise 96. Deduce from Lemma 95 that, if

N
∑

n=−N

anχn(t) → 0

as N → ∞ for all t ∈ T and we set

F (t) =
a0t

2

2
−

∞
∑

n=−∞

an
n2
χn(t)

then
F (t+ h)− 2F (t) + F (t− h)

4h2
→ 0

as h→ 0 for all t ∈ T

Part of the proof of Lemma 95 rests on ideas which are now familiar.

Exercise 97. (i) Suppose that γn(h) ∈ C satisfies the following two condi-
tions.

(A) γn(h) → 0 as h→ 0.
(B) There exists a C such that

∞
∑

n=0

|γn(h)| ≤ C

for all h.
Then, if tn → 0 as n→ ∞ it follows that

∞
∑

n=0

γn(h)tn → 0

as h→ 0.
(ii) Suppose, in addition, that

(C)
∞
∑

n=1

γn(h) → 1 as h→ 0.
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Then, if sn → t as n→ ∞, it follows that

∞
∑

n=0

γn(h)sn → t

as h→ 0.

We combine the result of Lemma 96 with a very neat result of Schwarz.

Lemma 98. Let f : [a, b] → R be continuous.
(i) Suppose that f(a) = f(b) and

lim sup
h→0

f(x+ h)− 2f(x) + f(x− h)

4h2
> 0

for all x ∈ (a, b). Then f(x) ≤ 0 for all x ∈ [a, b].
(ii) Suppose that f(a) = f(b) and

lim sup
h→0

f(x+ h)− 2f(x) + f(x− h)

4h2
≥ 0

for all x ∈ (a, b). Then f(x) ≤ 0 for all x ∈ [a, b]
(iii) Suppose that f(a) = f(b) and

f(x+ h)− 2f(x) + f(x− h)

4h2
→ 0

as h→ 0 for all x ∈ (a, b). Then f(x) = 0 for all x ∈ [a, b].
(iv) Suppose that

f(x+ h)− 2f(x) + f(x− h)

4h2
→ 0

as h → 0 for all x ∈ (a, b). Then there exist constants A and B such that
f(x) = Ax+B for all x ∈ [a, b].

Putting our results together we obtain the following uniqueness theorem.

Theorem 99. If
N
∑

n=−N

anχn(t) → 0

as N → ∞ for all t ∈ T then an = 0 for all n.

If we try to push matters further we arrive at a natural definition.
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Definition 100. A subset E of T is called a set of uniqueness if

N
∑

n=−N

anχn(t) → 0

as N → ∞ for all t /∈ E implies that an = 0 for all n.

We shall use the theory of distributions to show that every countable
closed set is a set of uniqueness.

11 A first look at distributions

We will work in Rm but we will also keep in mind the simpler case of Tm.

Definition 101. If f : Rm → R is a continuous function we write

supp f = Cl{x : f(x) 6= 0}.

Definition 102. We write D(Rm) (or Cc(R
n)) for the set of smooth (ie

infinitely differentiable) functions f : Rn → R of compact support. If fn, f ∈
D we say that

fn →
D
f

if and only if there exists a compact set K such that supp fn ⊆ K for each
n, and

supx∈K|f
(p)
n (x)− f (p)(x)| → 0

for every p ∈ Z+
n .

Here

f (p)
n (x) = ∂pf(x) =

∂p1+p2+...+pm

∂p1x1∂p2x2 . . . ∂pmxn

and Z+ is the set of non-negative integers.
Before going any further we need to establish that D is reasonably rich.
To do this we go back to a function introduced by Cauchy as a counterex-

ample.

Exercise 103. (i) Let F : R → R be given by

F (x) =

{

exp(−1/x2) if x > 0,

0 if x ≤ 0.
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Show inductively that F is n times differentiable with

F (n)(x) =

{

Pn(x) exp(−1/x2) if x > 0,

0 if x ≤ 0.

for some polynomial Pn.
(ii) By considering functions of the form F (x − a)F (a − x) show that,

given any δ > 0 we can find an infinitely differentiable function G : R → R

with supp g ⊆ [−ǫ, ǫ], G(x) ≥ 0 for all x and G(0) > 0.
(iii) By considering functions of the form

C

∫ x

−∞

G(t+ a)−G(t− a) dt

show that, given any η > 0, we can find an infinitely differentiable function
K : R → R with

K(x) =

{

1 if |x| ≤ 1,

0 if 1 + η ≤ |x|.

and 0 ≤ K(x) ≤ 1 for all x.
(iv) Show that given any η > 0, we can find an infinitely differentiable

function E : Rn → R with

K(x) =

{

1 if ‖x‖ ≤ 1,

0 if 1 + η ≤ ‖x‖.

and 0 ≤ K(x) ≤ 1 for all x.

Exercise 104. Identify with reasons the set of compactly supported analytic
functions f : C → C.

If p ∈ Zm
+ we write |p| = p1 + p2 + . . .+ pm.

Exercise 105. Let K be a compact set. We write Dk for the set of f ∈ D
such that supp f ⊆ K.

(i) If fn, f ∈ DK show that

fn →
D
f

if and only if
sup
‖x‖≤q

|∂pfn(x)− ∂pf(x)| → 0

for all integers p ∈ Zm
+ , q ≥ 0.
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(ii) Show that

d(f, g) =
∞
∑

q=0

∑

p∈Zm
+

|p|−m2−|p|−q sup
‖x‖≤q

|∂pfn(x)− ∂pf(x)|

gives a well defined metric on DK.
(iii) If fn, f ∈ DK show that

fn →
D
f ⇔ d(fn, f) → 0

Exercise 106. We show that convergence in distribution cannot be derived
from convergence in norm even for D(T (with the obvious modified defini-
tions).

Suppose that ‖ ‖D is a norm on D such that

‖fn − f‖D → 0 ⇒ fn →
D
f.

(i) By reductio ad absurdum, or otherwise, show that, for each integer
j ≥ 0, there exists an ǫj > 0 such that we have ‖f‖D ≥ ǫj whenever
supx∈[0,1] |f

(j)(x)| ≥ 1.

(ii) Deduce that ‖g‖D ≥ ǫj supx∈[0,1] |g
(j)(x)| for all g ∈ C∞([0, 1]) and all

j ≥ 0.
(iii) Show that, by choosing δk and Nk appropriately, and setting fk(x) =

δk sin πNkx, or otherwise, that we can find fk ∈ C∞([0, 1]) such that

sup
x∈[0,1]

|f
(j)
k (x)| ≤ 2−k when 0 ≤ j ≤ k − 1,

sup
x∈[0,1]

|f
(k)
k (x)| ≥ 2jǫj .

(iv) Show that ‖fn‖D → ∞ as n → ∞, but f
(j)
n (x) → 0 uniformly on

[0, 1] for each j. Thus

fn →
D
f 6⇒ ‖fn − f‖D → 0.

The fact that D is not a normed space led to investigations of the much
more general ‘topological vector spaces’ but D(T only just fails to be normed
since its topology is given by a countable collection of norms.

We can now introduce the notion of a distribution.

Definition 107. We say that a linear map T : D → C is a distribution if

φn →
D
φ⇒ Tφn → Tφ.
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The next lemma gives some equivalent formulations of the definition.

Lemma 108. If T : D → C then the following statements are equivalent.
(i) φn →

D
φ⇒ Tφn → Tφ.

(ii) φn →
D

0 ⇒ Tφn → 0.

(iii) If K is a compact set then there exists a constant C(K) and an
integer N(K) ≥ 0 such that whenever φ ∈ D and suppφ ⊆ K we have

|Tφ| ≤ C(K,p)
∑

|p|≤N(K)

‖∂pφ‖∞.

We often write Tφ = 〈T, φ〉 and say that φ ∈ D is a test function.

Lemma 109. If a ∈ Rm, then

〈δa, φ〉 = φ(a)

defines a distribution.

We call δa the Dirac delta function at a

Lemma 110. If f ∈ C(Rm) then

〈Tf , φ〉 =

∫

Rm

f(t)φ(t) dt

defines a distribution.

Exercise 111. (If you know some measure theory.) We write f ∈ L1
loc(R

m)
if f is measurable and fIK ∈ L1 (ie

∫

K
|f(t)| dt < ∞) for all compact sets,

show that

〈Tf , φ〉 =

∫

Rm

f(t)φ(t) dt

defines a distribution.

We often write Tf = f (whence the name expression ‘generalised function
for a distribution) and for this reason we must careful to make our definitions
consistent when do so.

Lemma 112. (i) If T, S ∈ D and λ, µ ∈ C, then

〈λT + µS, φ〉 = λ〈T, φ〉+ µ〈S, φ〉

for φ ∈ D defines a distribution λT + µT .
(ii) D′ is a vector space with these operations.
(iii) If f and g are continuous functions Tλf+µg = λTf + µTg.
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The next result is more interesting.

Lemma 113. (i) If T ∈ D, and p has all entries zero except one which has
value 1

〈∂pT, φ〉 = −〈T, ∂pf〉

for φ ∈ D defines a distribution T ′.
(iii) If f is a continuous function with continuous partial derivative,then

Tλf+µg = λTf + µTg.

We call ∂pT the partial derivative of T .

Exercise 114. (i) Distributions are infinitely differentiable with

〈∂pT, φ〉 = (−1)|p|〈T, ∂pφ〉.

(ii) If we work on R, 〈δ′0, φ〉 = −φ′(0). (If what you have been told in the
past contradicts this, forget it. This is the correct sign.)

We can also multiply distributions by test functions.

Lemma 115. (i) If T ∈ D, and ψ ∈ D then p has all entries zero except
one which has value 1

〈ψT, φ〉 = 〈T, φψ〉

for φ ∈ D defines a distribution ψT .
(ii) If T ∈ D, and ψ ∈ D then we have the following form of Leibniz’s

rule

∂pφT =
∑

r+s=p

p!

r!s!
∂rφ∂sT.

Here and elsewhere we write (r1, r2, . . . , rm)! = r1!r2! . . . rm!.

Exercise 116. Show that, in Lemma 115, we can replace ψ ∈ D by ψ ∈ C∞

that is to say, ψ a smooth function).

12 The support of distribution

The statement that T is a distribution seems very abstract but in this section
we shall see that T actually ‘lives on a well defined region’ in Rm.

We use the useful idea of a partition of unity.
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Lemma 117. (i) Let K be a compact subset and Ω an open subset of Rm

such that K ⊆ Ω. Then we can find a φ ∈ D such that 0 ≤ φ(x) ≤ 1 for all
x, φ(x) = 1 for x ∈ K and φ(x) = 0 for x /∈ Ω.

(ii) Let K be a compact subset and Ωj open subsets of Rm [1 ≤ j ≤ J ]

such that K ⊆
⋃J

j=1Ωj. Then we can find φj ∈ D such that 0 ≤ φj(x) ≤ 1
for all x, φ(x) = 1 φj(x) = 0 for x /∈ Ωj [1 ≤ j ≤ J ] and

J
∑

j=1

φj(x) = 1

for all x ∈ K.

Definition 118. If T ∈ D then supp T is the complement of the set of points
x with the following property. There exists an ǫ > 0 such that if φ ∈ D and
supp φ ⊆ B(x, ǫ) (the open ball centre x radius ǫ) then 〈T, φ〉 = 0.

Exercise 119. (i) If T is a distribution supp T is closed.
(ii) If f is continuous then

supp Tf = Cl{x : f(x) = 0}.

In other words the support of f as a distribution coincides with the support
of f as a function.

Exercise 120. (i) If T is a distribution, show that supp ∂pT ⊆ supp T . Give
an example for R with p = 1 to show that the inclusion may be proper.

(ii) If T ∈ D′ and φ ∈ D, show that

supp φT ⊆ supp T ∩ supp φ.

Lemma 121. If T ∈ D′, φ ∈ D suppT ∩ suppφ = ∅, then

〈T, φ〉 = 0.

The following example is extremely important.

Example 122. We work on R. We have supp δ′0 = {0} but we can find a
φ ∈ D such that φ(0) = 0 and 〈δ′0, φ〉 6= 0.

Thus
φ(x) = 0 for all x ∈ suppT 6⇒ 〈T, φ〉 = 0.

Exercise 123. If T ∈ D′, φ ∈ D and supp T ∩ suppφ = ∅, show that
φT = 0.
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We now find all distributions with support consisting of a single point.
to do this we require a local form of Taylor’s theorem

Lemma 124. If f : Rm → R is infinitely differentiable then

f(h) =
∑

p1+p2+...+pm≤N

(p1 + p2 + . . .+ pm)!

p1!p2! . . . pm!
∂pf(0)hp11 h

p2
2 . . . hpmm +A(h)‖h‖N+1

where A(h) remains bounded as ‖h‖ → 0.

Theorem 125. If T ∈ D and supp T ⊆ {a} then we can find an N and cp
such that

T =
∑

|p|≤N

cp∂
pδa.

13 Distributions on T

In this section we work work on T. To maintain consistency we modify
one of earlier definitions (see Lemma 110 and the associated discussion). by
introducing a scaling factor.

Definition 126. If f ∈ C(T) then

〈Tf , φ〉 =
1

2π

∫

T

f(t)φ(t) dt.

If we work on T the space of distributions takes a particularly simple
form.

Definition 127. If T ∈ D(T) we write

T̂ (r) = 〈T, χ−r〉.

Exercise 128. If f ∈ C(T) check that the new and old definitions of f̂
coincide.

Theorem 129. (i) If T ∈ D′(T) and then there exists a N such that |r|−N T̂ (r) →
0 as |r| → ∞.

(ii) If T ∈ D′(T) and φ ∈ D(T), then

〈T, φ〉 =
∞
∑

r=−∞

T̂ (r)φ̂(−r)

the convergence being uniform.
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(iii) If T, S ∈ D′(T),

T = S ⇔ T̂ (r) = Ŝ(r) for all r ∈ Z.

(iv) If ar ∈ C and there exists an N such that |r|−Nar → 0 as |r| → ∞,
then

〈T, φ〉 =

∞
∑

r=−∞

arφ̂(−r)

defines a distribution T with T̂ (r) = ar.

We could say that we have identified the distributions with sequences of
polynomial growth.

We link the theory of distributions with the theory of sets of uniqueness
via a version of the Riemann localisation theorem.

Theorem 130. Suppose that T is a distribution on D with T̂ (n) → 0 and
φ ∈ D. If

n
∑

j=−n

T̂ (j)χj(t) → 0

as n → ∞ on an open interval I with I ⊇ supp φ then writing S = φT we
have

n
∑

j=−n

Ŝ(j)χj(t) → 0

everywhere.

Lemma 131. Suppose that an → 0 as |n| → ∞. If T is the distribution with
T̂ (n) = an then

supp T = Cl{t :

n
∑

j=−n

T̂ (j)χj(t) fails to converge to 0}.

We now make the following observation.

Lemma 132. Any closed countable subset of T must contain an isolated
point.

Combining our results gives the following classical theorem

Theorem 133. Every closed countable subset of T is a set of uniqueness.
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