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1. TOPOLOGICAL SPACES

Recall, from the Analysis course, that in a metric space (X, d) a subset U is open when, for each
x ∈ U there is an r > 0 with B(x, r) ⊂ U . We can use the notion of an open set to define convergence
and continuity.

A subset V of X is a neighbourhood of x if there is an open set U with x ∈ U ⊂ V . This means that
U is open if and only if U is a neighbourhood of each of its points.

A sequence (xn) in X converges to a limit ` when, for each neighbourhood V of x, there is a natural
number N(V ) ∈ N with

xn ∈ V for n > N(V ) .

A function f : X → Y between two metric spaces is continuous at xo ∈ X when f−1(V ) is a neighbour-
hood of xo for each neighbourhood V of f(xo). (Taking V = B(f(xo), ε) we see that this means that
there is a δ > 0 with B(xo, δ) ⊂ f−1(B(f(xo), ε), that is

d(f(x), f(xo)) < ε whenever d(x, xo) < δ .)

The function f : X → Y is continuous if it is continuous at each point of X. This is equivalent to
demanding that

f−1(U) is open in X whenever U is open in Y .

In many contexts it is simpler to argue using open sets rather than the metric. There are also cases
where we need to need to work with more general spaces than metric spaces. Hence we introduce the
idea of topological spaces.

A topology on a set X is a collection T of subsets of X that satisfies the three conditions:

(a) ∅, X ∈ T ;

(b) if U1, U2 ∈ T , then U1 ∩ U2 ∈ T ;

(c) if U ⊂ T , then the union
⋃
U ∈ T .

(Condition (b) implies that the intersection of finitely many sets in T is itself in T . However, condition
(c) means that any union of sets in T , finite or infinite, is itself in T .)

When T is a topology on X, we call (X, T ) a topological space. The sets in T are the open sets in
X for the topology.

Examples of topologies.

1. Metric topology. All the open sets for a metric form a topology.

2. Discrete topology. The collection of all subsets of X form the discrete topology on X. This is also
a metric topology.

3. Indiscrete topology. The collection {∅, X} forms the indiscrete topology. Provided that X has more
than one point, it is not a metric topology.

4. Gate topology. Let X = {f : [0, 1] → R}. A subset U of X is open if, for each fo ∈ U , there is a
finite set F ⊂ [0, 1] and an ε > 0 with

{f : [0, 1]→ R : |f(t)− fo(t)| < ε for all t ∈ F } ⊂ U .

(These are the functions whose graphs pass through “gates” for each t ∈ F .)

We can use the open sets of a topology T on X to define convergence and continuity. First, we
say that a subset F of X is closed when the complement X \ F is open, that is X \ F ∈ T . Note that
subsets of X need not be either open or closed.
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Proposition 1.1 Interior and closure
Let (X, T ) be a topological space and A ⊂ X. Then there is a largest open set contained in A, called
the interior A◦ of A. There is smallest closed set containing A, called the closure A of A. The boundary
of A is ∂A = A \A◦ and is closed.

Proof:
The union

⋃{
U ∈ T : U ⊂ A

}
is a union of open sets so it is open. Clearly it is the largest

open set contained in A, so it is the interior: A◦.

Similarly, the intersection
⋂{

F : F is closed and A ⊂ F
}

is the smallest closed set containing in
A, so it is the closure: A.

The boundary ∂A = A ∩ (X \A◦) is the intersection of two closed sets, so it is closed. �

Note that X \A◦ = (X \A).

A subset V of X is a neighbourhood of xo ∈ X when there is an open set U with xo ∈ U ⊂ V .

A sequence (xn) converges to a limit ` in X if, for each neighbourhood V of `, there is natural
number N(V ) with

xn ∈ V for all n > N(V ) .

We write xn → ` as n→∞ to mean that (xn) converges to `.

Examples. xn → ` as n→∞ if and only if

1. Metric: d(xn, `)→ 0 as n→∞.

2. Discrete: xn = ` for n > N .

3. Indiscrete: Every sequence converges to every value ` ∈ X.

4. Gate: xn(t)→ `(t) for each t ∈ [0, 1]. This means that the sequence of functions (xn) converge
pointwise to `.

Let (X, T ) and (Y,U) be two topological spaces and f : X → Y a map between them. Then f is
continuous at xo ∈ X if, for each neighbourhood V of f(xo) in Y the inverse image

f−1(V ) = {x ∈ X : f(x) ∈ V }

is a neighbourhood of xo in X. We think of a neighbourhood of xo as being a set containing all of the
points sufficiently close to xo. Hence this definition says roughly that “f(x) is close to f(xo) provided
that x is sufficiently close to xo”. We say that f is continuous if it is continuous at each point xo in X.

Proposition 1.2 Open set and neighbourhoods
A set A ⊂ X is open if and only if it is a neighbourhood of each point x ∈ A.

Proof:
Clearly an open set A is a neighbourhood of each point x ∈ A.

For the converse, suppose that A is a neighbourhood of each x ∈ A. Then there is an open set Ux
with x ∈ Ux ⊂ A. The union U =

⋃
x∈A Ux is then open. It contains every point x ∈ A and is also

contained in A. So A = U is open. �

Proposition 1.3 Continuity
A map f : X → Y is continuous if and only if f−1(U) is open in X for every set U that is open in Y .
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Proof:
Suppose first that f is continuous and that U is an open subset of Y . We need to show that

f−1(U) is open in X. Let xo ∈ f−1(U). Then f(xo) ∈ U . By Proposition 1.2, U is neighbourhood of
f(xo). Since f is continuous at xo, we see that f−1(U) is a neighbourhood of xo. This is true for all
xo ∈ f−1(U), so Proposition 1.2 shows that f−1(U) is open.

For the converse, suppose that f−1(U) is open in X whenever U is open in Y . Let xo ∈ X and
let V be a neighbourhood of f(xo). Then there is an open set U with f(xo) ∈ U ⊂ V . Consequently,
xo ∈ f−1(U) ⊂ f−1(V ). Since f−1(U) is open in X, this shows that f−1(V ) is a neighbourhood of xo.
Thus f is continuous at xo. �

Example. Any map f : X → Y is continuous when X has the discrete topology, or when Y has the
indiscrete topology.

A map f : X → Y is a homeomorphism if it is continuous and it has an inverse that is also
continuous. For example, the map

exp : R→ (0,∞) ; x 7→ expx

is a homeomorphism when both R and (0,∞) have the topology coming from the Euclidean metric.
However, the map

(R, discrete )→ (R, Euclidean ) ;x 7→ x

from R with the discrete topology to R with the usual Euclidean metric topology is not a homeomorphism
even though it is continuous and has an inverse.

Topologies on Subsets, Quotients and Products

Let (X, T ) be a topological space. Let j : S ↪→ X be the inclusion map for a subset S of X. The
subset topology on S consists of the intersections

S ∩ U for U ∈ T .

This is a topology on S and the inclusion map j is continuous.

Example: The interval [0, 1) is not open in R (with the Euclidean topology) but it is open in [0, 1]
with the subset topology.

Let q : X → Q be a surjective map. We can then think of Q as the quotient of X by the equivalence
relation

x ∼ y ⇔ q(x) = q(y) .

So Q = X/ ∼ and q is the quotient map. The quotient topology on Q consists of the sets U ⊂ Q with
q−1(U) ∈ T . This is a topology on Q and q is continuous.

Example: Consider the map

q : R→ T = {z ∈ C : |z| = 1} ; t 7→ exp it .

The quotient topology on T is then the same as the topology on T coming from the usual Euclidean
metric.

Now let (Y,U) be another topological space and consider the Cartesian product X × Y . A set U is
open in the product topology on X × Y if it is the union of some collection of sets of the form

A×B with A ∈ T and B ∈ U .
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This is a topology on X × Y and the projection maps

πX : X × Y → X ; (x, y) 7→ x

πY : X × Y → Y ; (x, y) 7→ y

are continuous. Note that there are open sets in X × Y that are not of the form A × B for A ∈ T
and B ∈ U . For example, the product topology on R × R is the usual Euclidean topology and the set
{(x, y) ∈ R× R : x < y } is open.

We can define the Cartesian products of more than two spaces in a similar way. Suppose that
(Xα, Tα) is a topological space for each α in an index set A. Then the product topology on∏

α∈A
Xα

consists of arbitrary unions of sets of the form{
(xα) ∈

∏
α∈A

Xα : xα ∈ Uα for all α ∈ A

}

where Uα ∈ Tα for each α ∈ A and Uα = Xα for all but a finite number of indices α ∈ A. *The final
underlined condition only matters when we are considering the product of infinitely many spaces. For
example, if we take each Xα to be R for α ∈ [0, 1], then the product is

R
[0,1] = {f : [0, 1]→ R}

and the product topology is the gate topology.*

Hausdorff Spaces

A topological space (X, T ) is Hausdorff if, for each pair of distinct points x, y ∈ X, there are disjoint
open sets U, V with

x ∈ U , y ∈ V and U ∩ V = ∅ .

For example, any metric space is Hausdorff because B(x, 1
2d(x, y)) and B(y, 1

2d(x, y)) are disjoint. The
indiscrete topology on a set with more than one point is not Hausdorff. For analysis, where we are
concerned with limits, virtually all the spaces of interest are Hausdorff.

Proposition 1.4 Unique limits in Hausdorff spaces
Let (X, T ) be a Hausdorff topological space. Then a sequence (xn) in X can have at most one limit.

Proof:
Suppose that xn converged to two different limits ` and m. Then we could find disjoint open

sets U, V each containing one of the limits. The convergence means that there are natural numbers
N,M with

xn ∈ U for n > N and xn ∈ V for n >M .

This is impossible for n > max(N,M). �
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2. COMPACT SPACES

Definition and Examples

Let (X, T ) be a topological space. An open cover for X is a collection U of open sets in X with
union

⋃
U = X. A subcover of U is a subset of U that is also a cover of X. For example, the collection

of all intervals (x, x+ 2) for x ∈ R is an open cover for R. The collection V = {(x, x+ 2) : x ∈ Z } is a
subcover. However, no proper subset of V remains a cover of R.

The topological space (X, T ) is compact if every open cover of X has a finite subcover.

Example: Any finite topological space is compact, as is any indiscrete topological space. The example
above shows that R is not compact.

Proposition 2.1 Heine - Borel Theorem
Each closed, bounded interval [a, b] in the real line is compact.

Proof:
First we give a proof using the fact that non-empty subsets of [a, b] have a supremum.

Let U be an open cover for the interval [a, b] and set

J = {t ∈ [a, b] : [a, t] is contained in a finite union of sets from U } .

Then a ∈ J , so K has a supremum to ∈ [a, b]. The point to itself must lie in one of the open sets in U ,
say to ∈ Uo ∈ U . Since Uo is open, we must have a δ > 0 with

{x ∈ [a, b] : to − δ 6 x 6 to + δ } ⊂ Uo .

Since to = supJ , we can find a point s ∈ J with to − δ < s 6 to. There will be a finite subset F of U
with [a, s] ⊂

⋃
F . This implies that [a, to + δ] ∩ [a, b] is covered by F together with Uo. If to 6= b, then

this is a contradiction. Therefore to = b and F ∪ {Uo} covers all of [a, b]. �

There are many variations on this proof. We will give another based on repeated bisection or
“condensation of singularities”. Suppose that U is an open cover of I0 = [a, b] but no finite subset of U
covers I0. Divide I0 into two intervals:

[a, 1
2 (a+ b)] and [ 1

2 (a+ b), b] .

At least one of these, say I1, is not contained in any finite union of sets from U . If we repeat the
process we obtain a recursively defined sequence of intervals In = [an, bn]. The left endpoints an form
an increasing sequence bounded above by b, so they converge to a limit, say a∞. Similarly, the right
endpoints form a decreasing sequence (bn) converging to a limit b∞. Since

bn − an = (b− a)/2n ,

we see that a∞ = b∞. Since an ↗ a∞ and bn ↘ a∞, we also see that a∞ ∈ In for each n ∈ N.

Now the point a∞ must lie within one of the sets in U , say a∞ ∈ Uo ∈ U . Since Uo is open, there is
a ball B(a∞, δ) that lies entirely within Uo. However, In has length less than δ for n sufficiently large,
say n > N . Hence,

In ⊂ B(a∞, δ) ⊂ Uo for n > N .

Thus In is covered by a single element of U , which is a contradiction. �
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(This second proof of Proposition 2.1 can be easily extended to show that subsets of RN which
are closed and bounded are compact. To do this, we consider the set as a subset of a cube [−M,M ]N .
Then divide this cube into 2N cubes of half the side length and repeat the process as above.)

Note that open intervals (a, b) ⊂ R are not compact, for the sets

(a+ ε, b− ε) for 0 < ε < 1
2 (b− a)

form an open cover with no finite subcover. Similarly, unbounded subsets of R are not compact since
there is no subcover of (−n, n) for n ∈ N.

Compactness for Subsets, Quotients and Products

This section is devoted to studying when subsets, quotients or products of compact sets are compact.

We will say that a subset K of a topological space (X, T ) is compact if it is compact for the subset
topology. Suppose that U is a collection of open subsets of K with

⋃
U = K. Each set U ∈ U is the

intersection of K with some set Ũ open in X. Let Ũ be the collection of these sets Ũ , one chosen for
each U ∈ U . Then K ⊂

⋃
Ũ . This means that K is compact if, whenever V is a collection of open sets

in X with K ⊂
⋃
V, there is a finite subset F of V with K ⊂

⋃
F .

Proposition 2.2 Closed subsets of compact sets are compact.
Let K be a closed subset of the compact set X. Then K is also compact.

Proof:
Suppose that V is a collection of open sets in X with K ⊂

⋃
V. Then V, together with the

open set X \K, covers all of X. Since X is compact, there is a finite subset F of V with

X ⊂
(⋃
F
)
∪ (X \K) .

This certainly implies that K ⊂
⋃
F , so we do have a finite subcover for K as required. �

Subsets of compact set that are not closed need not be compact. Indeed, we have:

Proposition 2.3 Compact subsets of Hausdorff spaces are closed
Let (X, T ) be a Hausdorff topological space and K a compact subset of X. Then K is closed in X.

Proof:
Let x ∈ X \K. For each y ∈ K, there are disjoint open sets U(y), V (y) in X with

x ∈ U(y) , y ∈ V (y) and U(y) ∩ V (y) = ∅ .

The collection {V (y) : y ∈ K} is then an open cover of K, so it has a finite subcover, say
{V (y1), V (y2), . . . , V (yN )}. Let U be the intersection

U = U(y1) ∩ U(y2) ∩ . . . ∩ U(yN )

of the corresponding sets U(y). Then U is the intersection of finitely many open sets, so it is open in
K. Moreover U is disjoint from K because U(yn) ∩ V (yn) = ∅. This is true for each x ∈ K \ S, so we
have shown that X \K is open. Consequently, K is closed. �
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Note that the result may fail for spaces that are not Hausdorff. For example, every subset of an
indiscrete space is compact.

We can now see exactly which subsets or R are compact.

Corollary 2.4 Compact subsets of R.
A subset of R is compact if and only if it is closed and bounded.

Proof:
If K ⊂ R is closed and bounded, then it is a closed subset of the interval [−M,M ] for some

M . The Heine - Borel theorem (2.1) shows that [−M,M ] is compact, and Proposition 2.2 shows that
the closed subset is also compact.

Now suppose that K ⊂ R is compact. The collection {(−N,N) ∩K : N ∈ N} is an open cover for
K, so it has a finite subcover. The union of a finite number of the sets (−N,N)∩K is clearly bounded,
so K is bounded. Since R is Hausdorff, Proposition 2.3 shows that K must be closed. �

This result is not true in a general metric space. For example, consider the space (0, 1) with the
Euclidean metric. The set (0, 1) itself is certainly closed and bounded in (0, 1) but is not compact.

Proposition 2.5 Continuous images of compact sets are compact.
Let f : X → Y be a continuous map between topological spaces. If X is compact, then f(X) is also
compact.

Proof:
Let U be a collection of open sets in Y with f(X) ⊂

⋃
U . Then the sets

f−1(U) for U ∈ U

are open in X and cover X. Since X is compact, there is a finite subset F of U with⋃
U∈F

f−1(U) = X .

Therefore, f(X) ⊂
⋃
F . This proves that f(X) is compact. �

This shows, in particular, that any quotient of a compact set is compact for the quotient topology.
If f : X → Y is any continuous map and K is a compact subset of X, then the restriction of f gives a
continuous map f |K : K → f(K). So f(K) is compact.

Corollary 2.6 Continuous real-valued functions on a compact set
Let φ : K → R be a continuous real-valued map on a compact topological space K. Then φ is bounded
on K and attains its bounds.

This means that s = sup{φ(t) : t ∈ K} exists and there is a point x ∈ K with φ(x) = s. Similarly, there
exists a point y ∈ K with φ(y) = j = inf{φ(t) : t ∈ K}.

Proof:
Proposition 2.5 shows that φ(K) is a compact subset of R. Hence, by Corollary 2.4 , it is

closed and bounded. Being bounded means that s = sup{φ(t) : t ∈ K} and j = inf{φ(t) : t ∈ K} exist;
being closed means that both s and j are points of φ(K). This means that there are points x, y ∈ K
with φ(x) = s and φ(y) = j. �
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Proposition 2.7 Tychonoff’s theorem.
The Cartesian product of two compact topological spaces is compact.

Proof:
Let (X,S), (Y, T ) be two compact topological spaces and let U be an open cover for X × Y .

Each open set in X × Y is the union of products

A×B with A ∈ S and B ∈ T .

Consider the collection V of all such products that are contained in any of the sets in the cover U . Then
V is itself an open cover of X × Y . If we can show that V has a finite subcover, then each of the sets
A × B in this subcover lies inside one of the sets of U , so U will also have a finite subcover. Hence, it
will be sufficient to prove that V has a finite subcover.

Suppose that V consists of all the products At × Bt for t in some index set T . Each At lies in
S and each Bt lies in T . For each x ∈ X, the sets At × Bt must cover {x} × Y . Hence the sets
{Bt : x ∈ At} form an open cover for Y . Since Y is compact, there must be a finite set of indices, say
t(1), t(2), . . . , t(N), with

x ∈ At(n) for n = 1, 2, . . . , N and Y ⊂ Bt(1) ∪Bt(2) ∪ . . . ∪Bt(N) .

Set W (x) = At(1) ∩At(2) ∩ . . . ∩At(N). Then W (x) is open, it contains x and

W (x)× Y ⊂ (At(1) ×Bt(1)) ∪ (At(2) ×Bt(2)) ∪ . . . ∪ (At(N) ×Bt(N)) .

In particular, W (x)× Y is covered by a finite number of the sets in V.

The sets W (x) for x ∈ X form an open cover for X, so there is a finite subcover, say X =
W (x1) ∪W (x2) ∪ . . . ∪W (xK). Then

X × Y = (W (x1)× Y ) ∪ (W (x2)× Y ) ∪ . . . ∪ (W (xK)× Y ) .

Each strip (W (xk)× Y ) is covered by finitely many sets form V, so their union X × Y is also. �

*The Cartesian product of infinitely many compact spaces is also compact. This is harder to prove
and requires the axiom of choice.*

Corollary 2.8 Compact subsets of RN .
A subset of RN is compact if and only if it is closed and bounded.

Proof:
If K ⊂ RN is closed and bounded, then it a subset of B(0,M) for some M . Consequently,

K ⊂ [−M,M ]N . By Tychonoff’s theorem , this product [−M,M ]N is compact. Hence the closed subset
K is also compact.

Now suppose that K ⊂ RN is compact. The collection {B(0, N)∩K : N ∈ N} is an open cover for
K, so it has a finite subcover. The union of a finite number of the balls B(0, N)∩K is clearly bounded,
so K is bounded. Since RN is Hausdorff, Proposition 2.3 shows that K must be closed. �

Compact Metric Spaces

A topological space X is sequentially compact if every sequence in X has a convergent subsequence.
The Bolzano - Weierstrass theorem in Analysis 2 shows that any closed bounded subset of RN is
sequentially compact.

Proposition 2.9 Compact implies sequentially compact
Any compact metric space is sequentially compact.
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Proof:
Let (xn) be a sequence in the compact space K. Suppose that there exists a point ` ∈ X such

that every ball B(`, r) contains infinitely many terms of the sequence. Then we can recursively choose
terms xN(k) of the sequence with

N(k) > N(k − 1) and xN(k) ∈ B(`, 1/k) .

This would imply that (xN(k)) converges to ` as n→∞.

If there is no such point `, then, for each ` ∈ X, we can find an open ball B` about ` that contains
only finitely many terms of (xn). The balls {B` : ` ∈ X} form an open cover for X, so there is a finite
subcover, say X = B`(1) ∪ B`(2) ∪ . . . ∪ B`(M). Since each B`(m) contains only finitely many terms of
(xn), their union X can only contain finitely many terms. This is impossible. �

For subsets of RN compactness and sequential compactness are equivalent.

Proposition 2.10 Compactness for subsets of RN .
For a subset X of RN , the following conditions are equivalent:

(a) X is compact.

(b) X is sequentially compact.

(c) X is closed and bounded.

Proof:
We have just proved that (a) ⇒ (b).

Suppose that (b) is true. If X is not closed in RN , then there is a point ` ∈ RN \X with every ball
B(`, r) meeting X. Hence we can choose xn ∈ B(`, 1/n). This gives a sequence that converges to ` in
R
N . Every subsequence also converges to `, so no subsequence can possibly converge in X. If X is not

bounded, we can find a sequence (xn) with d(xn, 0) > n for each n ∈ N. No subsequence can converge,
even in RN . Thus (c) is true.

Finally, Corollary 2.8 shows that (c) ⇒ (a) is true. �

*In all metric spaces compactness and sequential compactness are the same. Indeed, in the Analysis
course you showed that a metric space (X, d) was sequentially compact if and only if it was complete
and totally bounded. The argument also gives:

Proposition 2.11 Compactness for metric spaces
The following conditions on a metric space (X, d) are equivalent.

(a) K is compact.

(b) K is sequentially compact.

(c) K is complete and totally bounded

9



Proof:
(Complete means that every Cauchy sequence in X converges in X. Totally bounded means

that, for each ε > 0, there is an ε-net, that is a finite set {x1, x2, . . . , xN} ⊂ X with X ⊂
⋃N
n=1B(xn, ε).)

(a) ⇒ (b) This is Proposition 2.9 .

(b) ⇒ (c) Suppose that (xn) is a Cauchy sequence in X. Since X is sequentially compact, there is a
subsequence (xn(k)) that converges to a limit, sat ` ∈ X. For any ε > 0 we know that there is a natural
number N with

d(xn, xm) < ε for n,m > N

and a natural number K with
d(xn(k), `) < ε for k > K .

Then, we can find k > K with n(k) > N . For m > N we obtain

d(xm, `) 6 d(xm, xn(k)) + d(xn(k), `) < ε+ ε .

Hence the entire sequence (xn) converges to `.

To show that X is totally bounded, choose ε > 0 and construct a sequence (xn) as follows. First x1

is any point of X. Suppose that x1, x2, . . . , xk have been chosen. If they form an ε-net, then we stop.
Otherwise, we can find xk+1 ∈ X with

d(xk+1, xj) > ε for j = 1, 2, . . . , k .

Eventually we must stop, for otherwise we would obtain an infinite sequence (xn) with d(xn, xm) > ε
for all n 6= m and such a sequence can have no convergent subsequence. When we stop we get an ε-net.

(c) ⇒ (a) Let U be an open cover for X and suppose that it has no finite subcover. We construct
decreasing subsets (Xk) that also also have no finite subcover from U . First take X0 = X. When
X0, X1, . . . , Xk have been chosen, we know that there is a 1/(k + 1)-net for X, so X is the union of a
finite number of open balls each of radius 1/(k + 1), say B1, B2, . . . , BN . These balls cover Xk so at
least one of the intersections Xk ∩ Bn does not have a finite subcover from U . Set Xk+1 equal to this
intersection: Xk ∩Bn.

We now have sets X = X0 ⊃ X1 ⊃ X2 ⊃ . . . with each Xk being contained within a ball of radius
1/k for k > 1. Choose any points xk ∈ Xk. Then d(xk, xm) 6 2/k for m > k because xm ∈ Xm ⊂ Xk

and Xk has diameter no bigger than 2/k. Therefore the sequence (xk) is a Cauchy sequence and must
converge to a limit ` ∈ X. We also have d(xk, `) 6 2/k.

Finally, ` lies in one of the sets of the cover U , say ` ∈ U . Since U is open, we have B(`, r) ⊂ U for
some r > 0. When k > 4/r we have

Xk ⊂ B(xk, 2/k) ⊂ B(`, 4/k) ⊂ B(`, r) ⊂ U .

This would mean that Xk was covered by a single set from U , contradicting its definition. �

Note that for a subset X of RN , X is complete if and only if it is closed, and X is totally bounded
if and only if it is bounded. Hence Proposition 2.11 implies Proposition 2.10 . *

Proposition 2.12 Uniform continuity
Let f : X → Y be a continuous map between two metric spaces. If X is compact, then f is uniformly
continuous.
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Proof:
Let ε > 0 be a fixed number. Since f is continuous at each x ∈ X, we know that there exists

a δ(x) > 0 with
d(f(x), f(y)) < ε whenever d(x, y) < δ(x) .

We wish to show that f is uniformly continuous, so we need to show that we can choose δ(x) indepen-
dently of x.

Let U(x) be the open ball B(x, 1
2δ(x)) in X. The sets {U(x) : x ∈ X} form an open cover for X,

so there is a finite subcover, say X = U(x1)∪U(x2)∪ . . .∪U(xN ). Any point z ∈ X lies in one of these
balls, say z ∈ U(xn). For any point w with d(w, z) < 1

2δ(xn) we have

d(w, xn) 6 d(w, z) + d(z, xn) < 1
2δ(xn) + 1

2δ(xn) = δ(xn) .

Consequently,
d(f(w), f(z)) 6 d(f(w), f(xn)) + d(f(z), f(xn)) < ε+ ε = 2ε .

Consequently,

d(f(w), f(z)) < 2ε whenever d(w, z) < δ = min{δ(x1), δ(x2), . . . , δ(xN )}

with δ independent of w and z. �
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3. CONNECTEDNESS

A topological space (X, T ) is disconnected if there are two non-empty, open sets U, V ∈ T with

U ∩ V = ∅ and U ∪ V = X .

If X is not disconnected, then we say it is connected.

Note that the open sets U and V are complements of each other, so they are both closed sets as
well. Thus X is connected if there are no proper subsets that are both open and closed in X. We can
also rephrase the definition in terms of maps into the two-point space {0, 1}. We give {0, 1} the topology
of a subset of R; this is the same as the discrete topology.

Proposition 3.1 Continuous maps into {0, 1}
A topological space (X, T ) is connected if and only if every continuous map f : X → {0, 1} is constant.

Proof:
The open subsets of {0, 1} are ∅, {0}, {1} and {0, 1}. Hence a map f : X → {0, 1} is continuous

if and only if the sets U = f−1({0}) and V = f−1({1}) are both open. Clearly

U ∩ V = f−1({0} ∩ {1}) = ∅ and U ∪ V = f−1({0} ∪ {1}) = X .

Conversely, if we are given any two open sets U, V in X with U ∩ V = ∅ and U ∪ V = X, we can define

f : X → {0, 1} by x 7→
{

0 when x ∈ U ;
1 when x ∈ V ;

and f is continuous.

The map f is constant precisely when one of the sets U, V is empty. �

Corollary 3.2 Intervals in R are connected.
A non-empty subset of R is connected if and only if it is an interval.

Proof:
Let J be an interval in R. Suppose that f : J → {0, 1} is continuous and not constant. Then

f also gives a continuous map from J into R that takes the values 0 and 1. By the Intermediate Value
Theorem it must also take the value 1

2 . This is impossible since f only takes values 0 and 1.

For the converse, let J be any non-empty Set a = inf X and b = supX. We will prove that X is
one of the intervals (a, b), [a, b), (a, b] or [a, b]. (When a or b is infinite we get the unbounded intervals:
(−∞, b), (−∞, b], (a,∞), [a,∞) or (−∞,∞).) Firstly, it is clear that X ⊂ [a, b]. Suppose that c ∈ (a, b)
did not lie in X. Then the sets X ∩ (−∞, c) and X ∩ (c,∞) would disconnect X. Therefore X contains
(a, b). �

Proposition 3.3 Continuous images of connected sets are connected
Let f : X → Y be a continuous map between two topological spaces. If X is connected, then the image
f(X) is also connected.

Proof:
By replacing Y by f(X), we may assume that f is surjective. If f(X) were disconnected, then

there would be two non-empty open sets U, V in f(X) with U ∩ V = ∅ and U ∪ V = X. Then f−1(U)
and f−1(V ) are open in X and disconnect it. �
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Proposition 3.4 Unions of connected sets
For each α in some index set A suppose that Sα is a connected subsets of the topological space (X, T ).
If there is a point xo ∈

⋂
α∈A Sα then the union

⋃
α∈A Sα is also connected.

Proof:
Let f :

⋃
α∈A Sα → {0, 1} be a continuous map. Then each restriction f |Sα is also continuous

and, since Sα is connected, it is constant. This constant must be f(xo) for each α ∈ A. Therefore f is
constant on all of

⋃
Sα. �

Suppose that X is a topological space and xo ∈ X. Then there are certainly some connected subsets
of X that contain xo, for example {xo}. Let

C =
⋃
{S ⊂ X : S is connected, and xo ∈ S} .

The Proposition shows that C itself is connected. It is therefore the unique largest subset of X that
contains xo and is connected. We say that C is the component of X containing xo. The Proposition
also shows that two components are either disjoint or identical. Hence they partition X into disjoint
subsets — the components of X.

Example: The components of Q as a subset of R are the singletons.

There are some strange sets that are still connected. Consider for example the set

X = T ∪ {reiθ : θ ∈ R and r = 1 + eθ} .

This consists of the unit circle T and a spiral S that approaches T. Each of T and S is the continuous
image of R, so is certainly connected. Let f : X → {0, 1} be a continuous map. Then f must be
constant on S since S is connected. Each point eiθ ∈ T is the limit of points in S, for example

(1 + e(θ−2nπ))eiθ → eiθ as n→ +∞ .

Hence, f(eiθ) must have the same value as f on S. Thus f is constant on all of X.

Nonetheless, the two parts T and S ofX can not be connected by any continuous path γ : [0, 1]→ X.
For such a path from γ(0) ∈ S to γ(1) ∈ T can not be continuous at the point to = sup{t ∈ [0, 1] :
γ(t) ∈ S}. We say that X is connected but not path-connected.

A topological space (X, T ) is path-connected if, for each pair of points x0, x1 ∈ X there is a
continuous map

γ : [0, 1]→ X with γ(0) = x0 and γ(1) = x1 .

Proposition 3.5 Path-connected implies connected
Every path-connected space is connected.

Proof:
Suppose that U, V disconnected X. Choose x0 ∈ U and x1 ∈ V and find a continuous path

γ from one to the other. Now [0, 1] is connected, so its image γ([0, 1]) is also connected. Since γ(0) =
x0 ∈ U , we must have all of γ([0, 1]) inside U . A contradiction. �

However, for sufficiently nice spaces, connectedness and path-connectedness do correspond. We will
need the following result.

Proposition 3.6 For open subsets of RN , connected implies path-connected
An open subset U of RN is connected if and only if it is path-connected.
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Proof:
We already know that path-connected spaces are connected. So we may assume that U is

connected and prove that it is path-connected.

Let xo ∈ U and define W = {x ∈ U : there exists a continuous path γ in U from xo to x }. Sup-
pose that x1 ∈ W with a continuous path γ in U from xo to x1. Since U is open in RN , there is a ball
B(x1, r) about x1 within U . Hence, for each y ∈ B(x1, r), we can find a path in U from xo to y by
first following γ and then going along a radius of B(x1, r) from x1 to y. This shows that y ∈ W . Thus
B(x1, r) ⊂W and W is open in U .

Similarly, suppose that x1 /∈ W and B(x1, r) ⊂ U . If any y ∈ B(x1, r) were in W , then we could
find a path in U from xo to x1 by going from xo to y in U and then along a radius in B(x1, r) to x1.
This would contradict x1 /∈W . Therefore, B(x1, r) ⊂ U \W .

We have now shown that U is the disjoint union of the two open sets W and U \W . Since U is
connected, one of these must be empty. Thus W = U , which shows that U is path connected. �

The proof actually gives us more than path-connectedness. Within any ball B(x1, r) we can join
any point y to the centre x1 by a straight line segment. Hence we can join any two points in a connected
open subset of RN by a piecewise linear path. We could also join x1 to y by a path made up of line
segments parallel to the co-ordinate axes. So we can join any two points in a connected open subset of
R
N by a piecewise linear path with each segment parallel to one of the co-ordinate axes.
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4. CURVES

A domain in the complex plane C is an open, connected subset of C. A function f : D → C on a
domain D ⊂ C is analytic if it is complex differentiable at each point of D. (It is more common to call
such a function holomorphic or regular.) It is a much stronger condition on a function to be complex
differentiable than to be real differentiable. Indeed, we will later show that any complex differentiable
function on a domain D can be written locally as a power series. The reason for this is that we can
apply the fundamental theorem of calculus when we integrate f along a curve in D that starts and ends
at the same point. This will show that, for suitable curves, the integral is 0 — a result we call Cauchy’s
theorem. This theorem has many important consequences and is the key to the rest of the course.

We wish to integrate functions along curves in D. First consider integrals. If φ : [a, b] → C is a
continuous function, then the Riemann integral

I =
∫ b

a

φ(t) dt

exists. If I has argument θ, then

|I| = Ie−iθ =
∫ b

a

φ(t)e−iθ dt 6
∫ b

a

|φ(t)| dt

so we have the inequality ∣∣∣∣∣
∫ b

a

φ(t) dt

∣∣∣∣∣ 6
∫ b

a

|φ(t)| dt .

A continuously differentiable curve in D is a map γ : [a, b] → D defined on a compact interval
[a, b] ⊂ R that is continuously differentiable at each point of [a, b]. (At the endpoints a, b we demand
a one-sided derivative.) The image γ([a, b]) will be denoted by [γ]. For such a curve γ we define the
integral of the continuous function f : D → C along γ by∫

γ

f(z) dz =
∫ b

a

f(γ(t))γ′(t) dt .

We can also define the length of γ to be the integral∫ b

a

|γ′(t)| dt .

Then we have the important inequality:∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ 6
∫ b

a

|f(γ(t))||γ′(t)| dt 6 L(γ). sup{|f(z)| : z ∈ [γ]} .

Example: The straight-line curve [w0, w1] between two points of C is given by

[0, 1]→ C ; t 7→ (1− t)wo + tw1 .

This has length |w1 − w0|. The circle C(zo, r) is given by

[0, 1]→ C ; t 7→ zo + re2πit

and has length 2πr. A piecewise continuously differentiable curve is a map γ : [a, b]→ D for which there
is a subdivision

a = t0 < t1 < t2 < . . . < tN−1 < tN = b
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with each of the restrictions γ| : [tn, tn+1] → D (n = 0, 1, . . . , N) being a continuously differentiable
curve. The integral along γ is then

∫
γ

f(z) dz =
N−1∑
n=0

∫ tn+1

tn

f(γ(t))γ′(t) dt

and the length is L(γ) =
∑
L(γ|[tn, tn+1]). We clearly have∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ 6 L(γ). sup{|f(z)| : z ∈ [γ]} .

From now on, we will suppose, tacitly, that all the curves we consider are piecewise continuously differ-
entiable

It is possible to re-parametrise a curve γ : [a, b]→ D. Suppose that h : [c, d]→ [a, b] is a continuously
differentiable, strictly increasing function with a continuously differentiable inverse h−1 : [a, b]→ [c, d].
Then γ ◦ h : [c, d]→ D is a curve and the substitution rule for integrals shows that∫

γ◦h
f(z) dz =

∫ d

c

f(γ(h(s))γ′(h(s))h′(s) ds =
∫ b

a

f(γ(t))γ′(t) dt =
∫
γ

f(z) dz

and similarly that L(γ ◦ h) = L(γ). Sometimes it is useful to reverse the orientation of the curve. For
any curve γ : [a, b]→ D, the reversed curve −γ is given by

−γ : [−b,−a]→ D ; t 7→ γ(−t) .

This traces out the same image as γ but in the reverse direction.

Proposition 4.1 Fundamental Theorem of Calculus
Let f : D → C be an analytic function. If f is the derivative of another analytic function F : D → C,
then ∫

γ

f(z) dz = F (γ(b))− F (γ(a))

for any piecewise continuously differentiable curve γ : [a, b]→ D.

We call F : D → C an antiderivative of f if F ′(z) = f(z) for all z ∈ D.

Proof:
The fundamental theorem of calculus show that∫

γ

f(z) dz =
∫ b

a

f(γ(t))γ′(t) dt =
∫ b

a

F ′(γ(t))γ′(t) dt =
∫ b

a

(F ◦ γ)′(t) dt = F (γ(b))− F (γ(a))

for any continuously differentiable curve γ. The result follows for piecewise continuously differentiable
curves by adding the results for each continuously differentiable section. �

A curve γ : [a, b]→ D is closed if γ(b) = γ(a). In this case, the Proposition shows that∫
γ

f(z) dz = 0

provided that f is the derivative of a function F : D → C. This is our first form of Cauchy’s theorem.

For the sake of variety, we use many different names for curves, such as paths or routes. Closed
curves are sometimes called cycles or contours.
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Example: Let A be the domain C \ {0} and γ the closed curve

γ : [0, 1]→ A ; t 7→ e2πit

that traces out the unit circle in a positive direction. Let f(z) = zn for n ∈ Z. Then∫
γ

zn dz =
∫ 1

0

e2nπit 2πie2πit dt =
{ 2πi when n = −1;

0 otherwise.

This agrees with the Proposition. For each function f(z) = zn with n 6= −1 there is a function
F (z) = zn+1/(n + 1) with F ′(z) = f(z) on A, so the integral around γ should be 0. However, for
n = −1 there is no such function F : A → C and so the integral can be non-zero. Indeed, if there
were such a function F it would have to be F (z) = log z + constant and there is no continuous way to
choose a branch of the logarithm on all of A. This example is of crucial importance and the study of
the complex logarithm is at the centre of complex analysis.

Winding Numbers

Let γ : [a, b]→ C be a curve that does not pass through 0. A continuous choice of the argument on
γ is a continuous map θ : [a, b] → R with γ(t) = |γ(t)|eiθ(t) for each t ∈ [a, b]. The change θ(b) − θ(a)
measures the angle about 0 turned through by γ. We call (θ(b)− θ(a))/2π the winding number n(γ, 0)
of γ about 0. Suppose that φ is another continuous choice of the argument on γ. Then θ(t)− φ(t) must
be an integer multiple of 2π. Since θ−φ is continuous on the connected interval [a, b], we see that there
is an integer k with φ(t)− θ(t) = 2kπ for all t ∈ [a, b]. Hence θ(b)− θ(a) = φ(b)− φ(a) and the winding
number is well defined.

When γ is a piecewise continuously differentiable curve, we can give a continuous choice of θ(t)
explicitly and hence find an expression for the winding number. Let

h(t) =
∫
γ|[a,t]

1
z
dz =

∫ t

a

γ′(t)
γ(t)

dt

for t ∈ [a, b]. The chain rule shows that

d

dt

(
e−h(t)γ(t)

)
= −h′(t)e−h(t)γ(t) + e−h(t)γ′(t) = −γ

′(t)
γ(t)

e−h(t)γ(t) + e−h(t)γ′(t) = 0 .

Hence e−h(t)γ(t) is constant. Therefore,

γ(t) = eh(t)γ(a) = e<h(t)ei=h(t)γ(a) .

This means that θ(t) = arg γ(a)+=h(t) gives a continuous choice of the argument of γ(t). Consequently,
the total angle turned through by γ is

=
(∫

γ

1
z
dz

)
.

If γ is piecewise continuously differentiable, we can apply this argument to each section of γ and so find
that the final formula still holds.

The formula is particularly important when γ is a closed curve. Then γ(b) = γ(a), so eh(b) = 1 and
we must have h(b) = 2Nπi for some integer N . The number N counts the number of times γ winds
positively around 0. We have the formula:

N =
h(b)
2πi

=
1

2πi

∫
γ

1
z
dz .
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We can also consider how many times a closed curve γ winds around any point wo that does not
lie on γ. By translating wo to 0 we see that this is

n(γ;wo) =
1

2πi

∫
γ

1
z − wo

dz ,

which is called the winding number of γ about wo.

Example: The curve γ : [0, 1]→ C; t 7→ zo + re2πit has winding number

n(γ;wo) =
{

1 when |wo − zo| < r;
0 when |wo − zo| > r.

It is not defined when |wo − zo| = r.

Lemma 4.2
Let γ be a piecewise continuously differentiable closed curve taking values in the disc B(zo, R). Then
n(γ;wo) = 0 for all points wo /∈ B(zo, R).

Proof:
By translating and rotating the curve, we may assume that wo = 0 and zo is a positive real

number no smaller than R. For z in the disc B(zo, R), we can find an unique real number φ(z) ∈ (−π, π)
with z = |z|eiφ(z). (This is the principal branch of the argument of z.) The map φ : B(1, 1)→ R is then
continuous. Hence, t 7→ φ(γ(t)) is a continuous choice of the argument on γ. So

n(γ; 0) =
φ(γ(b))− φ(γ(a))

2π
.

Since γ(b) = γ(a), this winding number must be 0. �

The winding number n(γ;w) is unchanged if we perturb γ by a sufficiently small amount.

Proposition 4.3 Winding numbers under perturbation
Let α, β : [a, b]→ C be two closed curve and w a point not on [α]. If

|β(t)− α(t)| < |α(t)− w| for each t ∈ [a, b]

then n(β;w) = n(α;w).

Proof:
By translating the curves, we may assume that w = 0. Then |β(t)−α(t)| < |α(t)| for t ∈ [a, b].

This certainly implies that β(t) 6= 0, so the winding number n(β; 0) exists. Write

β(t) = α(t)
(

1 +
β(t)− α(t)

α(t)

)
= α(t)γ(t) .

Since the argument of a product is the sum of the arguments, this implies that

n(β; 0) = n(α; 0) + n(γ; 0) .

However the inequality in the proposition shows that γ takes values in the disc B(1, 1) so the lemma
proves that n(γ; 0) = 0. �

Proposition 4.4 Winding number constant on each component
Let γ be a piecewise continuously differentiable closed curve in C. The winding number n(γ;w) is
constant for w in each component of C \ [γ] and is 0 on the unbounded component.
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Proof:
The image [γ] is a compact subset of C, so it is bounded, say [γ] ⊂ B(0, R). The complement

U = C \ [γ] is open, so each component of the complement is also open. One component contains
C \ B(0, R), so it is the unique unbounded component that contains all points of sufficiently large
modulus.

Let wo ∈ U = C \ [γ]. Then there is a disc B(wo, r) ⊂ U . For w with |w − wo| < r we have

|(γ(t)− w)− (γ(t)− wo)| = |w − wo| < r 6 |γ(t)− wo| .

Proposition 4.3 then shows that n(γ;w) = n(γ;wo). So the function w 7→ n(γ;w) is continuous (indeed
constant) at wo. It follows that w 7→ n(γ;w) is a continuous integer-valued function on U . It must
therefore be constant on each component of U .

Lemma 4.2 shows that n(γ;w) = 0 for w outside the disc B(0, R). So the winding number must be
0 on the unbounded component of U . �

Homotopy

Let γ0, γ1 : [a, b] → D be two piecewise continuously differentiable closed curves in the domain
D. A homotopy from γ0 to γ1 is a family of piecewise continuously differentiable closed curves γs for
s ∈ [0, 1] that vary continously from γ0 to γ1. This means that the map

h : [0, 1]× [a, b]→ D ; (s, t) 7→ γs(t)

is continuous. More formally, we define a homotopy to be a continuous map h : [0, 1]× [a, b]→ D with

hs : [a, b]→ D ; t 7→ h(s, t)

being a piecewise continuously differentiable closed curve in D for each s ∈ [0, 1]. We then say that the
curves h0 and h1 are homotopic and write h0 ' h1. This gives an equivalence relation between closed
curves in D.

Example: Suppose that γ0, γ1 : [0, 1]→ D are closed paths in the domain D and that, for each t ∈ [0, 1],
the line segment [γ0(t), γ1(t)] lies within D. Then the map

h : [0, 1]× [0, 1]→ D ; (s, t) 7→ (1− s)γ0(t) + sγ1(t)

is continuous and defines a homotopy from γ0 to γ1. We sometimes call such a homotopy a linear
homotopy.

A closed curve γ in D is null-homotopic if it is homotopic in D to a constant curve. The domain
D is simply-connected if every closed curve in D is null-homotopic. For example, a disc B(zo, r) is
simply-connected since there is a linear homotopy from any curve γ in the disc to zo.

A domain D ⊂ C is called a star with centre zo if, for each point w ∈ D the entire line segment
[zo, w] lies within D. A domain D is a star domain if it is a star with some centre zo. Clearly every disc
is a star domain but such domains as C \ {0} are not. Every star domain is simply-connected because
a curve is linearly homotopic to the constant curve at the centre.

Proposition 4.5 Winding number and homotopy
If two closed curves γ0 and γ1 are homotopic in a domain D and w ∈ C \D, then n(γ0;w) = n(γ1;w).
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Proof:
By translating the curves and the domain, we may assume that w = 0.

Let h : [0, 1] × [a, b] → D be the homotopy with γ0 = h0 and γ1 = h1. Since [0, 1] × [a, b] is a
compact subset of D, there is an ε > 0 with |hs(t)| > ε for each (s, t) ∈ [0, 1]× [a, b]. The homotopy h
is uniformly continuous. Hence there is a δ > 0 with

|hs(t)− hu(t)| < ε whenever |s− u| < δ .

This means that
|hs(t)− hu(t)| < |hu(t)| whenever |s− u| < δ .

Hence Proposition 4.4 shows that

n(hs; 0) = n(hu; 0) whenever |s− u| < δ .

This clearly establishes the result. �
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5 CAUCHY’S THEOREM

Let T be a closed triangle that lies inside the domain D. Let v0, v1, v2 be the vertices labelled in
anti-clockwise order around T . Then the edges [v0, v1], [v1, v2], [v2, v0] are straight-line paths in D. The
three sides taken in order give a closed curve [v0, v1] + [v1, v2] + [v2, v0]in D that we denote by ∂T .

Proposition 5.1 Cauchy’s theorem for triangles
Let f : D → C be an analytic function and T a closed triangle that lies within D. Then∫

∂T

f(z) dz = 0 .

This proof is due to Goursat and relies on repeated bisection. It underlies all the stronger versions of
Cauchy’s theorem that we will prove later.

Proof:

Set I =
∫
∂T

f(z) dz .

���

���

���

� �

� � �	�

��


Subdivide T into four similar triangles T1, T2, T3, T4 as shown. Then we have

4∑
k=1

∫
∂Tk

f(z) dz =
∫
∂T

f(z) dz

because the integrals along the sides of Tk in the interior of T cancel. At least one the integrals∫
∂Tk

f(z) dz

must have modulus at least 1
4 |I|. Choose one of the triangles with this property and call it T ′. Repeating

this procedure we obtain sequence of triangles (T (n)) nested inside one another with∣∣∣∣∫
∂T (n)

f(z) dz
∣∣∣∣ > |I|4n

.
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Let L(γ) denote the length of a path γ and set L = L(∂T ). Then each Tk has L(∂Tk) = 1
2L.

Therefore, L(∂T (n)) = L/2n.

The triangle T is a compact subset of C with T (n) closed subsets. If the intersection
⋂
n∈N T

(n)

of these sets were empty, then the complements T \ T (n) would form an open cover of T with no finite
subcover. Therefore, we must have

⋂
n∈N T

(n) non-empty. Choose a point zo ∈
⋂
n∈N T

(n).

The function f is differentiable at zo. So, for each ε > 0, there is a δ > 0 with∣∣∣∣f(z)− f(zo)
z − zo

− f ′(zo)
∣∣∣∣ < ε

whenever z ∈ B(zo, δ). This means that

f(z) = f(zo) + f ′(zo)(z − zo) + η(z)(z − zo)

with |η(z)| < ε for z ∈ B(zo, δ). For n sufficiently large, we have T (n) ⊂ B(zo, δ), so∣∣∣∣∫
∂T (n)

f(z) dz
∣∣∣∣ =

∣∣∣∣∫
∂T (n)

f(zo) + f ′(zo)(z − zo) + η(z)(z − zo) dz
∣∣∣∣ .

The integrals ∫
∂T (n)

f(zo) dz and
∫
∂T (n)

f ′(zo)(z − zo) dz

can be evaluated explicitly and are both zero, so∣∣∣∣∫
∂T (n)

f(z) dz
∣∣∣∣ 6 ∫

∂T (n)
ε|z − zo| dz 6 εL(∂T (n)) sup{|z − zo| : z ∈ ∂T (n)} 6 εL(∂T (n))2 = ε

L2

4n
.

This gives

|I| =
∣∣∣∣∫
∂T

f(z) dz
∣∣∣∣ 6 4n

∣∣∣∣∫
∂T (n)

f(z) dz
∣∣∣∣ 6 εL2 .

This is true for all ε > 0, so we must have I = 0. �

We can use this proposition to prove Cauchy’s theorem for discs. The proof actually works for any
star domain.

Theorem 5.2 Cauchy’s theorem for a star domain
Let f : D → C be an analytic function on a star domain D ⊂ C and let γ be a piecewise continuously
differentiable closed curve in D. Then ∫

γ

f(z) dz = 0 .

Proof:
Let D be the star domain with centre zo then each line segment [zo, z] to a point z ∈ D lies

within D. By Proposition 4.1 we need only show that there is an anti-derivative F of f , that is a
function with F ′(z) = f(z) for z ∈ D. Define F : D → C by

F (w) =
∫

[zo,w]

f(z) dz .

Then Cauchy’s theorem for the triangle with vertices zo, w and w + h gives

F (w + h)− F (w) =
∫

[w,w+h]

f(z) dz .

Consequently,

|F (w + h)− F (w)− f(w)h| =

∣∣∣∣∣
∫

[w,w+h]

f(z)− f(w) dz

∣∣∣∣∣ 6 |h|. sup{|f(z)− f(w)| : z ∈ [w,w + h]} .

The continuity of f at w shows that sup{|f(z) − f(w)| : z ∈ [w,w + h]} tends to 0 as h tends to 0.
Hence F is differentiable at w and F ′(w) = f(w). �
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We wish to apply Theorem 5.2 under slightly weaker conditions on f . We want to allow there to
be a finite number of exceptional points in D where f is not necessarily differentiable but is continuous.
Later we will see that such a function must, in fact, be differentiable at each exceptional point.

Proposition 5.1’ Cauchy’s theorem for triangles
Let f : D → C be a continuous function that is complex differentiable at every point except wo ∈ D.
Let T be a closed triangle that lies within D. Then∫

∂T

f(z) dz = 0 .

Proof:
If wo /∈ T , then this result is simply Proposition 5.1 . Hence, we may assume that wo ∈ T .

Let T ε be the triangle obtained by enlarging T with centre wo by a factor ε < 1. Then we can divide
T \ T ε into triangles that lie entirely within T \ {wo}. The integral around each of these triangles is 0
by Proposition 5.1. Adding these results we see that∫

∂T

f(z) dz =
∫
∂T ε

f(z) dz .

���

Since f is continuous on D, there is a constant K with |f(z)| 6 K for every z ∈ T . Therefore,∣∣∣∣∫
∂T

f(z) dz
∣∣∣∣ =

∣∣∣∣∫
∂T ε

f(z) dz
∣∣∣∣ 6 L(∂T ε)K = εL(∂T )K .

This is true for every ε > 0, so we must have
∫
∂T

f(z) dz = 0 as required. �

This proposition allows us to extend Cauchy’s Theorem 5.2 to functions that fail to be differentiable
at one point (or, indeed, at a finite number of points).

Theorem 5.2’ Cauchy’s theorem for a star domain
Let f : D → C be a continuous function on a star domain D ⊂ C that is complex differentiable at every
point except wo ∈ D. Let γ be a piecewise continuously differentiable closed curve in D. Then∫

γ

f(z) dz = 0 .
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Proof:
We argue exactly as in the proof of Theorem 5.2 . Let zo be a centre for the star domain D

and define F (z) to be the integral of f along the straight line path [zo, z] from zo to z. The previous
proposition shows that

F (z + h)− F (z) =
∫

[z,z+h]

f(z) dz .

So F is differentiable with F ′(z) = f(z) for each z ∈ D. Now Proposition 4.1 gives the result. �

The crucial application of this corollary is the following. Suppose that f : D → C is an analytic
function on a disc D = B(zo, R) ⊂ C and wo ∈ D. Then we can define a new function g : D → C by

g(z) =


f(z)− f(wo)

z − wo
for z 6= wo;

f ′(wo) for z = wo.

This is certainly complex differentiable at each point of D except wo. At wo we know that f is differ-
entiable, so g is continuous. We can now apply Theorem 5.2’ to g and obtain

0 =
∫
γ

g(z) dz =
∫
γ

f(z)− f(wo)
z − wo

dz

for any closed curve γ in D that does not pass through wo. Now

0 =
∫
γ

g(z) dz =
∫
γ

f(z)− f(wo)
z − wo

dz =
∫
γ

f(z)
z − wo

dz − f(wo)
∫
γ

1
z − wo

dz .

So we obtain

f(wo)n(γ;wo) =
1

2πi

∫
γ

f(z)
z − wo

dz . (∗)

This applies, in particular, when γ is the boundary of a circle contained in D.

Theorem 5.3 Cauchy’s Representation Formula
Let f : D → C be an analytic function on a domain D ⊂ C and let B(zo, R) be a closed disc in D. Then

f(w) =
1

2πi

∫
C(zo,R)

f(z)
z − w

dz for w ∈ D(zo, R)

when C(z0, R) is the circular path C(z0, R) : [0, 2π]→ C ; t 7→ zo +Reit.

Proof:
This follows immediately from formula (∗) above since the winding number of C(zo, R) about

any w ∈ B(zo, R) is 1. �

Cauchy’s representation formula is immensely useful for proving the local properties of analytic
functions. These are the properties that hold on small discs rather then the global properties that
require we study a function on its entire domain. The next chapter will use the representation formula
frequently but, as a first example:

Example: Let f : D → C be an analytic function on a domain D. For zo ∈ D there is a closed disc
B(zo, R) within D and Cauchy’s representation formula gives

f(zo) =
1

2πi

∫
C(zo,R)

f(z)
z − zo

dz =
∫ 2π

0

f(zo +Reiθ)
dθ

2π
.

So the value of f at the centre of the circle is the average of the values on the circle C.

Theorem 5.4 Liouville’s theorem
Any bounded analytic function f : C→ C defined on the entire complex plane is constant.
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Proof:
Let w,w′ be any two points of C and let M be an upper bound for |f(z)| for z ∈ C. Then

Cauchy’s representation formula gives

f(w) =
1

2πi

∫
C(0,r)

f(z)
z − w

dz for each r > |w| .

Hence,

f(w)− f(w′) =
1

2πi

∫
C(0,r)

f(z)
z − w

− f(z)
z − w′

dz =
1

2πi

∫
C(0,r)

f(z)(w − w′)
(z − w)(z − w′)

for r > max{|w|, |w′|}. Consequently,

|f(w)− f(w′)| 6 L(C(0, r))
2π

sup
{
|f(z)||w − w′|
|z − w||z − w′|

: |z| = r

}
6 r

(
M |w − w′|

(r − |w|)(r − |w′|)

)
.

The right side tends to 0 as r ↗ +∞, so the left side must be 0. Thus f(w) = f(w′). �

Corollary 5.5 The Fundamental Theorem of Algebra
Every non-constant polynomial has a zero in C.

Proof:
Suppose that p(z) = zN +aN−1z

N−1 + . . . a1z+a0 is a polynomial that has no zero in C. Then
f(z) = 1/p(z) is an analytic function. As z → ∞ so f(z) → 0. Hence f is bounded. By Liouville’s
theorem, p must be constant. �

By dividing a polynomial by z− zo for each zero zo we see that the total number of zeros of p, counting
multiplicity, is equal to the degree of p.

Homotopy form of Cauchy’s Theorem.

Let f : D → C be an analytic function on a domain D. We wish to study how the integral∫
γ

f(z) dz

varies as we vary the closed curve γ in D. Recall that two closed curves β, γ : [a, b] → D are linearly
homotopic in D if, for each t ∈ [a, b] the line segment [β(t), γ(t)] is a subset of D.

Theorem 5.6 Homotopy form of Cauchy’s Theorem.
Let f : D → C be an analytic map on a domain D ⊂ C. If the two piecewise continuously differentiable
closed curves α, β are homotopic in D, then∫

α

f(z) dz =
∫
β

f(z) dz .
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Proof:
Let h : [0, 1] × [a, b] → D be the homotopy. So each map hs : [a, b] → D ; t 7→ h(s, t) is

a piecewise continuously differentiable closed curve in D, h0 = α and h1 = β. This means that h is
piecewise continuously differentiable on each “vertical” line {s} × [a, b]. Initially we will assume that h
is also continuously differentiable on each “horizontal” line [0, 1]× {t}. For any rectangle

Q = {(s, t) ∈ [0, 1]× [a, b] : s1 6 s 6 s2 and t1 6 t 6 t2}
let ∂Q denote the boundary of Q positively oriented. Then h is piecewise continuously differentiable
on each segment of the boundary, so h(∂Q) is a piecewise continuously differentiable closed curve in D.
If we divide Q into two smaller rectangles Q1, Q2 by drawing a horizontal or vertical line ` then the

segments of the integrals
∫
h(∂Q1)

f(z) dz and
∫
h(∂Q2)

f(z) dz along ` cancel, so∫
h(∂Q)

f(z) dz =
∫
h(∂Q1)

f(z) dz +
∫
h(∂Q2)

f(z) dz .

For the original rectangle R = [0, 1]× [a, b] the image of the horizontal sides [0, 1]× {a} and [0, 1]× {b}
are the same since each hs is closed. Hence∫

h(∂R)

f(z) dz =
∫
β

f(z) dz −
∫
α

f(z) dz .

We need to show that this is 0.

Define ρ(z) = inf{|z − w| : w ∈ C \ D} to be the distance from z ∈ D to the complement of D.
Since D is open, ρ(z) > 0 for each z ∈ D. Moreover, ρ is continuous since |ρ(z) − ρ(z′)| 6 |z − z′|.
Hence, ρ attains a minimum value on the compact set h(R), say

ρ(h(s, t)) > r > 0 for every s ∈ [0, 1], t ∈ [a, b] .

This means that each disc B(h(s, t), r) is contained in D.

Furthermore, Proposition 2.12 shows that h is uniformly continuous. So there is a δ > 0 with

|h(u, v)− h(s, t)| 6 r whenever ||(u, v)− (s, t)|| < δ . (∗)
Suppose that Q is a rectangle in R with diameter less than δ and Po a point in Q. Then h(Q) ⊂
B(h(Po), r) and the disc B(h(Po), r) is a subset of D. Cauchy’s theorem for star domains (5.2) can now
be applied to this disc to see that ∫

h(∂Q)

f(z) dz = 0 .

We can divide R into rectangles (Qn)Nn=1 each with diameter less than δ. So∫
h(∂R)

f(z) dz =
N∑
n=1

∫
h(∂Qn)

f(z) dz = 0

as required.

It remains to deal with the case where the homotopy h is not continuously differentiable on each
horizontal line. Choose a subdivision

0 = s(0) < s(1) < . . . < s(N − 1) < s(N) = 1

of [0, 1] with |s(k + 1) − s(k)| < δ for k = 0, 1, . . . , N − 1. Then equation (∗) above shows that
|h(s(k), t)−h(s(k+ 1), t)| < r for each t ∈ [a, b]. Hence the entire line segment [h(s(k), t), h(s(k+ 1), t)]
lies in the disc B(h(s(k), t), r) and hence in D. So hs(k) and hs(k+1) are LINEARLY homotopic in D.
We can certainly apply the above argument to linear homotopies, so we see that∫

hs(k)

f(z) dz =
∫
hs(k+1)

f(z) dz .

Adding these results gives ∫
α

f(z) dz =
∫
β

f(z) dz .

�
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Corollary 5.7 Cauchy’s Theorem for null-homotopic curves
Let f : D → C be an analytic map on a domain D and γ a piecewise continuously differentiable closed
curve in D that is null-homotopic in D. Then∫

γ

f(z) dz = 0 .

�

If the domain D is simply connected, then any closed curve in D is null-homotopic, so Cauchy’s theorem
will apply.
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6. POWER SERIES

A power series is an infinite sum of the form
∑∞
n=0 an(z−zo)n. Recall that a power series converges

on a disc.

Proposition 6.1 Radius of convergence
For the sequence of complex numbers (an) define R = sup{r : anrn → 0 as n → ∞}. Then the power
series

∑
anz

n converges absolutely on the open disc B(zo, R) and diverges outside the corresponding
closed disc B(zo, R). Indeed, the power series converges uniformly on each disc B(zo, r) with r strictly
less than R.

We call R the radius of convergence of the power series
∑
an(z − zo)n. It can take any value from 0 to

+∞ including the extreme values. The series may converge or diverge on the circle ∂B(zo, R).

Proof:
It is clear that if

∑
an(z−zo)n converges then the terms an(z−zo)n must tend to 0 as n→∞.

Therefore, anrn → 0 as n → ∞ for each r 6 |z − zo|. Hence R > |z − zo| and we see that the power
series diverges for |z − zo| > R.

Suppose that |z − zo| < R. Then we can find r with |z − zo| < r < R and anr
n → 0 as n → ∞.

This means that there is a constant K with |an|rn 6 K for each n ∈ N. Hence∑
|an||z − zo|n 6

∑
K

(
|z − zo|

r

)n
.

The series on the right is a convergent geometric series, and
∑
anz

n converges, absolutely, by comparison
with it. Also, this convergence is uniform on B(zo, r). �

We wish to prove that a power series can be differentiated term-by-term within its disc of conver-
gence.

Proposition 6.2 Power series are differentiable.

Let R be the radius of convergence of the power series
∑
an(z − zo)n. The sum s(z) =

∞∑
n=0

an(z − zo)n

is complex differentiable on the disc B(zo, R) and has derivative t(z) =
∞∑
n=1

nan(z − zo)n−1.

Proof:
We may assume that zo = 0. For a fixed point w with |w| < R, we can choose r with

|w| < r < R. We will consider h satisfying |h| < r − |w| so that |w + h| < r.

First note that

(w + h)n − wn − nwn−1h =
∫

[w,w+h]

nzn−1 − nwn−1 dz =
∫

[w,w+h]

∫
[w,z]

n(n− 1)un−2 du dz .

Since |un−2| 6 rn−2 for |u| < r, this implies that

|(w + h)n − wn − nwn−1| 6 |h| sup

{∣∣∣∣∣
∫

[w,z]

n(n− 1)un−2 du

∣∣∣∣∣ : u ∈ [w,w + h]

}
6 |h|2n(n− 1)rn−2 .

Hence,

|s(w + h)− s(w)− t(w)h| =

∣∣∣∣∣
∞∑
n=0

an
(
(w + h)n − wn − nwn−1h

)∣∣∣∣∣
6
∞∑
n=0

|an||(w + h)n − wn − nwn−1h|

6

( ∞∑
n=0

n(n− 1)|an|rn−2

)
|h|2 .
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The series
∑
n(n − 1)|an|rn−2 converges by comparison with

∑
|an|sn for any s with r < s < R.

Therefore, s is differentiable at w and s′(w) = t(w). �

The derivative of the power series s is itself a power series, so s is twice differentiable. Repeating
this shows that s is infinitely differentiable, that is we can differentiate it as many times as we wish.

Corollary 6.3 Power series are infinitely differentiable
Let R be the radius of convergence of the power series

∑
an(z − zo)n. Then the sum

s(z) =
∞∑
n=0

an(z − zo)n

is infinitely differentiable on B(zo, R) with

s(k)(z) =
∞∑
n=k

n!
(n− k)!

an(z − zo)n−k .

In particular, s(k)(zo) = k!ak, so the power series is the Taylor series for s.

�

Cauchy Transforms

Let γ : [a, b]→ C be a piecewise continuously differentiable path in C and φ : [γ]→ C a continuous
function on [γ]. Then the integral

Φ(w) =
1

2πi

∫
γ

φ(z)
z − w

dz

exists for each w ∈ C \ [γ]. This is the Cauchy transform of φ. We will show that it defines a function
analytic everywhere except on [γ].

Proposition 6.4 Cauchy transforms have power series
Let Φ be the Cauchy transform of a continuous function φ : [γ] → C. For zo ∈ C \ [γ] let R be the
radius of the largest disc B(zo, R) that lies within C \ [γ]. Then

Φ(w) =
∞∑
n=0

an(w − zo)n for |w − zo| < R

where the coefficients an are given by

an =
1

2πi

∫
γ

φ(z)
(z − zo)n+1

dz .
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Proof:
We may assume, by translating γ, that zo = 0. The formula for the sum of a geometric series

shows that
1

z − w
=

1
z

+
w

z2
+ . . .+

wN−1

zN
+

wN

zN (z − w)
.

Integrating this gives
Φ(w) = a0 + a1w + . . .+ aN−1w

N−1 + EN (w)

where

ak =
1

2πi

∫
γ

φ(z)
zk+1

dz and EN (w) =
1

2πi

∫
γ

φ(z)wN

zN (z − w)
dz .

Let ||φ||∞ = sup{|φ(z)| : z ∈ [γ]}. For z ∈ [γ] we have |z| > R and |z − w| > R− |w|, so

|EN (w)| 6 L(γ)
2π

||φ||∞
(R− |w|)

(
|w|
R

)N
.

This shows that, for |w| < R,∣∣∣∣∣Φ(w)−
N−1∑
n=0

anw
n

∣∣∣∣∣ = |EN (w)| → 0 as N →∞ .

Therefore the power series
∑
anw

n converges on B(0, R) to Φ. �

Corollary 6.5 Cauchy transforms are infinitely differentiable
The Cauchy transform Φ of a continuous function φ : [γ]→ C is infinitely differentiable on C \ [γ] with

Φ(n)(zo) =
n!

2πi

∫
γ

φ(z)
(z − zo)n+1

dz .

Proof:
We know that Φ is given by a power series Φ(z) =

∑∞
n=0 an(z− zo)n on the disc B(zo, R). By

Corollary 6.3 this power series is infinitely differentiable. Moreover,

Φ(n)(zo) = n!an =
n!

2πi

∫
γ

φ(z)
(z − zo)n+1

dz

as required. �

If we apply these results to the Cauchy representation formula we obtain the following theorem.

Theorem 6.6 Analytic functions have power series
Let f : D → C be an analytic function on a domain D ⊂ C. For each point zo ∈ D, let R be the radius
of the largest disc B(zo, R) that lies within D. Then

f(z) =
∞∑
n=0

an(z − zo)n for |z − zo| < R

where the coefficients an are given by

an =
1

2πi

∫
Cr

f(z)
(z − zo)n+1

dz

for Cr the circle of radius r (0 < r < R) about zo. Therefore, f is infinitely differentiable on D and we
have representation formulae

f (n)(w) =
n!

2πi

∫
Cr

f(z)
(z − w)n+1

dz

for w with |w − zo| < r.
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Proof:
For 0 < r < R, let Cr be the circle of radius r with centre zo. The Cauchy representation

formula ( Theorem 5.3 ) shows that f is the Cauchy transform

f(w) =
1

2πi

∫
Cr

f(z)
z − w

dz

for w ∈ B(zo, r). Hence, f must be given by a power series
∑∞
n=0 an(w− zo)n on this disc B(zo, r). The

coefficients an must be

an =
f (n)(zo)
n!

,

which is independent of r. This holds for all r < R, so the series
∑∞
n=0 an(w − zo)n must converge on

all of B(zo, R).

Also Corollary 6.5 shows that the Cauchy transform satisfies

f (n)(w) =
n!

2πi

∫
Cr

f(z)
(z − w)n+1

dz .

�

This theorem has many useful consequences. Our first will be a partial converse of Cauchy’s
theorem.

Proposition 6.7 Morera’s theorem
Let f : D → C be a continuous function on a domain D ⊂ C. If, for every closed triangle T ⊂ D, the

integral

∫
∂T

f(z) dz is 0, then f is analytic.

Proof:
Let zo ∈ D and choose R > 0 so that B(zo, R) ⊂ D. Then we can define a function F :

B(zo, R)→ C by

F (z) =
∫

[zo,z]

f(z) dz .

Since f is continuous, the fundamental theorem of calculus shows that F is complex differentiable at each
point of B(zo, R) with F ′(z) = f(z) (compare Theorem 5.2 ). Now F is analytic on the disc B(zo, R)
and so the previous theorem shows that it is twice continuously differentiable. Thus f ′(z) = F ′′(z)
exists. �

Note that the result fails if we do not insist that f is continuous. For example the function f : C→ C

that is 0 except at at a single point is not analytic.

The Local Behaviour of Analytic Functions

The power series expansion for an analytic function is very useful for describing the local behaviour
of analytic functions. A key result is that the zeros of an non-constant analytic function are isolated.
This means that if f : D → C is a non-constant analytic function and f(zo) = 0, then there is a
neighbourhood V of zo on which f has no other zeros.

Theorem 6.8 Isolated Zeros
The zeros of a non-constant analytic function are isolated.
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Proof:
Let f : D → C be an analytic function. For each z ∈ D we know that there is a power series

f(w) =
∞∑
n=0

an(w − z)n

that converges to f(w) on some disc B(z,R). The coefficients an are given by f (n)(z)/n!. If all
the coefficients an are 0, then f is zero on the entire disc B(z,R). Conversely, if f is zero on some
neighbourhood V of z, then each derivative f (n)(z) is 0 and so each coefficient an is 0.

Let A be the set: {z ∈ D : there is a neighbourhood V of z with f(w) = 0 for all w ∈ V }. This
is clearly open. However, we have shown that A = {z ∈ D : f (n)(z) = 0 for all n = 0, 1, 2, . . . }. If
z ∈ B = D \A, then there is a natural number n with f (n)(z) 6= 0. Since f (n) is continuous, f (n)(w) 6= 0
on some neighbourhood of z. Therefore, B is also open. Since D is connected, one of the two sets A,B
must be empty. If B is empty, then f is constantly 0 on D. If A is empty, we will show that the zeros
of f are isolated.

Let f : D → C be a non-constant analytic function with f(z) = 0 for some z ∈ D. Since f is not
constant, the set B can not be all of D and must therefore be empty. This means that at least one of
the coefficients of the power series

f(w) =
∞∑
n=0

an(w − z)n for w ∈ B(z, r)

is non-zero. Let aN be the first such coefficient. Then

f(w) = (w − z)N
( ∞∑
n=N

an(w − z)n−N
)
.

Since the power series
∑
an(w − z)n converges on B(z, r), so does

∑
an(w − z)n−N and it gives an

analytic function F : B(z, r)→ C. Note that F (z) = aN 6= 0. Since F is continuous, there is an r with
0 < r < R and F (w) 6= 0 for w ∈ B(zo, r). This means that f(w) = (w− zo)NF (w) is not 0 on B(zo, r)
except at zo. Thus zo is an isolated zero. �

Corollary 6.9 Identity Theorem
Let f, g : D → C be two analytic functions on a domain D. If the set E = {z ∈ D : f(z) = g(z)}
contains a non-isolated point, then f = g everywhere on D.

Proof:
E is the set of zeros of the analytic function f − g. �

This corollary gives us the principle of analytic continuation: If f : D → C is an analytic function
on a (non-empty) domain D and f extends to an analytic function F : Ω → C on some larger domain
Ω, then F is unique. For, if F̃ : Ω → C were another extension of f , then F and F̃ would agree on D
and hence on all of Ω. However, there may not be any extension of f to a larger domain.

Let f : D → C be a non-constant analytic function on a domain D ⊂ C. For any point zo ∈ D, we
know that f(z) is represented by a power series

f(w) =
∞∑
n=0

an(w − zo)n

on some disc B(zo, R). Clearly a0 = f(zo). Since the zeros of f−f(zo) are isolated, there must be a first
coefficient (after a0) that is non-zero, say aN . We call N the degree of f at zo and write it deg(f ; zo).
We can write f as

f(w) = f(zo) + (w − zo)Ng(w)
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for w ∈ B(zo, R) and some analytic function g : B(zo, R)→ C with g(zo) 6= 0. Indeed, we can define a
function F on all of D by

F (w) =
{
f(w)−f(zo)

(w−zo)N
when w ∈ D \ {zo};

g(w) when w ∈ B(zo, R).
These definitions agree on B(zo, R) \ {zo} and so do define an analytic function F : D → C with
f(w) = f(zo) + (w − zo)NF (w) on all of D.

Locally Uniform Convergence

Let fn and f be functions from a domain D into C. We say that fn → f locally uniformly on D if,
for each zo ∈ D, there is a neighbourhood V of zo in D with fn(z)→ f(z) uniformly for z ∈ V .

Example: Let
∑∞
n=0 anz

n be a power series with radius of convergence R > 0. Then the partial sums

SN (z) =
N∑
n=0

anz
n

converge locally uniformly on B(0, R) to f(z) =
∑∞
n=0 anz

n. This was proven in Proposition 6.1 .

Suppose that fn → f on the domain D. Then, for each zo ∈ D, there is an open disc ∆(zo) in
D, centred on zo, with fn(z) → f(z) uniformly on ∆(zo). If K is any compact subset of D, then K
is covered by these sets ∆(zo) for zo ∈ K. Hence, there is a finite subcover. This shows that fn → f
uniformly on the compact set K. We will use this particularly when K is the image [γ] of a curve γ.

Suppose that each of the functions fn is continuous on D. The uniform limit of continuous functions
is continuous, so f is continuous on each ∆(zo) and hence on all of D. We will now prove the the locally
uniform limit of analytic functions is analytic.

Proposition 6.10 Locally uniform convergence of analytic functions
Let fn : D → C be a sequence of analytic functions on a domain D that converges locally uniformly to

a function f . Then f is analytic on D. Moreover, the derivatives f
(k)
n converge locally uniformly on D

to f (k).

Proof:
Let zo ∈ D. Then there is a disc ∆ = B(zo, r) on which fn converge uniformly to f . The

functions fn are continuous so the uniform limit f is also continuous on ∆. Also, the uniform convergence
implies that ∫

γ

fn(z) dz →
∫
γ

f(z) dz

for any closed curve γ in ∆. Since fn is analytic, Cauchy’s theorem for the disc ∆ implies that∫
γ
fn(z) dz = 0. Therefore,

∫
γ
f(z) dz = 0. Morera’s theorem now shows that f is analytic on ∆.

Since zo is arbitrary, f is analytic on all of D.

Now let C(zo, s) be the circle of radius s < r about zo. For |w| < s Cauchy’s representation formula
( 5.3 ) gives

f (k)
n (w) =

k!
2πi

∫
C(zo,s)

fn(z)
(z − w)k+1

dz

and a similar formula for f , which we now know is analytic. Therefore,

|f (k)
n (w)− f (k)(w)| =

∣∣∣∣∣ k!
2πi

∫
C(zo,s)

fn(z)− f(z)
(z − w)k+1

dz

∣∣∣∣∣
6

k!
2π
L(C(zo, s)) sup

{∣∣∣∣fn(z)− f(z)
(z − w)k+1

∣∣∣∣ : |z − zo| = s

}
6

k!s
(s− |w − zo|)k

sup{|fn(z)− f(z)| : |z − zo| = s}

and we see that f (k)
n (w)→ f (k)(w) uniformly on any disc D(zo, t) with t < s. �
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This theorem gives us an alternative proof of Proposition 6.2 , which showed that a power series
could be differentiated term by term inside its radius of convergence. For suppose that s(z) =

∑
an(z−

zo)n is a power series with radius of convergence R > 0. Then the partial sums

SN (z) =
N∑
n=0

an(z − zo)n

converge locally uniformly to s on B(zo, R). Each SN is a polynomial and so is certainly analytic.
Therefore s is analytic on B(zo, R). Moreover,

s′(z) = lim
N→∞

S′N (z) = lim
N→∞

N∑
n=0

nan(z − zo)n−1 =
∞∑
n=0

nan(z − zo)n−1 .

Isolated Singularities

Let D be a domain and zo a point of D. We are concerned about an analytic function f : D\{zo} →
C that is not defined at the point zo. We call zo an isolated singularity of f . It is defined and analytic at
every point of some disc B(zo, R) except the centre zo. We will study the behaviour of f as we approach
the singular point.

The simplest possibility for f is that we can extend it to a function analytic on all of D, even at
the point zo. If this is the case, we say that f has a removable singularity at zo. Usually we replace f
by the analytic extension:

F (z) =
{
f(z) when z ∈ D \ {zo};
wo when z = zo.

Since F is to be continuous, the value wo it takes at zo must be lim
z→zo

f(z) and F is unique. We will now

show that f has a removable singularity at zo if and only if the limit lim
z→zo

f(z) exists.

Example: The function

s : C \ {0} → C ; z 7→ sin z
z

has a removable singularity at 0. For the power series for the sine function shows that

s(z) =
∞∑
k=0

(−1)k
z2k

(2k + 1)!
.

So we can extend s to 0 by sending 0 to 1. This extension is given by a power series and so is analytic
on all of C.

Proposition 6.11 Removable singularities
The analytic function f : D \ {zo} → C has a removable singularity at zo ∈ D if and only if there is a
finite limit wo ∈ C with f(z)→ wo as z → zo.

Proof:
If f has a removable singularity at zo, then there is an analytic extension F : D → C. This

extension is continuous, so f(z) = F (z)→ F (zo) as z → zo.

For the converse, suppose that f(z)→ wo as z → zo. Then we can define

F : D → C ; z 7→
{
f(z) when z ∈ D \ {zo};
wo when z = zo.

This is certainly continuous at zo and analytic elsewhere on D. Therefore, we can apply Cauchy’s

theorem to any triangle T within D using Proposition 5.1’ and obtain
∫
∂T

f(z) dz = 0. Morera’s

theorem now shows that F is analytic on all of D. �
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When we proved Cauchy’s theorem we considered a function f : D → C that was analytic except
at one point zo where it was continuous. The last proposition shows that such a function is actually
analytic even at zo. So the exceptional point is no different from any other.

It is useful to strengthen the last proposition a little.

Corollary 6.12 Riemann’s Removable Singularity Criterion
The analytic function f : D \ {zo} → C has a removable singularity at zo ∈ D if and only if
lim
z→zo

(z − zo)f(z) = 0.

Note that when f is bounded in a neighbourhood of zo, then the limit lim(z − zo)f(z) certainly exists
and is 0 and so there must be a removable singularity at zo.

Proof:
The function g(z) = (z − zo)f(z) is analytic on D \ {zo} and tends to 0 as z → zo. Hence the

previous proposition tells us that g has a removable singularity at zo. Let G : D → C be the analytic
extension of g. We certainly have G(zo) = limz→zo g(z) = 0. Hence

f(z) =
G(z)−G(zo)

z − zo
→ G′(zo) as z → zo .

Therefore, the previous proposition shows that f has a removable singularity at zo. �

So far we have only considered functions f : D → C taking values in the finite complex plane C.
However, in the Algebra and Geometry course you considered functions taking values in the Riemann
sphere (or extended complex plane) C∞. The Riemann sphere consists of the complex plane C and one
extra point ∞. You saw that the extra point ∞ behaved in the same way as the finite points in C
and that the Möbius transformations z 7→ (az + b)/(cz + d) permuted the points of C∞. We now wish
to explain what it means for a function f : D → C∞ that takes values in the Riemann sphere to be
analytic.

Let f : D → C∞ be a function defined on a domain D ⊂ C and zo ∈ D. If f(zo) ∈ C, then f is

complex differentiable at zo if the limit lim
z→zo

f(z)− f(zo)
z − zo

exists and is a point of C. If f(zo) = ∞, we

use the Möbius transformation J : w 7→ 1/w to send∞ to a finite point and then ask if J ◦ f is complex
differentiable at zo. Thus we say that f is complex differentiable at the point zo with f(zo) = ∞ if
z 7→ 1/f(z) is complex differentiable at zo. (It is not useful to define a value for f ′(zo) at points where
f(zo) =∞.) We call a point zo where f(zo) =∞ and f is complex differentiable a pole of f . A function
f : D → C∞ that is is not identically∞ but is complex differentiable at each point of D is meromorphic
on D. Since the zeros of a non-constant analytic function are isolated, the poles of a meromorphic
function are also isolated. Thus a meromorphic function is analytic on its domain except for a set of
poles each of which is isolated. For example, if f : D → C is an analytic function and is not identically
0, then z 7→ 1/f(z) is meromorphic. This implies that each rational function is meromorphic on C.

Suppose that f : D → C is a meromorphic function and has a pole at zo. The function f is
certainly continuous at zo so there is a neighbourhood V of zo with |f(z)| > 1 for z ∈ V . Now the
function g : z 7→ 1/f(z) is complex differentiable and finite at each point of V and it has a zero at zo.
Since f is not identically∞, g can not be identically 0. Therefore, the zero at zo is isolated. This means
that we can write g(z) = (z − zo)NG(z) for some natural number N > 1 and some function G that is
analytic near zo and has G(zo) 6= 0. Therefore f(z) = (z − zo)−NF (z) where F (z) = 1/G(z) is analytic
near zo and has F (zo) 6= 0,∞. This show how the meromorphic function f behaves near a pole. We
write N = deg(f ; zo) and call zo a pole of order N for f .

We will say that an analytic function f : D\{zo} → C has a pole at zo ∈ D if there is a meromorphic
function F : D → C∞ that extends f and F has a pole at zo. This is similar to f having a removable
singularity at zo except that the correct value to put for f(zo) is ∞.

Proposition 6.13 Poles as isolated singularities
The analytic function f : D \ {zo} → C has a pole at zo if and only if f(z)→∞ as z → zo.
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Proof:
If f has an extension F with a pole at zo, then f(z) = F (z)→ F (zo) =∞ as z → zo.

For the converse, suppose that f(z) → ∞ as z → zo. There is a neighbourhood V of zo with
|f(z)| > 1 for z ∈ V \ {zo}. Hence, g : z 7→ 1/f(z) is bounded, analytic on V \ {zo} and has g(z) → 0
as z → zo. Proposition 6.11 shows that g has a removable singularity at zo so there is a function
G : V → C extending g. Now the function

F : z 7→
{
f(z) when z ∈ D \ {zo};
1/G(z) when z ∈ V .

is well-defined and gives a meromorphic extension of f . �

There remain some isolated singularities that are neither removable singularities nor poles. We call
these essential singularities. Functions behave very dramatically near an essential singularity.

Example: The function f : z 7→ exp(1/z) has an essential singularity at 0. For real values of t we have

exp(1/t)→∞ as t↘ 0 + while exp(1/t)→ 0 as t↗ 0−

so the limit limz→0 f(z) can not exist either as a finite complex number or as ∞. Therefore, f can not
have either a removable singularity or a pole at 0.

Proposition 6.14 Weierstrass - Casorati Theorem
An analytic function takes values arbitrarily close to any complex number on any neighbourhood of an
essential singularity.

Proof:
Let f : D \ {zo} → C be an analytic function with an isolated singularity at zo. Suppose that

there is some neighbourhood of zo on which f does not take values arbitrarily close to wo ∈ C. Say

|f(z)− wo| > ε for 0 < |z − zo| < R .

Then the function g : z 7→ 1/(f(z) − wo) is bounded by 1/ε for 0 < |z − zo| < R. Therefore, g has a
removable singularity at zo by Corollary 6.12 . Consequently, f(z) = wo + 1/g(z) will have a removable
singularity or a pole at zo.

A similar argument applies for wo =∞. Suppose that

|f(z)| > K for 0 < |z − zo| < R .

Then g : z 7→ 1/f(z) is bounded by 1/K for 0 < |z − zo| < R. Therefore, g has a removable singularity
at zo and f will have a removable singularity or a pole. �

(In fact much more is true. Picard showed that in every neighbourhood of an essential singularity
the function takes each value w ∈ C∞ with at most two exceptions. The example z 7→ exp(1/z) takes
every value except 0 and ∞.)
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7. ANALYTIC FUNCTIONS ON AN ANNULUS

Let A = {z ∈ C : R1 < |z| < R2} be an annulus or ring-shaped domain and let f : A → C be an
analytic function. We have seen that

∫
γ
f(z) dz can be non-zero, for example when f(z) = 1/z. In this

section we want to study what values the integral can take.

Proposition 7.1 Cauchy’s theorem on an annulus
For each analytic function f : A→ C there is a constant Kf with

1
2πi

∫
γ

f(z) dz = n(γ; 0)Kf

for every closed, piecewise continuously differentiable path γ in A.

Note that this is certainly true when f is analytic on the entire disc {z : |z| < R2} because of Cauchy’s
theorem. In this case Kf = 0. Also, it is true for f(z) = 1/z because of the definition of the winding
number n(γ; 0). In this case, Kf = 1.

Proof:
Let S be the strip {w = u + iv ∈ C : logR1 < u < logR2}, which is a star with any point as

a centre. The exponential mapping exp : S → A; w 7→ ew maps S onto A. Cauchy’s theorem for star
domains ( 5.2 ) shows that the analytic function φ : S → C ; φ(w) = f(ew)ew has an antiderivative Φ.
Now ew+2πi = ew so φ(w+ 2πi) = φ(w) and hence Φ′(w+ 2πi) = Φ′(w). Hence, there is a constant Kf

with
Φ(w + 2πi) = Φ(w) + 2πiKf .

Let Cr be the circle Cr : [0, 2π]→ A, t 7→ reit for R1 < r < R2. Then∫
Cr

f(z) dz =
∫ 2π

0

f(reit)ireit dt = i

∫ 2π

0

φ(log r + it) dt = Φ(log r + 2πi)− Φ(log r) = 2πiKf

so we can determine Kf from this integral.

Consider first the case where Kf = 0. Then we have Φ(w + 2nπi) = Φ(w) for each n ∈ Z. So
we can define a function F : A → C unambiguously by F (z) = Φ(w) for any w with z = ew. The
derivative of this satisfies F ′(ew)ew = Φ′(w) = φ(w)w = f(ew)ew. Hence, F ′(z) = f(z) and f has an
antiderivative on A. Consequently, ∫

γ

f(z) dz = 0

for any closed curve γ in A by Proposition 4.1 .

Now suppose that Kf 6= 0. Then we can replace f by the function

g(z) = f(z)− Kf

z
.

This has

Kg =
1

2πi

∫
Cr

g(z) dz =
1

2πi

∫
Cr

g(z) dz − Kf

2πi

∫
Cr

1
z
dz = Kf − n(Cr; 0)Kf = 0 .

Therefore, we can apply the previous argument to g and obtain

1
2πi

∫
γ

f(z) dz =
1

2πi

∫
γ

g(z) dz +
Kf

2πi

∫
γ

1
z
dz = 0 + n(γ; 0)Kf

as required. �
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We can also apply this result to an annulus A = {z ∈ C : R1 < |z − zo| < R2} centred at some
other point zo. Then we have

1
2πi

∫
γ

f(z) dz = n(γ; zo)Kf

for any closed curve γ in A. This result is particularly useful when R1 = 0. Then we call the constant
Kf the residue of f at zo and denote it by Res(f ; zo).

Proposition 7.2 Analytic functions on an annulus
For each analytic function f : A→ C there are analytic functions

F1 : {z : |z| > R1} → C and F2 : {z : |z| < R2} → C

with f(z) = F2(z)− F1(z) for each z ∈ A.

Proof:
We proceed as in the proof of the Cauchy Representation Theorem ( 5.3 ). Let w be a fixed

point in A and set

g(z) =
f(z)− f(w)

z − w
for z ∈ A \ {w} .

Then g(z) → f ′(w) as z → w, so g has a removable singularity at w ( Proposition 6.11 ). If we set
g(w) = f ′(w) then we obtain a function g analytic on all of the annulus A. For any closed curve γ in
A \ {w} we have

1
2πi

∫
γ

f(z)
z − w

dz − f(w)
2πi

∫
γ

1
z − w

dz =
1

2πi

∫
γ

g(z) dz ,

which gives
1

2πi

∫
γ

f(z)
z − w

dz = n(γ; 0)f(w) +
1

2πi

∫
γ

g(z) dz .

We can apply this when γ is the circle Cr for r 6= |w|. For this the previous proposition shows that

1
2πi

∫
γ

g(z) dz = Kg

is independent of r. Hence

1
2πi

∫
Cr

f(z)
z − w

dz = Kg when R1 < r < |w|

1
2πi

∫
Cr

f(z)
z − w

dz = f(w) +Kg when |w| < r < R2 .

(∗)

Let

F1(w) =
1

2πi

∫
Cr

f(z)
z − w

dz for R1 < r < |w| .

Corollary 6.5 shows that F1 is an analytic function of w on {w : r < |w|}. Since f(z)/(z−w) is analytic
on the annulus {z : R1 < |z| < |w|} the value of F1(w) is independent of r ∈ (R1, |w|). This means that
F1 is an analytic function on {w : R1 < |w|}. Similarly,

F2(w) =
1

2πi

∫
Cr

f(z)
z − w

dz for |w| < r < R2

gives an analytic function on {w : |w| < R2}.

Finally, equations (∗) shows that

f(w) = F2(w)− F1(w) .

�
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We already know that analytic functions on discs have power series expansions. The last proposition
gives similar expansions for analytic functions on an annulus.

Corollary 7.3 Laurent expansions
For each analytic function f : A = {z ∈ C : R1 < |z − zo| < R2} → C there are coefficients an for n ∈ Z
with

f(w) =
∞∑

n=−∞
an(w − zo)n for w ∈ A .

This series converges locally uniformly on the annulus A. Moreover,

n(γ; 0)an =
1

2πi

∫
γ

f(z)
(z − zo)n+1

dz

for every n ∈ Z and any piecewise continuously differentiable closed curve γ in A.

Proof:
By translating A we may ensure that zo = 0. Then we know that f(w) = F2(w) − F1(w)

for analytic functions F1 : {w : R1 < |w|} → C and F2 : {w : |w| < R2} → C. The function F2 is

analytic on a disc, so it has a power series expansion F2(w) =
∞∑
n=0

bnw
n that converges locally uniformly

on {w : |w| < R2}.

The argument for F1 is similar but the disc is centred on ∞ in C∞ rather than on 0. Hence we
must begin by using a Möbius transformation to move ∞ to 0. First note that

F1(w) =
1

2πi

∫
Cr

f(z)
z − w

dz has |F1(w)| 6 r sup{|f(z)| : |z| = r}
|w| − r

so F1(w) → 0 as w → ∞. Let G(z) = F1(1/z) then G(z) → 0 as z → 0. Therefore G has a removable
singularity at 0 and so gives us an analytic function G : {z : |z| < 1/R1} → C. This has a power series

expansion G(z) =
∞∑
n=1

cnz
n that converges locally uniformly on {z : |z| < 1/R1}. (The constant term is 0

since G(0) = 0.) Thus F1(w) =
∞∑
n=1

cnw
−n and the series converges locally uniformly on {w : R1 < |w|}.

Putting these power series together we obtain

f(w) =
∞∑
n=0

bnw
n −

∞∑
n=1

cnw
−n .

Both parts of this sum converge locally uniformly on the annulus A. This gives the Laurent series we
wanted.

Since the Laurent series for f converges uniformly on the compact set [γ], we see that

1
2πi

∫
γ

f(z)
(z − zo)n+1

dz =
∞∑

k=−∞

ak
1

2πi

∫
γ

(z − zo)k−n−1 dz .

We can easily evaluate the integrals
∫
γ
(z−zo)m dz and see that they are 0 except when m = −1. Hence,

1
2πi

∫
γ

f(z)
(z − zo)n+1

dz = ann(γ; zo) .

�
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Laurent Series about isolated singularities

Let zo be a point in the domain D and let f : D \ {zo} → C be an analytic function. So f has
an isolated singularity at zo. There will be a disc B(zo, R) that lies within D. So f is analytic on the
annulus A = {z : 0 < |z − zo| < R} and has a Laurent expansion

f(z) =
∞∑

n=−∞
an(z − zo)n

on this annulus. Corollary 7.3 shows that the residue of f at zo is Res(f ; zo) = a−1.

Proposition 7.4 Laurent series for isolated singularities
Let f : D \ {zo} → C be an analytic function with an isolated singularity at zo and let

f(z) =
∞∑

n=−∞
an(z − zo)n

be its Laurent expansion that converges for 0 < |z − zo| < R. Then

(a) f has a removable singularity at zo if and only if an = 0 for n < 0.

(b) f has a pole at zo of order N if and only if an = 0 for n < −N and a−N 6= 0.

(c) f has an essential singularity at zo if and only if an 6= 0 for infinitely many negative values of n.

Proof:
(a) Suppose that f has a removable singularity at zo. then there is an analytic function

F : D → C extending f . For γ a closed curve in the annulus A we have

an =
1

2πi

∫
C

F (z)
(z − zo)n+1

dz

and Cauchy’s theorem shows that this is 0 for n < 0. Conversely, if an = 0 for n < 0, then the Laurent
series reduces to a power series and defines an analytic extension of f .

(b) Suppose that f has a pole of order N at zo. Then f(z) = (z − zo)−NG(z) for some function G
analytic near zo and with G(zo) 6= 0. The Laurent series for G is

G(z) =
∞∑

n=−∞
an−N (z − zo)n .

This has a removable singularity at zo, so part (a) implies that an = 0 for n < −N . We also have
a−N = G(zo) 6= 0. Conversely, if an = 0 for n < −N and a−N = 0, then

f(z) = (z − zo)−N
∞∑
n=0

an−N (z − zo)n

so f has a pole of order N at zo.

(c) The singularity is essential if and only if it is neither removable nor a pole. Similarly, the Laurent
series has an 6= 0 for infinitely many negative n if and only if there is no integer N with an = 0 for
n < −N . Thus (a) and (b) imply (c). �
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Laurent series give us a quick proof of the Residue theorem at least for simply connected domains.
Suppose that f has an isolated singularity at zo and has Laurent series

∑∞
n=−∞ an(z − zo)n. The part

P (z) =
−1∑

n=−∞
an(z − zo)n

of this series is called the principal part of f at zo. The principal part is a power series in 1/(z− zo) and
converges for z sufficiently close to zo. Therefore, it must converge for all z ∈ C \ {zo}. The difference
f − P is analytic at zo.

Theorem 7.5 Residue theorem for simply connected domains
Let D be a simply connected domain in C and f a function that is analytic on D except for isolated
singularities at the points z1, z2, . . . , zK . For any piecewise continuously differentiable closed curve γ in
D \ {z1, z2, . . . , zK} we have

1
2πi

∫
γ

f(z) dz =
K∑
k=1

n(γ; zk)Res(f ; zk) .

Proof:
Let Pk be the principal part of f at zk and let

g(z) = f(z)−
K∑
k=1

Pk(z) .

Then g is analytic on all of D including the points zk. Hence Cauchy’s theorem for simply connected
domains ( Corollary 5.7 ) shows that

∫
γ
g(z) dz = 0. Therefore,

∫
γ

f(z) dz =
K∑
k=1

∫
γ

Pk(z) dz .

Now Corollary 7.3 shows that the residue of f at zk is the coefficient of 1/(z − zk) in the Laurent
expansion of f about zk. This is same for the principal part Pk. Hence Corollary 7.3 gives

1
2πi

∫
γ

Pk(z) dz = n(γ; zk)Res(f ; zk)

and the proof is complete. �

We will give a different proof of the residue theorem in the next section when we have proved a
stronger form of Cauchy’s theorem.
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8. THE HOMOLOGY FORM OF CAUCHY’S THEOREM

Let D be a domain in C. A chain in D is a finite collection γn : [an, bn]→ D (for n = 1, 2, 3, . . . , N)
of piecewise continuously differentiable curves in D. We will write Γ = γ1 + γ2 + . . . + γN for this
collection. The empty chain will be written as 0. We can add two chains and obtain another chain.
Let [Γ] be the union of the images [γn] = γn([an, bn]). The integral of a continuous function f : D → C

around Γ is then defined to be the sum∫
Γ

f(z) dz =
N∑
n=1

∫
γn

f(z) dz .

In particular, the winding number n(Γ;w) of a chain Γ about any point w /∈ [Γ] is

n(Γ;w) =
N∑
n=1

n(γn;w) =
1

2πi

∫
Γ

1
z − w

dz .

A cycle in D is a chain Γ = γ1 + γ2 + . . .+ γN where each point w ∈ C occurs the same number of
times as an initial point γn(an) as it does as an final point γn(bn). This means that a cycle consists of
a finite number of closed curves, each of which may be made up from a number of the curves γn. The
winding number n(Γ;w) of a cycle Γ is therefore an integer. Two cycles Γ and Γ′ are homologous in D
if

n(Γ;w) = n(Γ′;w) for each w ∈ C \D .

We write this as Γ ∼ Γ′. In particular, a cycle Γ is homologous to 0 (or null-homologous) in D if
n(Γ;w) = 0 for every w /∈ D.

Example: Let γ be a closed curve homotopic in D to a constant curve. Proposition 4.5 shows that

n(γ;w) = 0 for each w /∈ D .

Therefore, each closed curve homotopic to a constant is homologous to 0.

However, there are cycles homologous to 0 that are not made up of closed curves homotopic to a
constant. For example, consider the domain D = C \ {0, 1} and the cycle γ0 + γ1 + γ∞ where

γ0 : [0, 1]→ D ; t 7→ 1
3e

2πit ; γ1 : [0, 1]→ D ; t 7→ 1 + 1
3e

2πit . and γ∞ : [0, 1]→ D ; t 7→ 3e−2πit .

It is easy to check that n(Γ;w) = 0 for w = 0, 1, so Γ is homologous to 0. However, none of the
components γw of Γ is homotopic to a constant curve in D.

*Let us consider, informally, a simple closed curve γ in a domain D ⊂ C. The Jordan curve theorem
tells us that [γ] divides C into two components. The inside J of [γ] where n(γ;w) = ±1 and the outside
of [γ] where n(γ;w) = 0. It is clear that γ is homologous to 0 when J ⊂ D. This is when γ is the
boundary in C of a region J ⊂ D. More generally, a cycle Γ is homologous to 0 when there is a finite
collection of regions Jn ⊂ D with Γ being the sum of the boundaries of each Jn. The Algebraic Topology
course in Part 2 explains this more carefully.*

Our aim is to prove the most general possible form of Cauchy’s theorem. It is convenient to
simultaneously prove a corresponding representation formula.

Theorem 8.1 Homology form of Cauchy’s theorem
The following conditions on a cycle Γ in a domain D ⊂ C are equivalent.

(a) Γ is homologous to 0 in D.

(b) For each analytic function f : D → C and each point w ∈ D \ [Γ]

n(Γ;w)f(w) =
1

2πi

∫
Γ

f(z)
z − w

dz .

(c) For each analytic function f : D → C ∫
Γ

f(z) dz = 0 .
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Proof: (Following J.D. Dixon.)

(b) ⇒ (c)
If we apply (b) to the function z 7→ (z − w)f(z) for any w ∈ D \ [Γ] we obtain (c).

(c) ⇒ (a)
If w /∈ D, then z 7→ 1/(z−w) is analytic on D. So (c) implies that n(Γ;w) = 0 and therefore (a) is true.

(a) ⇒ (b)
As in the earlier proof of the representation theorem for discs, we consider the difference quotient

h(z, w) =


f(z)− f(w)

z − w
when z 6= w;

f ′(w) when z = w.

For w ∈ D define
H(w) =

1
2πi

∫
Γ

h(z, w) dz .

We will later prove that H : D → C is analytic. For the present we postpone this and instead show how
it leads to a proof that (a) ⇒ (b).

Let E = {w ∈ C : n(Γ;w) = 0}. (This is the “exterior” of Γ.) The set [Γ] is compact and hence
bounded, say [Γ] ⊂ B(0, R). Then Proposition 4.4 shows that C\B(0, R) ⊂ E. The Cauchy transform:

J(w) =
1

2πi

∫
Γ

f(z)
z − w

dz

is analytic on E and satisfies

|J(w)| 6 L(Γ)
2π(|w| −R)

sup{|f(z)| : z ∈ [Γ]} .

So J(w)→ 0 as w →∞. Moreover, if w ∈ D ∩ E, then

H(w) =
1

2πi

∫
Γ

f(z)
z − w

− f(w)
z − w

dz = J(w)− f(w)n(Γ;w) = J(w) .

Therefore, we can define a function K by

K(w) =
{
H(w) when w ∈ D;
J(w) when w ∈ E;

because the two definitions agree on D ∩ E. Condition (a) shows that n(Γ;w) = 0 for all w /∈ D. So
D ∪ E = C and K : C → C. Since H and J are both analytic, the function K is analytic. It is also
bounded, since J(w)→ 0 as w →∞. Therefore Liouville’s theorem implies that K is identically 0.

In particular, H(w) = 0 for w ∈ D \ [Γ], so

0 = H(w) =
1

2πi

∫
Γ

f(z)
z − w

dz − f(w)
2πi

∫
Γ

1
z − w

dz ,

which proves condition (b).

It remains to prove that H : D → C is analytic. We will do this in stages, using the lemmas below.
The first lemma is simply a topological result.

Lemma 8.2
Let (K, d) be a compact metric space and φ : [Γ]×K → C a continuous map. Then

Φ : K → C ; x 7→
∫

Γ

φ(z, x) dz

is continuous.
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Proof:
The product [Γ] × K is compact, so φ is uniformly continuous on it. This means that, for

ε > 0, there is a δ > 0 with

|φ(z, x)− φ(zo, xo)| < ε whenever |z − zo| < δ and d(x, xo) < δ .

Integrating this gives

|Φ(x)− Φ(xo)| 6 L(Γ) sup{|φ(z, x)− φ(z, xo)| : z ∈ [Γ]} 6 L(Γ)ε

when d(x, xo) < δ. �

We can apply this lemma to prove that h is continuous.

Lemma 8.3

The function h : D ×D → C; h(z, w) =


f(z)− f(w)

z − w
when z 6= w;

f ′(w) when z = w

is continuous.

Proof:
The function h(z, w) is certainly continuous at points where z 6= w. We need to prove that it

is also continuous at a point (a, a).

Let a ∈ D and choose a closed disc B(a, 2r) lying within D. Let C be the boundary circle of this
disc. For z, w ∈ B(a, 2r) the Cauchy representation formula for a disc ( 5.3 ) gives

h(z, w) =
1

(z − w)
1

2πi

∫
C

f(u)
(

1
u− z

− 1
u− w

)
du =

1
2πi

∫
C

f(u)
(

1
(u− z)(u− w)

)
du .

The function

φ : (u, (z, w)) 7→ f(u)
(

1
(u− z)(u− w)

)
is certainly continuous on [C]×(B(a, r)×B(a, r)). Hence the previous lemma shows that h is continuous
on B(a, r)×B(a, r). �

We now know that h is continuous. For each z ∈ D, the function w 7→ h(z, w) is complex differen-
tiable at each w 6= z and continuous at w = z. So it has a removable singularity at w = z and must be
analytic on all of D. Hence, the following lemma will complete the proof.

Lemma 8.4
Let Γ be a cycle in a domain D ⊂ C and h : [Γ] × D → C a continuous map. Suppose that, for each
z ∈ [Γ] the map w 7→ h(z, w) is analytic on D. Then the integral

H(w) =
1

2πi

∫
Γ

h(z, w) dz

is also analytic on D.
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Proof:

Let a be a point in D, as above, and let B(a, 2r) be a closed disc about a that lies within D. Its
boundary is C. The product [Γ]×B(a, 2r) is compact, so |h| has a finite supremum ||h||∞ on this set.

For each z ∈ [Γ] we know that w 7→ h(z, w) is analytic, so we can use Cauchy’s representation
formula for derivatives ( 6.6 ) to see that

∂h

∂w
(z, w) =

1
2πi

∫
C

h(z, u)
(u− w)2

du

for w ∈ B(a, 2r). The map (u, (z, w)) 7→ h(z, u)/(u−w)2 is certainly continuous on [C]× ([Γ]×B(a, r)),
so the first lemma shows that ∂h(z, w)/∂w is continuous on [Γ]×B(a, r).

Similarly,∣∣∣∣h(z, w)− h(z, wo)− (w − wo)
∂h

∂w
(z, wo)

∣∣∣∣ =
∣∣∣∣ 1
2πi

∫
C

h(z, u)
(

1
u− w

− 1
u− wo

− w − wo
(u− wo)2

)
du

∣∣∣∣
6

∣∣∣∣ 1
2πi

∫
C

h(z, u)
(

(w − wo)2

(u− w)(u− wo)2

)
du

∣∣∣∣
6
L(C)

2π
||h||∞|w − wo|2 sup

{
1

|u− w||u− wo|2
: u ∈ [C]

}
.

So we have ∣∣∣∣h(z, w)− h(z, wo)− (w − wo)
∂h

∂w
(z, wo)

∣∣∣∣ 6 2||h||∞
r2

|w − wo|2

for w,wo ∈ B(a, r).

Since h(z, ·) and ∂h(z, ·)/∂w are both continuous, we can integrate this last inequality to obtain∣∣∣∣H(w)−H(wo)−
w − wo

2πi

∫
Γ

∂h

∂w
(z, wo) dz

∣∣∣∣ 6 2||h||∞L(Γ)
r2

|w − wo|2

for w,wo ∈ B(a, r). This proves that H is complex differentiable on B(a, r) with

H ′(wo) =
∫

Γ

∂h

∂w
(z, wo) dz .

�

This result is stronger than our earlier versions of Cauchy’s theorem. For the last example showed
that a closed curve that is homotopic to a constant curve in D is homologous to 0. So the theorem
certainly implies that

∫
γ
f(z) dz = 0 when γ is such a curve.

The Residue Theorem

Let D be a domain in C and f a function that is analytic on D except for isolated singularities at
the points z1, z2, . . . , zK . This means that, for each k = 1, 2, 3, . . . ,K, there is a closed disc B(zk, Rk)
that lies within D and contains only the singularity at zk. Then f is analytic on B(zk, Rk) \ {zk} and
has a residue Res(f ; zk) at zk.

Theorem 8.5 Residue theorem
Let D be a domain in C and f a function that is analytic on D except for isolated singularities at the
points z1, z2, . . . , zK . For any cycle Γ in D \ {z1, z2, . . . , zK} that is homologous to 0 in D we have

1
2πi

∫
Γ

f(z) dz =
K∑
k=1

n(Γ; zk)Res(f ; zk) .
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Proof:
Let Ck denote the positively oriented circle bounding the disc B(zk, rk). Then n(Ck;w) = 1 if

w ∈ B(zk, rk) and n(Ck;w) = 0 for any w /∈ B(zk, rk). In particular, n(Ck; zk) = 1 but n(Ck; zj) = 0
for any j 6= k. Hence the cycle

∆ = Γ−
K∑
k=1

n(Γ; zk)Ck

is homologous to 0 in D\{z1, z2, . . . , zK}. Now the homology form of Cauchy’s theorem ( Theorem 8.1 )
shows that

0 =
∫

∆

f(z) dz =
∫

Γ

f(z) dz −
K∑
k=1

n(Γ; zk)
∫
Ck

f(z) dz .

Finally, Proposition 7.1 shows that
∫
Ck

f(z) dz = 2πiRes(f ; zk). �

A closed curve γ; [a, b]→ D is simple if it does not cross itself, so γ(s) = γ(t) for two distinct points
s, t only when s and t are the endpoints a and b. The Jordan curve theorem shows that such a curve
divides the plane into two connected components: the inside and the outside of γ. However, we will not
prove this. It is usual to apply the residue theorem when the cycle Γ is a simple closed curve bounding
a region in D. However, we will make a slightly more general definition: A cycle Γ bounds a domain Ω
if the winding number n(Γ;w) is 1 for all points w ∈ Ω and either 0 or undefined for all points not in
Ω. It is clear that a cycle Γ in D that bounds a domain Ω ⊂ D is homologous to 0 in D.

Consequently, we can restate the residue theorem as:

Theorem 8.5’ Residue theorem
Let D be a domain and f a function that is analytic on D except for isolated singularities. Let Γ be a
cycle that bounds a subdomain Ω of D and does not pass through any singularity. Then

1
2πi

∫
Γ

f(z) dz =
∑

n(Γ;w)Res(f ;w)

where the sum is over all the singularities in Ω.

Proof:
The set Ω is compact since it is bounded by [Γ]. For each w ∈ Ω there is an open neigh-

bourhood that contains at most one singularity of f , because the singularities are isolated. These open
neighbourhoods form an open cover for Ω so there is a finite subcover. Hence there can be only a finite
number of singularities within Ω. Now we can apply Theorem 8.5 . �
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9. THE ARGUMENT PRINCIPLE

Let f : D → C be an analytic map and Γ a cycle in D. Then f ◦Γ is also a cycle. If w ∈ C \ [f ◦Γ]
then the winding number n(f ◦ Γ;w) is given by

n(f ◦ Γ;w) =
1

2πi

∫
f◦Γ

1
z − w

dz =
1

2πi

∫
Γ

f ′(z)
f(z)− w

dz .

The integrand f ′(z)/(f(z)−w) is meromorphic with poles at the points zk where f(zk) = w. Near such
a point we have

f(z) = w + (z − zk)NF (z)

where N = deg(f ; zk) and F is analytic on a neighbourhood of zk with F (zk) 6= 0. Hence,

f ′(z)
f(z)− w

=
N

z − zk
+
F ′(z)
F (z)

and hence there is a simple pole at zk with residue N . Thus the residue theorem ( 8.5 ) gives

Theorem 9.1 Argument Principle
Let f : D → C be a non-constant analytic function and Γ a cycle in D that is homologous to 0 in D.
Suppose that f does not take the value w on [Γ]. Then

n(f ◦ Γ;w) =
∑

z:f(z)=w

deg(f ; z)n(Γ; z)

where the sum is taken over all points z ∈ D with f(z) = w.

Proof:
The points where f(z) = w are isolated in D and the set [Γ]∪{z ∈ D : n(Γ; z) 6= 0} is compact,

so there are only a finite number of non-zero terms in the sum.

The residue theorem shows that

n(f ◦ Γ;w) =
1

2πi

∫
Γ

f ′(z)
f(z)− w

dz =
∑

z:f(z)=w

Res(f ′/(f − w); z)n(Γ; z) =
∑

z:f(z)=w

deg(f ; z)n(Γ; z) .

�

It is usual to apply the argument principle to a cycle Γ that bounds a subdomain of D. Then the
winding numbers are all 0 or 1 and we obtain:

Theorem 9.1’ Argument Principle
Let f : D → C be a non-constant analytic function and Γ a cycle in D that bounds a subdomain Ω of
D. Suppose that f does not take the value w on [Γ]. Then

n(f ◦ Γ;w) =
∑

z∈Ω:f(z)=w

deg(f ; z) .

The sum on the right side is the number of solutions of f(z) = w in Ω, counting multiplicity. �
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We can also apply this argument when f is a meromorphic function. If f has a pole of order N at
zo then

f(z) = w + (z − zo)−NF (z)

on a neighbourhood of zo with F analytic and F (zo) 6= 0. Hence

f ′(z)
f(z)− w

=
−N
z − zo

+
F ′(z)
F (z)

and we see that f ′(z)/(f(z)− w) has a simple pole at zo with residue −N . This proves:

Theorem 9.2 Argument Principle for meromorphic functions
Let f : D → C be a non-constant meromorphic function and Γ a cycle in D that bounds a subdomain
Ω of D. Suppose that f takes neither the value w nor ∞ on [Γ]. Then

n(f ◦ Γ;w) =
∑

z∈Ω:f(z)=w

deg(f ; z) −
∑

z∈Ω:f(z)=∞

deg(f ; z) .

�

Rouché’s theorem formalises this type of argument.

Proposition 9.3 Rouché’s Theorem
Let Γ be a cycle in a domain D that bounds a subdomain Ω. If f, g : D → C are analytic functions with

|f(z)− g(z)| < |g(z)| for all z ∈ [Γ]

then f and g have the same number of zeros within Ω, counting multiplicity.

Proof:
The inequality shows that neither f nor g has a zero on [Γ]. We may therefore apply

Proposition 4.3 to the component curves of f ◦Γ and g ◦Γ to obtain n(f ◦Γ; 0) = n(g ◦Γ; 0). Now the
argument principle ( 9.1’ ) completes the proof. �

Local Mapping Theorem

We can now complete our study of the local behaviour of analytic functions.

Theorem 9.4 Local Mapping Theorem
Let f : D → C be a non-constant analytic function, zo ∈ D, wo = f(zo) and K = deg(f ; zo). Then
there are r, s > 0 such that, for each w ∈ B(wo, s) \ {wo} there are exactly K points z ∈ B(zo, r) with
f(z) = w.

Proof:
We know that there is an analytic function F : D → C with f(z) = wo + (z − zo)KF (z) and

F (zo) 6= 0. Hence, we can choose r > 0 so that the closed disc B(zo, r) lies within D and F (z) 6= 0 on
B(zo, r). Let C be the circle ∂B(zo, r). Then [f ◦C] is a compact subset of C that does not contain wo.
Choose s > 0 so that B(wo, s) does not meet [f ◦ C].

The winding number n(f ◦C;w) is constant on each component of C\[f ◦C] and hence it is constant
on B(wo, s). The argument principle shows that n(f ◦ C;w) is the number of solutions of f(z) = w
in B(zo, r), counting multiplicity. For w = wo, this number is K. Therefore, there are K solutions of
f(z) = w in B(zo, r) for each w ∈ B(wo, s).

The derivative of f is f ′(z) = (z − zo)K−1 (KF (z) + (z − zo)F ′(z)), so we can choose r sufficiently
small that f ′(z) 6= 0 on B(zo, r) \ {zo}. Then f − w can not have any multiple zeros in B(zo, r) \ {zo}.
Hence, there are exactly K distinct solutions of f(z) = w in B(zo, r) for each w ∈ B(wo, s) except wo.
For w = wo, the only solution of f(z) = w in B(zo, r) is at zo where it has multiplicity K. �
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Corollary 9.5 Open Mapping Theorem
A non-constant analytic function f : D → C maps open sets in D to open sets in C.

Proof:
If U is an open subset of D and zo ∈ U , then we wish to prove that there is a disc about

f(zo) that lies within f(U). The local mapping theorem shows that we can choose r, s > 0 so that
B(zo, r) ⊂ U and B(f(zo), s) ⊂ f(U). �

Corollary 9.6 Maximum Modulus Theorem
Let f : D → C be a non-constant analytic function on a domain D. Then the modulus |f | can have no
local maximum on D.

Proof:
For any zo ∈ D the local mapping theorem ( Theorem 9.4 ) shows that there are r, s > 0 with

f(B(zo, r)) ⊃ B(f(zo), s). This certainly implies that |f(z)| can not have a local maximum at zo. �
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